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Abstract. Design optimization for widely used axial flow pumps presents a formidable 

challenge due to the significant impact of numerous parameters associated with impeller 

geometry on hydraulic performance. The expansive design space raises concerns about the cost 

and time implications of the optimization process. This paper introduces a machine 

learning-based algorithm with a dynamic sampling approach to enhance the hydraulic 

performance of axial flow pumps. The focus is on an axial flow pump designed for China's 

South-to-North Water Diversion Project. Optimization involves selecting 15 design variables 

governing impeller geometry, considering meridional shape and mean blade profiles. The 

optimization process predicts hydraulic performance using CFD methods, with a primary 

objective of maximizing efficiency at the axial flow pump's design point while maintaining 

pump head around the design value. The results indicate that the proposed machine 

learning-based algorithm exhibits commendable convergence, delivering a notable 

improvement in performance. For instance, the optimized axial flow pump displays 2% 

efficiency increase compared to the initial design. Further analysis employing concepts like 

entropy generation rate and boundary vorticity flux reveals that the optimized pump has more 

uniform flow near the pressure side of the impeller blade. Additionally, design optimization 

effectively suppresses flow separation at the blade trailing edge near the impeller hub. This 

study offers valuable insights and a practical tool for the design optimization of axial flow 

pumps.  

1.  Introduction 

The axial flow pump has wide and important applications in various industries such as marine 

propulsion, water diversion [1-4], etc. for its large flow discharge. In the past, the design optimization 

of the axial flow pump relied on engineers' expertise [5-8]. The traditional optimization procedure 

involves an iterative loop where geometry parameters are revised manually to achieve the desired 

pump performance through numerical calculations or experimental tests till meeting the requirements 
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[9]. Due to a multitude of geometry parameters of the axial flow pump, it is not easy to consider all of 

them simultaneously [10-12]. Consequently, optimizing such pumps, with their expansive design space, 

solely through trial and error becomes an exceedingly challenging task. Though orthogonal testing 

aims to comprehensively incorporate critical factors and minimize trial iterations, its coupling with the 

optimization process consumes huge computational resources [13-15]. 

With the rapid advancement of computational technology, various numerical techniques have been 

applied for turbo machinery optimization. For instance, the genetic algorithm [16-23] has found 

widespread application in the optimization of pumps. Huang et al. introduced a modified version of 

the non-dominated sorting genetic algorithm II (NSGA-II) coupled with a dynamic crowding distance 

(DCD) method for multi-objective optimization of a mixed-flow pump impeller. The results showed 

an optimized impeller with improved hydraulic efficiency of 92% and higher impeller head at the 

design operation point [24]. Ghadimi et al. employed a metamodel-assisted genetic algorithm to 

enhance efficiency and minimize blood damage in a centrifugal blood pump. They focused on 

optimizing key dimensions of the base design, including inlet and outlet radii, blade angle distributions, 

and volute cross-section area [25]. Shojaeefard et al. utilized NSGA-II to optimize a centrifugal pump 

inducer, leading to a 14.3% increase in head coefficient and a 0.3% increment in hydraulic efficiency 

for the inducer [26]. While the genetic algorithm excels in efficiently locating global optima, its 

shortcomings include sluggish convergence and substantial resource consumption. The genetic 

algorithm often demands numerous design iterations to navigate towards the global optimum region, 

which can be time-consuming, particularly when coupled with CFD simulations for performance 

assessment. 

In recent times, machine learning-based surrogate models are used as alternatives to CFD 

simulations [27-34] to address this challenge. For instance, Wang et al. [35] utilized an artificial neural 

network to optimize a double suction centrifugal pump. This network was built using Design of 

Experiments (DoE), providing a readily computable surrogate space. However, the optimization 

process revealed that a substantial number of sampling points are required to establish an accurately 

predictive surrogate model, which could result in excessive points in less promising regions. To 

advance machine learning-driven design optimization, there's a need for sophisticated algorithms 

capable of not only approaching the global optimum point more closely but also converging to it more 

rapidly. For examples, Owoyele et al. [36] introduced a machine learning-driven optimization 

technique for internal combustion engine design. Unlike other machine learning-based approaches, 

Owoyele's method significantly diminishes the need for computationally intensive sampling far from 

the global optimum. This is achieved by eliminating reliance on an initial Design of Experiments (DoE) 

to train the machine learning surrogate models. Notably, in the realm of internal combustion engine 

design, this approach has demonstrated remarkable sample efficiency in locating the global optimum 

[37]. Similarly, Song et al. [38] employed a machine learning-based optimization algorithm with a 

dynamic sampling approach to optimize airfoil designs, and this was compared with the traditional 

genetic algorithm. The results indicate that the machine learning-based method yields superior 

aerodynamic performance and optimization efficiency compared with the conventional genetic 

algorithm approach. 

The primary objective of this study is to introduce a machine learning-based optimization algorithm 

with a dynamic sampling approach suitable to improve hydraulic performance of an axial flow pump 

designed for the South-to-North Water Diversion Project in China. The specific speed of the axial flow 

pump is 850 r/minm3/sm. The optimization process focuses on various factors, including the 

meridional section of pump impeller, blade profiles at different spans, etc. Hydraulic performance as 

well as internal flow for the baseline model and the optimized models is predicted by numerical 

simulation. Through comparison, performance improvement and flow features of the optimized axial 

flow pump are further discussed. 
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2.  Optimization problem 

2.1.  The baseline pump configuration 

The study aims to optimize an axial flow pump impeller for the South-to-North Water Diversion 

project in China. Note that diffuser vanes are not included in the flow passage of the axial flow pump 

for convenience. The detailed operating condition and the main geometrical parameters of the axial 

flow pump are listed in Table 1. The baseline model of the axial flow pump designed based on the 

conventional method [39] has flow rate of Qd=374l/s and head of Hd=8m at the designed point when 

operated at the rotational speed of n=1450r/min. In the following text, the baseline model of the axial 

flow pump is called as the initial pump. 

 

Table 1. Parameters for the axial flow pump. 

Parameters Symbol Value 

Pump casing diameter (mm) D 300 

Diameter at impeller hub (mm) dh 125 

Diameter at impeller shroud (mm) Dt 299.4 

Clearance at impeller blade tip (mm) c 0.3 

Number of impeller blade  Z 4 

Flow rate at designed operation (l/s) Qd 374 

Pump head at designed operation (m) Hd 8 

Rotational speed of pump impeller (r/min) n 1450 

Fluid temperature (C) T 20 

2.2.  Optimization objectives 

For the purpose of saving energy, the pump efficiency is set as the main optimization objective in this 

study. In order to satisfy the operation condition of axial flow pump, the pump head should be not less 

than the designed value at Qd. Further, it is necessary to restrict the pump head not larger than the 

value of 1.2Hd.  

2.3.  Design variables 

When optimizing the impeller, it becomes essential to establish a mathematical representation for the 

blade profile. This allows the geometrical parameters of the blade profile to function as design 

variables, effectively translating the physical space into a design space. In this study, both the 

meridional section and the mean camber line at each span of impeller blade are integrated into the 

optimization procedure. 

The schematic illustration of the meridional section for the axial flow pump impeller is presented in 

Figure 1. Concerning the meridional section, the diameters at the hub i.e. dh and at the shroud i.e. D of 

the axial pump impeller are maintained as constants. During the optimization of the impeller's 

meridional section, adaptability is introduced to modify both the leading and trailing edges. As 

examples, design variables encompass axial positions of the leading edge at the hub i.e. Zle,h and that at 

the shroud i.e. Zle,s, along with axial positions of the trailing edge at the hub i.e. Zte,h and that at the 

shroud i.e. Zte,s are selected as design variables. Furthermore, the leading and trailing edge curves are 

defined utilizing second-order Bezier curves.
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Figure 1. Schematic of the meridional section for axial impeller. 

 

The mean camber lines at various spans for the axial flow pump impeller blade is presented in 

Figure 2, where the horizontal axis represents the blade wrap angle, while the vertical axis denotes the 

streamline's length on the meridional section. It's worth noting that the blade wrap angle indicates the 

circumferential position of the blade. As observed, 5 spans are utilized for the design of impeller blade. 

For each span's mean camber line, a second-order Bezier curve is utilized to shape these lines. Design 

variables encompass the intersections of the mean camber line's leading and trailing edges with the 

hub and shroud in the meridional direction. Typically, the blade angle at the leading edge significantly 

influences pump performance, with the inclusion of the incidence angle i.e. i being crucial for design 

optimization. The incidence angle i is the difference between the setting angle and the flow angle at 

blade leading edge. Additionally, the blade angle at the trailing edge introduces the concept of the slip 

angle i.e. Δδ as a significant consideration for impeller design optimization. Importantly, the slip angle 

Δδ denotes the disparity between the blade angle at impeller exit and the flow angle computed using 

Euler's equation for pumps. Both the incidence angles and the slip angles at the hub and shroud are 

designated as design variables in this study. 

In order to obtain the physically valid impeller geometry and guarantee a smooth surface of pump 

impeller, the parameters for other spans are computed by using the linear interpolation, after the data 

at the hub and shroud have been determined. The interpolation of impeller geometry is helpful to 

reduce the design variables. 

The design variables used for optimization of the blade in this study are listed in Table 2. It can be 

seen that 15 design variables are used for blade optimization of the pump impeller. 
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Figure 2. Mean camber lines at different spans for axial blades. 

 

Table 2. Design variables and its limits for axial impeller blade optimization. 

Parameters Symbol Lower limit Upper limit 

Position of start control point for mean 

camber line at hub in meridional direction 
mβ1,h 5% 40% 

Position of end control point for mean camber 

line at hub in meridional direction 
mβ2,h 50% 95% 

Position of start control point for mean 

camber line at shroud in meridional direction 
mβ1,s 5% 40% 

Position of end control point for mean camber 

line at shroud in meridional direction 
mβ2,s 50% 95% 

Circumferential angle at leading edge of 

mean camber line at shroud 
φle,s 0° 30° 

Circumferential angle at trailing edge of mean 

camber line at hub 
φte,h 50° 100° 

Circumferential angle at trailing edge of mean 

camber line at shroud 
φte,s 50° 100° 

Position of leading edge at shroud zle,s 0.1mm 48mm 

Position of trailing edge at shroud zte,s 50mm 118mm 

Position of leading edge at hub zle,h 5mm 24mm 

Position of trailing edge at hub zte,h 40mm 110mm 

Incidence angle at hub Δihub -25° 25° 

Incidence angle at shroud Δishroud -25° 25° 

Slip angle at hub Δδhub 0 35° 

Slip angle at shroud Δδshroud 0 35° 
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2.4.  Design space 

When optimizing axial flow pump impellers, the extent of the design space often has an influence on 

the speed of convergence during the optimization process, particularly when employing stochastic 

search techniques like NSGA-II [24]. However, in this study, the machine learning-based algorithm 

utilized for axial flow pump impeller optimization is deterministic. As such, the influence of the 

design space on the convergence speed of the optimization process remains relatively limited. This 

implies that the computational cost does not escalate sharply with an expanded design space. 

Consequently, to achieve improved optimization results, the design space is configured to ensure that 

the optimal value falls within the region under consideration. The lower and upper limits for the 

design variables are detailed in Table 2. 

3.  Numerical methods 

3.1.  Computational domain 

To assess the hydraulic performance of the axial flow pump during optimization process, numerical 

simulations have been conducted. The computational domain of the flow passage includes the inlet 

pipe, impeller, and outlet pipe, as shown in Figure 3. Note that the pump is of axial type, with a 

specific speed of 850 r/minm3/sm according to the definition 𝑛s = 3.65𝑛√𝑄 𝐻3/4⁄ . Because there is 

a gap between the tip of impeller blade and the pump casing, the impact of tip clearance on the 

hydraulic performance of the pump is taken into consideration in numerical simulation. 

 

 

Figure 3. Computational domain for an axial flow pump. 

 

3.2.  Mesh generation and independence test 

The entire domain's mesh is generated using the structural hexahedral mesh by using the commercial 

software ANSYS-ICEM, ensuring that the value of y+ falls within the range of 50. The structural 

hexahedral mesh created for the impeller is illustrated in Figure 4. This visualization reveals the grid 

refinement near the solid walls, with particular attention to the region surrounding the impeller blade. 

A mesh independence test is conducted, involving adjustments to mesh densities to simulate steady 

flow at the designed flow rate. As indicated in Table 3, both the pump head and efficiency exhibit 

gradual increases with an escalating number of grid points, stabilizing when reaching a grid count of 

5.98 million. Consequently, the total grid of 5.98 million is selected for the simulation of the internal 

flow within the pump. 
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Figure 4. Grid distribution for axial flow pump impeller. 

 

Table 3. Mesh independence test for the pump. 

Mesh set Grid points (×106) H (m) η (%) 

Mesh1 0.24 7.62 89.91 

Mesh2 1.11 7.71 89.97 

Mesh3 2.48 7.88 90.43 

Mesh4 3.45 7.92 90.55 

Mesh5 5.98 8.02 90.61 

Mesh6 6.73 7.99 90.63 

3.3.  Numerical methods 

Within the axial flow pump, the flow is treated as incompressible. The equations of continuity, and 

momentum are listed in Cartesian coordinates as follows [10]: 

0i

i

u

x


=


     (1) 

( ) ( )
+

i j ji i

i i j j i

u u uu up

t x x x x x



     

= − + +           

  (2) 

where ui (i, j=1,2,3) represents the velocity component, and xi (i, j=1,2,3) stands for the coordinate 

component. p stands for the static pressure,  is the fluid density, and  is the dynamic viscosity. 

The Reynolds-averaged Navier-Stokes equations are solved using the ANSYS-CFX commercial 

CFD code. At the same time, the k- SST turbulence model is selected. Regarding boundary 

conditions, the total pressure is specified at the inlet plane, while the outlet plane of the pump is 

defined by the mass flow rate. Furthermore, the solid surfaces of the flow passage are designated as 

no-slip and characterized by a smooth wall condition. 
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The impeller's flow passage is established within the rotational coordinate system, while other 

components such as the volute casing, inlet pipe, and outlet pipe are situated within the stationary 

coordinate system. The interface linking the rotational and stationary coordinate systems employs the 

sliding technique. For advection, the high-resolution scheme is employed, while the other transient 

terms are managed using the second-order backward Euler scheme. In the realm of steady simulation, 

the root-mean-square (RMS) residual is maintained below 10-6. 

It is noted that the present numerical simulation methods are suitable for predicting hydraulic 

performance as well as the internal flows in axial flow pumps based on our previous research [40, 41]. 

In this paper, given that the primary objective is to optimize the pump impeller, the assessment 

involves the comparison of hydraulic performance between the initial pump and the optimized pump. 

3.4.  Optimization algorithm 

The optimization of axial flow pump impeller employs a machine learning-based algorithm with a 

dynamic sampling method. This methodology, inspired by Owoyele [36], involves utilizing machine 

learning models to guide the selection of computational points toward the most promising regions. The 

flowchart illustrating the machine learning-based algorithm can be seen in Figure 5.  

 

Figure 5. Flowchart of the machine-learning based algorithm. 

 

Different from other optimization approaches, the current machine learning-based algorithm 

employs a deterministic strategy at each sampling step. The core methodology of this algorithm 

centers on utilizing two distinct categories of machine learning algorithms to facilitate dynamic 

exploration and exploitation within the design space. The initial category, referred to as the "weak 

learner," offers general insights into the response surface, thereby contributing to the exploration of 

the design space. During the exploration phase, evaluations derived from both the weak learner and 

the distance criteria are merged. This amalgamation generates sample points that effectively span the 

entire design space, while concurrently evading potential entrapment within local optima. 

Traditionally, the distance criterion is defined as the smallest Euclidean distance i.e. SED between two 

points, as exemplified in Equation 3. 

( )
2

1

SED min
i

d
k k

i
a A

k

A a a


=

= −    (3) 

where, d represents the dimension of the design space, a is a sample within the hypercube [-1,1]d, A 

denotes the experimental design that involves the incremental selection of sample points, with the total 

number of samples unknown at any given time during the construction phase.  
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As shown Equation 3, the significance of SED(A) lies in representing the smallest Euclidean 

distance between a given point and all other existing sample points within the space. To ensure the 

space-filling nature of sample points selected by the distance criterion, the algorithm is designed to 

choose points that maximize SED(A) value. However, when dealing with optimization involving a 

high-dimensional design space, it's essential to also consider properties like projectiveness and 

non-collapsibility to enhance sample efficiency. This implies that for each point ai, uniqueness in each 

dimension is sought, rendering it distinct from other points in every dimension. This projective 

property can be defined as the minimum projected distance i.e. MPD of points from each other, as 

defined in Equation 4. 

( )
1

MPD min min = min
i i

k k

i i
a A k d a S

A a a a a
−   

= − −    (4) 

The physical meaning of the Equation 4 representing the minimum projection distance along any 

individual dimension of a given point with respect to any other existing points within the design space. 

This understanding implies that by favoring points that maximize MPD value, the selection of two 

points projected onto the same location when mapping the d-dimensional space into a 

(d-1)-dimensional space along any axis can be averted. In light of the aforementioned discussion, and 

with the aim of selecting sample points that maximize both SED and MPD, an integrated distance 

evaluation criterion SEMPD is proposed in this study to nominate sample points during the 

exploration period, as formulated in Equation 5. 

( )
( ) ( )

1/ 1 2

1
1

1 1
SEMPD , min min min

2 2i i

d
d

k k k k

i i
a A a A k d

k

n n
A a a a a a

−

   
=

+ +
= − + −  (5) 

where, n is number of existing sample points.  

Incorporating this comprehensive distance evaluation criterion, the nominees are further refined by 

the weak learner. For every pre-sampled candidate point, the SEMPD criterion is calculated, and the 

optimal candidate is singled out to join the fold during the exploration phase. This approach ensures 

that the samples chosen through the exploration process not only embrace global insights but also 

uphold the space-filling nature. By selecting the nominee positioned farthest from the already sampled 

points, this methodology aids in the thorough exploration of the design space, which will contribute to 

sufficiently explore the design space and avoid being trapped into local optimum. 

The second algorithm type furnishes more comprehensive insights into the promising region 

pinpointed by the weak learner, and is aptly termed the "strong learner". The primary role of the strong 

learner is to pinpoint sample points that are in close proximity to the best-estimated optimum within 

the design space. Through coordinated efforts, the weak and strong learners synergize to render 

decisions that are more effective during the optimization process. This harmonious interplay enables 

the algorithms to intelligently allocate denser sampling around the promising region while employing 

sparser sampling in less favorable areas. In this algorithmic framework, support vector regression is 

chosen as the foundational function model for the weak learner, while a committee machine consisting 

of multiple artificial neural networks collaborates as the strong learner. To penalize off-edge data 

points, we set the cost parameter of the weak learner Support Vector Regression to 18. The kernel 

parameter is the inverse of the feature count. Moreover, the parameter governing the number of 

support vectors is set to 0.6. The multiple neural networks used as the strong learner in this study had 

two layers with ten neurons each. With a constant learning rate of 0.08, we used the Adam optimizer 

to adjust the artificial neural network's weights. 

As illustrated in Figure 5, as mentioned earlier, the process involves two distinct phases for each 

design iteration: an exploration phase (utilizing the weak learner) and an exploitation phase 

(leveraging the strong learner). To strike a well-tempered equilibrium between thorough exploration 

and efficient exploitation of the entire design space, this study introduces a dynamic mechanism for 

selecting design points. By adjusting the ratio of design points garnered from the exploration phase i.e. 

p to those from the exploitation phase i.e. N-p, a dynamic sampling approach is achieved. This 

approach strategically allocates a greater reliance on the weak learner during the early stages of the 
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optimization process, while gradually shifting the emphasis towards the strong learner as the global 

optimum is approached. This dynamic balance between exploration and exploitation optimizes the 

deterministic sampling of design points across the entire design space during each iteration step.  

The flowchart of the optimization of axial flow pump combined with the machine learning based 

algorithm is shown in Figure 6. A fully automatic platform especially designed for the axial flow 

pump is established. After the parameterization of the axial pump impeller and defining the design 

space, with the machine learning based algorithm with dynamic sampling method, a series of sample 

points can be produced during one iteration. For each newly selected point, the design parameter 

values can be further derived. To evaluate the fitness function of the newly selected points for each 

iteration, a fully automatic evaluation process is set up, consisting of new impeller geometry 

generating, structural mesh generating, CFD simulation and fitness function evaluation. Then the 

result of the fitness function evaluation is further fed back to the optimizer for the next step of 

optimization iteration. This process continues to loop until the iteration converges.  

 

 

Figure 6. Optimization for axial impeller using machine learning based algorithm. 

  

In the optimization of the axial flow pump impeller, the primary goal is to maximize the pump's 

efficiency under the design condition, while also ensuring that the pump head remains within the range 

of the designed value i.e. Hd and does not exceed 1.2Hd. Thus, a fitness function is formulated by 

combining the efficiency and pump head, as demonstrated in Equation 6. 

( )= −z f H     (6) 

where f(H) represents the penalty function.  

The penalty function f(H) incorporates the designed pump head i.e. Hd as the main constraint. The 

penalty is activated when the head of the axial flow pump falls below Hd or exceeds 1.20Hd. 

Consequently, the penalty function f(H) is defined as follows: 

( )

0

0

0 0

0

0

1 100,

= 0 1.2

1 100, 1.2

  
−    

 


 

  −   
 

，

H
H H

H

f H H H H

H
H H

H

   (7) 

where H0 is the pump head under the optimization condition, i.e. the designed pump head Hd. 

Figure 5 provides an overview of the comprehensive automatic optimization loop. At the beginning 

of the optimization, a set of initial design points are selected randomly to trigger the whole 

optimization process. Then perform the exact evaluation of the fitness function by means of generating 

new impeller geometry, generating structural mesh and the CFD simulation. Output the results to the 
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optimizer and obtain new design points for the next iteration. This iterative process is iterated until the 

solver either converges or attains the maximum threshold of design iterations. 

4.  Results and discussions 

4.1.  Performance improvement and geometry optimization 

Figure 7 shows a clear comparison of the pump head between the initial and optimized pumps, while 

Figure 8 illustrates the efficiency comparison. Notably, the hydraulic performance, including pump 

head and efficiency, is determined through numerical simulation outcomes for both axial flow pumps. 

In comparison to the initial pump, the optimized version demonstrates a noticeable increase in pump 

head and enhanced efficiency within the flow rate range of 0.8Qd to1.2Qd. Substantial improvements 

are evident in Table 4, where the optimized pump achieves an efficiency of 92.62%, showcasing a 

significant 2% enhancement compared to the initial pump, specifically at the designated flow rate of 

Qd. Particularly, for flow rates below Qd, the efficiency of the optimized pump exhibits a robust 

increase of over 2%, surpassing the initial pump's performance. Thus, the impeller optimization is 

successful for the axial flow pump. 

 

 

Figure 7. Pump head for axial flow pumps. 
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Figure 8. Hydraulic efficiency for axial flow pumps. 

 

Table 4. Hydraulic performance of initial and 

optimized pumps under design flow rate. 

Axial flow pump H(m) η(%) 

Initial 8.02 90.61 

Optimized 9.72 92.62 

 

The impellers for the initial and the optimized axial flow pumps are illustrated in Figure 9, where 

Figure 9(a) is the upstream view of the impeller, and Figure 9(b) is the downstream view of the 

impeller, Figure 9(c) is the side view and Figure 9(d) is the front view of the impeller. As can be 

observed from the geometry comparison shown in Figure 9, the optimized impeller has an obvious 

change in the rake and skew angle. Generally, the blade section profile at impeller hub is short, and 

that at impeller shroud is long for the initial pump based on the conventional design. However, for the 

optimized impeller, the blade section profile has the roughly equivalent length both at impeller hub 

and shroud. It is also seen that there is a rake of 10.2 as shown in Figure 9(c) and skew of 23.5 as 

shown in Figure 9(d) at blade leading edge of the optimized impeller. Besides, other blade geometrical 

parameters of the initial and optimized impellers are shown in Table 5. These changes are helpful to 

guide the design optimization for the axial flow pumps in the future.  
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Table 5. Blade geometries for the initial and optimized impellers. 

Parameters Symbol 
Value for initial 

impeller 

Value for optimized 

impeller 

Circumferential angle at leading edge of mean 

camber line at shroud 
φle,s 11.4 16.8 

Circumferential angle at trailing edge of mean 

camber line at hub 
φte,h 70 94.6 

Circumferential angle at trailing edge of mean 

camber line at shroud 
φte,s 70 71.1 

Incidence angle at hub Δihub 0 -6.3 

Incidence angle at shroud Δishroud 0 -4.3 

Slip angle at hub Δδhub 19.8 15.8 

Slip angle at shroud Δδshroud 3.5 17.4 

 

  
(a) Upstream side isometric view (b) Downstream side isometric view 

 

 

(c) Side view (d) Front view 

Figure 9. Blade geometry for the initial and optimized impellers. 
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4.2.  Entropy generation rate comparison  

In order to investigate the effect of impeller optimization on performance improvement for the axial 

flow pump, the energy loss should be considered. 

The viscous flow as well as the turbulence dissipation inevitably leads to the energy loss in the axial 

flow pump, which is highly correlated with the pump efficiency. As an adiabatic device, the energy 

loss directly relates to the generation of entropy. In this study, the entropy generation is used to 

analyze the total energy loss quantitatively. The total entropy production rate (EPR) can be calculated 

by the Equation 8. 

total D WD
= + + S S S S     (8) 

where 𝑆̇total represents the total entropy generation rate, comprising three distinct components: 𝑆̇D̅, 

denoting the entropy generation attributed to the time-averaged velocity (EPDD); 𝑆̇D′, reflecting the 

entropy production rate arising from fluctuating velocity (EPTD); and 𝑆̇W
′′ , capturing entropy 

generation within the vicinity of the wall region (EPWS).  

The precise descriptions of these three terms are elucidated in equation (6). Notably, within the 

context of the Reynolds-averaged Navier-Stokes (RANS) model, specifically the k-ω turbulence 

model, the entropy production rate stemming from the fluctuating velocity component can be 

computed using the expression outlined in Equation 9: 
2 2 22 2 2

eff

D
= 2
                      

 + + + + + + + +           
                      

U V W U V U W V W
S

T x y z y x z x z y
 

   

D

W
W

=β

=










k
S

T

v
S

T

     (9) 

where U, V, W is the time averaged velocity in x, y, z direction respectively based on Reynolds time 

averaged. k is turbulent kinetic energy, and ω is turbulent eddy frequency. T is the absolute 

temperature.  is the coefficient, =0.09 [42]. 𝜏 is the wall shear stress, and 𝑣⃗W is the first grid cell 

velocity near the wall. eff is the effective viscosity, and can be calculated as 

eff tur= +        (10) 

where tur is the turbulent viscosity.  

For the impeller blade, as a wall region, the total entropy generation mainly originates from the 

EPWS term. Figure 10 shows the contours of EPWS on the blade pressure side of the impeller for the 

initial pump and optimized pump. It can be seen that there is a high value region of EPWS, locating 

near the shroud from the leading edge of blade pressure side for the initial impeller. On the other hand, 

the area of this region much decreases, and the region with very low EPWS at the trailing edge 

increases for the optimized impeller. The distribution of EPWS indicates relatively smaller flow loss 

around the blade side for the optimized impeller, and is helpful for the improvement of the hydraulic 

efficiency for the optimized pump.  
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 (a) Initial impeller (b) Optimized impeller 

Figure 10. EPWS distribution on blade pressure side for two impellers. 

 

  Figure 11 presents the EPR distribution at three different span-wise sections near the impeller hub for 

two pumps. Span0.1, Span0.2 and Span0.3 mean the span-wise sections of 10%, 20% and 30% blade 

width. As illustrated in the figure, a high value region can be observed at the trailing edge, indicating 

that there is a relatively large energy loss at the outlet region for both impellers. Compared with the 

initial impeller, the optimized impeller has a smaller area for the high value region of entropy 

generation rate near the impeller exit. At the section of Span0.1, there is an extra area for the high 

value region of entropy generation rate in the initial impeller. Thus, the energy loss in the initial 

impeller will be larger than that in the optimized impeller. 
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Span0.2 

  

Span0.3 

  
 (a) Initial impeller (b) Optimized impeller 

Figure 11. EPR distribution at different span-wise sections near the hub. 

It is noted that there is a tip clearance between the impeller blade shroud and pump casing for the 

axial flow pumps. Due to the high pressure difference between the pressure side and the suction side 

of the impeller blade, the strong tip clearance flow usually induces great energy loss. In Figure 12, the 

EPR distribution at several stream-wise sections near tip clearance is shown for the initial and 

optimized pumps. For better understanding, the iso-surface of swirling strength at 322[s-1] is also 

plotted in the same figure. It is clear that there exists a region with high EPR value at the tip clearance, 

and a strong vortex occurs near the blade suction side in blade-to-blade flow passage. The vortex is 

correlated with the mixing of the tip clearance flow and the main flow, and induces the increase of 

energy loss in the axial flow pump. It is also seen that the vortex in the initial impeller moves toward 

the main flow channel, while the vortex moves along the blade suction side in the optimized impeller. 

Therefore, the interaction between the vortex and the main flow in the optimized impeller is weaker 

than that in the initial impeller, and this makes less energy loss in the optimized impeller. 

Totally, the area of high EPR value is alleviated for the optimized impeller, and this optimization is 

helpful for hydraulic performance improvement for the axial flow pump. 
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(a) Initial impeller 

 
(b) Optimized impeller 

Figure 12. EPR distribution near blade tip clearance with iso-surface of 

swirling strength at 322 s-1.  

4.3.  Internal flow  

To have a better understanding of the reason why hydraulic performance of the optimized pump has 

been improved, the internal flow analysis has been carried out based on simulation results.  

The distribution of pressure coefficient along impeller blade for the axial flow pumps is depicted in 

Figure 13. Note that the pressure coefficient Cp is defined by Equation 11. 

p 2

2( )






−
=

p p
C

v
    (11) 

where p represents the static pressure. p stands for the reference pressure at impeller inlet.  is the 

density of the fluid and v represents the velocity at impeller inlet. 

As shown in Figure 13, at all span-wise sections the minimum pressure coefficient at the blade 

leading edge for the optimized impeller is much higher than that for the initial impeller. If the pressure 

difference between blade pressure side and suction side at the same stream-wise location can be 

regarded as the blade load, it is very clear that the optimization changes the blade load for the axial 

flow pump. Especially, the blade load is large at the leading edge for the initial impeller, but that much 

decreases for the optimized impeller. The pressure distribution of the optimized pump is beneficial to 

improve cavitation performance. Generally, the blade load for the optimized impeller becomes 

uniform compared with the initial impeller. From the span-wise section of 50% blade width to that of 

90% blade width, the blade loads are larger for the optimized impeller, indicating the higher pump 

head compared with the initial impeller. 
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(a) Span0.1 (b) Span0.3 

  
(c) Span0.5 (d) Span0.7 

  
(e) Span0.8 (f) Span0.9 

Figure 13. Pressure distribution at different span-wise sections. 

 

The streamline distribution at pressure side is visualized in Figure 14 for the initial and optimized 

impellers. For two impellers, the streamlines at blade leading edge is smooth, and tends to move 

upward at trailing edge from the hub. It is clear that the streamline distribution of the optimized 
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impeller is much more uniform compared with the initial impeller. 

 

  
(a) Initial impeller (b) Optimized impeller 

Figure 14. Streamline distribution at blade pressure side. 

 

Further, the velocity distribution near blade pressure side is shown in Figure 15 for the initial and 

optimized impellers. It is noted that there are the high velocity zone at leading edge and blade tip, and 

the low velocity zone at the trailing edge near the hub for the initial impeller. However, the velocity 

distribution near the blade pressure side becomes much more uniform for the optimized impeller. 

 

 

   
 (a) Initial impeller (b) Optimized impeller 

Figure 15. Velocity distribution near blade pressure side. 

 

In the blade-to-blade flow passage of the impeller, the radial velocity due to the rotating effect 

promotes the secondary flow. It is seen that the radial velocity near the blade pressure side is shown in 

Figure 16. Basically the radial velocity increases from leading edge to trailing edge, indicating the 

development of the secondary flow in the impeller. The averaged radial velocity for the initial impeller 

is larger compared with the optimized impeller. Particularly, there are two zones with large radial 

velocity, i.e. the trailing edge near the hub and the leading edge near the blade tip in the initial impeller. 

Through optimization, the zone with large radial velocity at leading edge near blade tip disappears, 

and that at trailing edge near the hub is much restricted for the optimized impeller. 
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 (a) Initial impeller (b) Optimized impeller 

Figure 16. Radial velocity distribution near blade pressure side. 

 

Figure 17 shows the streamline distribution at three span-wise sections near the hub. As illustrated in 

the figure, there exists a flow separation at the trailing edge, which will cause the sudden rise of 

hydraulic loss at the outlet region for the initial impeller. On the contrary, the flow separation is 

greatly alleviated for the optimized impeller. 
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Span0.3 

 
 

 (a) Initial impeller (b) Optimized impeller 

Figure 17. Streamline distribution at different span-wise section near the hub. 

 

As the useful tool for flow diagnosis, the boundary vorticity flux i.e. BVF is introduced to 

investigate the flow characteristics in the axial flow pump. As indicated in the references [43, 44], the 

application of BVF combined with the lines of wall friction can serve as the criterion of the flow 

separation for an arbitrary three-dimensional curved surface. The flow separation usually occurs 

around the place where the peak value region of BVF and the convergence of the wall friction lines 

can be observed simultaneously. The definition of BVF is shown in Equation 12. 

a p visBVF = + +   =      

( )a p vis

1
= ; = ; =   


   n a n p n    (12) 

where 𝑛⃗⃗ is the unit normal vector that pointing out from the fluid. 

Figure 18 presents the BVF and wall friction lines distribution on blade pressure side under the 

design flow rate condition. 

As shown in Figure 18(a), there is the peak value region of BVF located at the trailing edge for the 

initial impeller. Meanwhile, the convergence of the wall friction lines can be observed at the trailing 

edge near the hub. These results indicate that the vortex at the trailing edge has negative effect on the 

torque for the initial impeller. Based on the results shown in Figure 14(a) and Figure 17(a), it can be 

further confirmed that there will be the occurrence of the flow separation near blade trailing edge 

where a peak value region of BVF and the convergence of the wall friction lines happen.  

As for the optimized impeller, it can be seen that the BVF distributed on blade pressure side is more 

uniform, and the region with peak BVF value near blade tip from the leading edge is greatly alleviated 

compared with the initial impeller. Although there still exists a relatively small region of high BVF 

value at the trailing edge near the hub, the wall friction line is fairly smooth, and no convergence 

occurs. Therefore, the flow at the impeller exit is more uniform with no obvious separation, ant that is 

consistent with the results shown in Figure 14(b) and Figure 17(b). Furthermore, based on the flow 

diagnosis utilizing BVF and the wall friction lines, it is clear that the vortex at blade trailing edge is 

eliminated after the optimization, and the improvement of internal flow results in better hydraulic 

performance for the axial flow pump. 
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 (a) Initial impeller (b) Optimized impeller 

Figure 18. Boundary vorticity flux and wall friction line distribution at blade pressure side.  

5.  Conclusions 

A machine learning-based algorithm with dynamic sampling method has been proposed for the 

optimization of axial pump impeller. Hydraulic performance and internal flow characteristics of the 

pumps are assessed through CFD analysis, and compared between the initial and optimized impellers. 

From the obtained results, the following conclusions can be drawn:  

(1) The machine learning-based approach has effectively optimized the axial flow pump impeller. 

The optimized impeller has better hydraulic performance compared with the initial design.  

(2) The impeller optimization has remarkably improved the internal flow of the axial pump. The 

pump with optimized impeller has more uniform flow pattern near the blade pressure side, while 

effectively mitigating flow separation at the blade trailing edge near the hub compared with that with 

the initial impeller.  

(3) The pump with optimized impeller achieves higher pressure at the blade's leading edge 

compared with the pump with the initial impeller. This favorable pressure distribution along the blade 

may improve cavitation performance for the axial flow pump. 
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