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ABSTRACT

Computational fluid dynamics-discrete element method is frequently used for modeling particulate flows due to its high efficiency and satis-
factory accuracy. The particle volume fraction is a crucial parameter that significantly affects the computation accuracy. It may be extremely
large when the particulate flows contain coarse particles because it is determined by the ratio of particle volume to cell volume. In this paper,
the performance of different methods, such as the divided particle volume method (DPVM), the big particle method, and the diffusion-based
method, for computing the particle volume fraction is thoroughly reviewed, implemented, and investigated. It turns out that the DPVM must
not be used when the particle size is larger than cell size due to significant fluctuation of the particle volume fraction field. The big particle
method is optimized for simulation accuracy and code implementation. The optimized big particle method is similar to the diffusion-based
method by diffusing the particle effects to the surrounding cells. It demonstrates greater consistency with experimental observations com-
pared to the diffusion-based method, primarily attributed to its incorporation of polydisperse effects.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0176521

I. INTRODUCTION

Particulate flows are widely encountered in natural phenomena
and engineering applications, including hydraulic/pneumatic convey-
ing, hydraulic fracturing, debris flows, and fluidized bed.1–3 From a
mechanical perspective, particulate flows exhibit complex dynamics,
with shocks between particles, contacts, and shedding of small vortices
occurring at the particle scale, and the formation of clusters and plugs
at larger scales. The coexistence of different mechanisms at different
scales makes particulate flows complex.4

Numerical simulation plays an important role in investigating the
particulate flows. Numerical models for particulate flows can be
continuum-based or discrete-based according to different treatments
of the particles. Using a two-phase mixture as an illustrative example,
for continuum-based treatment, the model is called the Euler–Euler
method, and for discrete-based treatment, the model is called the
Euler–Lagrangian method. Gas/fluid and particles are treated as inter-
penetrating continua in the Euler–Euler method with the solid volume
fraction assumed to be uniform at the scale of the computational cell.

The two-fluid model (TFM)5 is a typical Euler–Euler method, which
has been widely used to investigate the large-scale particulate flows,
such as the centrifugal separation,6 submarine mudflow,7 and hydrau-
lic conveying,8 due to its computational efficiency and convenience.
However, the simulation accuracy depends on the closure relations for
the particle phase, such as the particle pressure and particle viscosity,
which is still an open topic.9 The problems associated with the
Euler–Euler method can be overcome by the Euler–Lagrangian
method, where all the particles are tracked individually by taking into
account particle–particle and particle–wall collisions. It does not need
the complex closure relations for the particle phase in the
Euler–Lagrangian method and thus can be applied to a wide range of
flow systems.4,10–12 The Euler–Lagrangian method can be classified
into two subcategories: (a) unresolved computational fluid dynamics-
discrete element method (CFD-DEM) and (b) particle-resolved simu-
lations (PRS).13,14 However, enormous computational costs associated
with compulsory requirements of fine grids pose serious limitations on
the employment of PRS in simulation where the number of particles
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reaches tens of thousands.15 If the particle properties, particularly par-
ticle trajectories, are important and the number of particles are larger
than tens of thousands, CFD-DEM is one possible choice.

The CFD-DEM combines the advantages of TFM and PRS meth-
ods. In CFD-DEM, the continuum phase and discrete phase are cou-
pled via the particle volume fraction and the two-phase interaction
forces. The two-phase interaction forces, such as the drag force,16,17

the virtual mass force, and the lift force,18 are also related to the particle
volume fraction. Hence, the calculation of the particle volume fraction
is of vital importance for ensuring computational accuracy in simula-
tion results when using CFD-DEM coupling techniques. The most
commonly used method for calculating the particle volume fraction is
the particle centroid method (PCM), where the particle volume frac-
tion is obtained by dividing the total volume of particles within a CFD
cell by the cell volume. In some applications where the particle size is
large, such as the hydraulic conveying in deep sea mining, the ratio of
the particle diameter to the pipe diameter is greater than 0.1, which
results in particle size comparable to or larger than CFD cell size.19 In
this case, the particle volume fraction in the governing equations of
continuum phase is often overestimated and discontinuous, which
makes the numerical simulation unstable. Deen et al.20 found that the
PCM can guarantee the accuracy of the porosity (or fluid volume frac-
tion) in unresolved CFD-DEM when the ratio of cell size to particle
size is larger than 5.0. Hence, to deal with coarse particles, many sub-
models for calculating volume fraction of coarse particles were pro-
posed, such as the divided particle volume method (DPVM),21,22 the
two-grid method,23 the statistical kernel method (SKM)24,25 or the
diffusion-based method,26,27 the virtual mass distribution function
method (VMDF),28 and the big particle method.29 The DPVM esti-
mates the portions of particle’s volume in cells to overcome the large
fluctuations in particle/fluid volume fraction. The SKM, diffusion-
based method, and VMDF redistribute the particle volume fraction
from the host cells to the neighboring cells. However, the calculation
results of these methods are influenced by the cell size and the particle
size. Therefore, making a good selection of cell size is vital for simula-
tions of particulate flows with coarse particles.

So far, there has been little research systematically comparing the
performance of these methods or submodels. Volk, Ghia, and Stoltz30

used uniform and non-uniform meshes with different sizes to simulate
a stationary particle bed and found that a better solution was obtained
when the cell size was three times the particle size. Zhang et al.31 com-
pared the two-grid method, the SKM, and the diffusion-based method.
They developed an averaging strategy and proposed that the diffusion
length26 in the diffusion-based method should be around three times
of the particle size. The purpose of this work is to review the methods
of calculating coarse particle volume fraction and to compare their per-
formance in different cell and particle sizes. Some existing methods are
also optimized for improved simulation accuracy and code implemen-
tation. The scope of applicability of each method is also discussed in
detail. In addition, according to Wang, Teng, and Liu,32 when the par-
ticle size is comparable to the CFD cell size, special treatment is
required not only for the particle volume fraction but also for the
reconstruction of the particle background field. The particle back-
ground field is the continuum phase field at the particle centroid,
which is related to the field value at the particle’s surrounding grid
cells. When the coarse particles are viewed as points to the fluid, point
particle correlations must be employed to calculate the interphase

interactions. For instance, the drag force correlations are utilized to
determine the momentum exchange. These interphase interactions,
modeled with correlations, will bring two challenges. One is that the
correlations require the flow fields to be sampled from a region that is
even larger than the particle scale.33 The other is that the interphase
interactions must be projected back onto the fluid appropriately as
source or sink terms to the fluid governing equations at the particle’s
surrounding grid cells. Hence, we also develop a simple method for
estimating the background fluid field.

The paper is organized as follows. First, different methods for cal-
culating the volume fraction of coarse particles are reviewed. Some of
the methods are optimized, and code implementation for all the meth-
ods is also introduced. Then, the governing equations of CFD-DEM
are presented briefly. This will be followed by describing the numerical
method adopted for solving the governing equations. Finally, three
numerical tests are conducted. The application range of different
methods is thoroughly studied, and some suggestions are given based
on the simulation results.

II. VOLUME FRACTION CALCULATION AND CODE
IMPLEMENTATION

The models for calculating the volume fraction of coarse particles
mentioned above are reviewed with their origins, principles, advantages,
and shortcomings in this section. Then, all the models are implemented
in the open-source code CFDEM,29 which couples the open-source
codes OpenFOAM34 and LIGGGHTS.29 The DPVM and the original
big particle method have been implemented in CFDEM. Other
methods are implemented in this paper.

A. Divided particle volume method

The DPVM was proposed by Wu, Berrouk, and Nandakumar,21

Wu et al.22 for addressing the drawbacks of the PCM, where the exact
volume fraction of a particle i in a fluid cell j is accurately determined

xij ¼
Vip;j

Vip
; (1)

where Vip;j is the exact portion of volume of particle i in the fluid cell
j, Vip is the volume of particle i, xij is used to calculate the particle vol-
ume fraction of the concerned fluid cells, and its value is in the range
of 0 and 1. When the particle i is entirely located in the fluid cell
j, xij ¼ 1:0; when it is completely outside that cell, xij ¼ 0. Then, the
particle volume fraction in the fluid cell j is calculated as

ap;j ¼
Xk
i¼1

xijVip

Vc;j
; (2)

where k is the number of particles in fluid cell j, which is defined as the
particle centroid in cell j. The DPVM helps to smooth exchange fields
without artificially enlarging the spatial influence of a particle.35

However, when the CFD cell is of arbitrary shape, the DPVM requires
additional calculations of the particle volume divided by the cell faces,
which can be tedious to implement in the code. Even when the CFD
cells are cubic, there are also several scenarios where particles intersect
with cells that need to be considered. In addition, if the particles are
too large, such as being two times the cell size, the DPVM will result in
unphysically large particle volume fractions.
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For easily code implementation, a series of distributed marker
points are used to resolve a particle. The particle i is divided into 29
non-overlapping regions of equal volume. The centroids of these vol-
umes are used as marker points to reproduce each volume. First, the
particle is divided into three parts as shown in Fig. 1(a), where inner
part is a sphere with the center coinciding with the particle center.
Then, the outer two spherical layers are divided into 28 regions with
same volume to the inner sphere [Fig. 1(b)]. Radius of this subsphere
is calculated as r1 ¼ R3

ffiffiffiffiffiffiffiffiffiffi
1=29

p
and r2 ¼ R3

ffiffiffiffiffiffiffiffiffiffiffiffi
15=29

p
, where R is the

particle radius. Position of the centroid point in radial direction of
each volume in the first spherical layer is as follows:

rs1 ¼

ð
rdrð
dr

¼

ðr2
r1

r3drðr2
r1

r2dr
¼ 3

4
r42 � r41
r32 � r31

: (3)

Similarly, the centroid point for the second spherical layer is

rs2 ¼ 3
4
R4 � r42
R3 � r32

: (4)

The positions of all the marker points can be derived from spherical
coordinates. The number of marker points in the fluid cell j is deter-
mined using the cell topology (findSingleCell function in CFDEM).
Then, xij ¼ nij=29, where nij is the number of marker points of parti-
cle i in fluid cell j.

B. Two-grid method

The two-grid method was proposed by Deb and Tafti23 for coarse
particles. The particle volume fraction and the CFD simulation are
taken in different meshes in the two-grid method, and the two meshes
are constructed independently. The particle mesh is chosen according
to the particle size to ensure that the ratio of the cell size to the particle
size is larger than 3.0. The CFD mesh is set based on the flow resolu-
tion requirements. Figure 2(a) gives the schematic of the two-grid
method, where the green part is the particle mesh and the black part is
the CFD mesh. The drawback of the two-grid method is that its imple-
mentation is not straightforward because using two meshes will

increase the difficulty of the implementation and necessitate interpola-
tions between the two meshes.26

In this paper, we simplify the two-grid method to avoid the data
exchange between the CFD mesh and particle mesh. The surrounding
fluid cell labels of a particle are obtained according to the cell topology
first. The searching region is a sphere with the center coinciding with
the particle center and radius three times that of the particle. The
linked-list search algorithm36 is employed to acquire the surrounding
cells. In the OpenFOAM software, the inter-cell connections are
recorded during the creation of the domain mesh, thereby establishing
knowledge of the adjacent cells for each individual cell. For a particle
whose centroid is in cell j, we use the cellcellðÞ function in OpenFOAM
to obtain the adjacent cells of cell j. Next, the distances between the
center of an adjacent cell (referred to as cell k) and the centroid of
the particle are computed and subsequently compared to the radius of

FIG. 1. Schematic representation of the
DPVM. The particle is divided into 29 non-
overlapping regions of equal volume.

FIG. 2. Schematic representation of the two-grid method.
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the search region. If the distance is less than the radius of the search
region, the adjacent cell k is recorded as a surrounding cell. Afterward,
we examine the adjacent cells of cell k and employ a similar compari-
son procedure. Finally, the total surrounding cells are searched. It saves
much computation effort. The particle volume fraction in all the sur-
rounding fluid cells is same, which is calculated by dividing the particle
volume by the sum of the surrounding fluid cell volumes. The particle
volume fraction in the fluid cell j is

ap;j ¼
Xn
i¼1

Vip

ni
; (5)

where n is the number of the surrounding fluid cells of the particle i.
The simplified two-grid method can also be applied in unstructured
meshes.

C. Statistical kernel method

The SKM diffuses the coarse particles effects to the surrounding
CFD cells. For example, the Gaussian kernel is expressed as24

h x � xið Þ ¼ 1

b2pð Þ1:5 exp � x � xið ÞT x � xið Þ
b2

� �
; (6)

where x is the position vector, xi is particle center coordinates, and b is
the bandwidth of the Gaussian kernel. The SKM is easy for code imple-
mentation and fast in computation. However, special processing is
required at the boundary of the computational domain. Sun and
Xiao26 proposed the diffusion-based method to overcome the draw-
backs of the SKM, which is equivalent to the Gaussian kernel method
but without special processing at the boundary. A transient, homoge-
neous diffusion equation is solved in the computational domain that is
initiated with the particle volume fraction given by the PCM. This
method can be applied to different mesh sizes and is easily
parallelizable.

The diffusion equation is written as

@ap
@s

¼ r2 Dapð Þ; (7)

where s is pseudo-time (time multiplied with a unit diffusion coeffi-
cient), which should be distinguished from the physical time t in the
CFD-DEM formulation.D is the diffusion coefficient. First, the particle
volume in each cell is summed up and the particle volume fraction
field ap is obtained by dividing corresponding cell volumes. Second,
the diffusion time T is determined based on desired Gaussian kernel
bandwidth, which is in turn specified based on the particle diameter,
b¼ nd. To be consistent with the SKM, the diffusion time should be
chosen as b ¼ ffiffiffiffiffiffi

4T
p

or equivalently T ¼ b2=4. It is recommended that
b ¼ 6d.26 Third, the diffusion equation (7) is solved to pseudo-time T
to obtain the smoothed particle volume fraction field (as shown in
Fig. 3). A Neumann boundary condition with no-flux (zero gradient)
has to be specified at all physical boundaries (inlet, outlet, and walls) to
ensure the conservation of the particle volume fraction. In this paper,
the value of the diffusion coefficient is set based on the particle diame-
ter and cell size. For cells larger than 4d, a small value of D¼ 0.001 is
assigned so that the diffusion-based method degenerates to the PCM.
Otherwise, the diffusion coefficient is set as D¼ 1.0.

D. Virtual mass distribution function method

The VMDF is proposed by Zhang, Lu, and Zhang,28 Ren et al.37

for calculating volume fraction of coarse particles. The VMDF also
spreads the influence of coarse particles into the surrounding CFD cells
with conservation requirement, where the true mass distribution func-
tion is replace by the VMDF with a different particle density. This
method is similar to the diffusion-based method and is easy to be
implemented and overcomes the deficiencies of the SKM.

E. Big particle method

The concept of the traditional big particle method refers to the
DPVM, where the exact portion of volume of particle within the occu-
pied CFD cell is calculated. However, the big particle method does not
accurately calculate the portion of volume of particle. It uses an average
equalization. As shown in Fig. 4(a), the particle i occupies four cells.
The particle volume is divided into four equal portions, and the parti-
cle volume fraction in the corresponding cell is calculated similar to
PCM (assuming only one particle i in the domain)

FIG. 3. Schematic representation of the
diffusion-based method.
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aj ¼
Vp

Vc;j4
: (8)

It avoids the determination of the position of the marker points in
DPVM. In addition, it is convenient to implement in unstructured
meshes. The big particle method also has the drawback of DPVM; that
is, it is not applicable when the particle size is close to the cell size.

In this paper, inspired by Gaussian kernel function [Eq. (6)],
which diffuses the particle effects to the surrounding CFD cells, we
optimize the big particle method by expending the particle in a certain
factor. In the Gaussian kernel function, to reduce the computational
cost, an important parameter, the expansion size, should be set. The
expansion region is a spherical region with the center coinciding with
the particle center, whose radius is nR, where n is a scalar factor deter-
mining the range of surrounding CFD cells and R is the particle radius.
In this paper, based on the Gaussian kernel method, we propose
another kernel function as bðx � xiÞ ¼ 1:0, which is a uniform func-
tion. The particle effects are uniformly distributed to the surrounding
CFD cells. Figure 4(b) shows the schematic representation of the opti-
mized big particle method. First, the radius of the particle i (R) is
expanded by n times (nR). Second, the number of cells (Np) occupied
by the expanded particle is obtained. The linked-list search algorithm36

is also employed. The expanded particle occupies fourteen cells (green
cell) [Fig. 4(b)]. Finally, the particle volume fraction in all the occupied
cells is calculated by

ap;j ¼
VpXNp

j¼1

Vc;j

: (9)

It should be noted that only cells whose center point is within the
expanded particle boundary are counted. The value of the expanding
factor n will be defined and discussed in Sec. VA.

III. GOVERNING EQUATIONS OF CFD-DEM

The mass and momentum conservation equations of the fluid
phase are written as38,39�

@qf af
�

@t
þr � �qf af u� ¼ 0; (10)

@ qf af uð Þ
@t

þr � �qf af uu� ¼ �afrp� Fpf þr � �af qf s�þ qf af g;

(11)

where af is the volume fraction of the fluid phase, u is the velocity of
the fluid phase,rp is the pressure gradient, s is the stress tensor of the
fluid phase, and Fpf is the volumetric two-phase interaction force.
Details about Fpf are given in Appendix A.

The above fluid phase governing equations [Eqs. (10) and (11)] are
derived from the point-wise description,40 where the flow around each
individual particle required to be resolved, based on local volume filter-
ing strategy. The characteristic filter size should be larger than the parti-
cle; hence, this approach requires for the CFD cell size to be much larger
than the particle diameter. This requirement can become problematic
under certain circumstances. For example, the particle diameter starts to
approach grid size, which is the case of this paper. To alleviate this issue
entirely, it is natural to introduce a two-step filtering process.40 First, the
particle data are transferred on the Eulerian mesh through a conserva-
tive mollification operation. This filter has a characteristic length scale
that corresponds to the mesh size, Dx. Then, the Eulerian field obtained
from the first operation is diffused with an operator chosen to lead to
the final filtered length scale, which should be much larger than the par-
ticle diameter. Based on the two-step filtering process, the governing
equations [Eqs. (10) and (11)] are still applicable when the particle
diameter starts to approach grid size. The volume fraction calculation
methods introduced in Sec. II all meet this requirement.

The motion of the particle has translational and rotational forms,
which is governed by Newton’s second law and given by

mi
dvi
dt

¼ fpf þ
Xkc
j¼1

fc;ij þmig; (12)

Ii
dxi

dt
¼
Xkc
j¼1

Mij; (13)

where mi is the particle mass, fpf is the fluid–particle interaction force,
kc is the number of particles collision with the particle i, g is the gravi-
tational acceleration, and fc;ij is the collision force. xi and Ii are the
angular velocity, and moment of inertia of the particle. Mij is the tor-
que due to the collision of particle/particle or particle/wall. One of the
soft sphere models, the linear spring–dashpot model, is used to calcu-
late the collision force.41 More details about governing equation of the
CFD-DEM can be found in Ref. 28.

IV. MODEL IMPLEMENTATION

The governing equations of the fluid phase Eqs. (10) and (11) are
discretized by the finite volume method (FVM) using the open-source
code OpenFOAM. It is assumed that the fluid phase is incompressible
in this paper. Extracting the density item from Eqs. (10) and (11), the
mass and momentum conservation equations of the fluid phase can be
rewritten as (see Appendix B)

@af
@t

þr � �af u� ¼ 0; (14)

@

@t

�
af u
�þr � �af uu�� u

@af
@t

þr � �af u�
� �

�r � �af s�
¼ �afr p

qf
� Fpf

qf
þ af g : (15)

FIG. 4. Schematic representation of the big particle method. The yellow part is the
initial particle (a) and the red part is the expanded particle (b). Fourteen cells are
occupied by the expanded particle.
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The third term on the left-hand side of Eq. (15) is retained to maintain
the boundedness of the solution variable and promotes better conver-
gence.42 The semi-discretized algebraic equation of Eq. (15) is

apup þ
X

anun ¼ sp � acr p
qf

� �
p

þ � Fpf
qf

þ af g

 !
p

; (16)

where ap and an are the diagonal and off-diagonal elements of the coef-
ficients matrix, respectively, up is the fluid velocity of the cell p, un is
the fluid velocity of the adjacent cell, and sp is the source term. The dis-
cretized form of the pressure gradient is not included in Eq. (16) for
preventing the pressure oscillations in the spirit of the Rhie–Chow
interpolation.43 According to Zhang, Zhao, and Bayyuk,44 the body
force term is also not included in sp. In addition, the volumetric two-
phase interaction force is explicitly discretized because of coarse par-
ticles. Equation (16) can then be written as

up ¼ 1
ap

�
X

anun þ sp
	 


� af ;p
aP

r p
qf

� �
p

þ 1
ap

� Fpf
qf

þ af g

 !
p

:

(17)

The fluid velocity up does not satisfy the continuity constraint. Hence,
a pressure Poisson equation is given to correct the fluid velocity. We
define a face field HbyA, which represents the finite volume represen-
tation of the spatial convective and diffusive fluxes of the phase
momentum,45 as

HbyA ¼ 1
ap

�
X

anun þ sp
	 
� �

f

; (18)

where subscript f represents the quantity on the cell surface.
Integrating Eq. (14) over a finite volume cell and substituting Eq. (17)
into Eq. (14), the pressure Poisson equation can be constructed as
follows:46,47

a2f
ap

r p
qf

 !
f

� Sf ¼ @af
@t

� �
f
þ afHbyA� af

ap

Fpf
qf

þ a2f g

ap

 !
f

� Sf ;

(19)

where Sf represents the exterior normal vector of the cell face. Equation
(19) is different from the basic pressure Poisson equation, which is moti-
vated by numerical stability considerations. In OpenFOAM, except for
the boundary face, all variables are stored at the cell centroid. The
Rhie–Chow interpolation is adopted to avoid pressure checker-board-
ing.43 The convection and diffusion terms is integrated by the Gauss the-
orem with a second-order interpolation scheme. The gradient term is
solved using the linear face interpolation method with corrections to the
non-orthogonality of the mesh. A first-order implicit Euler scheme is
used for the temporal discretization. The time step for the fluid phase is
set based on the Courant–Friedrich–Lewy (CFL) criteria where the CFL
number is 0.5 to ensure convergence. The open-source code
LIGGGHTS is used to solve the particle motion and inter-particle colli-
sions. The time steps for the particle phase are chosen in order to keep it
less than 10% the Rayleigh time48

tR ¼ 0:5pd
0:163� þ 0:8766

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qpð1þ �Þ

Y

s
; (20)

where qp is the particle density, � represents the Poisson’s ratio, and Y
denotes the Young’s modulus.

For the particulate flows with coarse particles, an important con-
cern is how to estimate the background fluid velocity and particle vol-
ume fraction, which will be used to calculate the drag force.32,49 In this
paper, we use the optimized big particle method for estimating the
background fluid velocity and particle volume fraction from the sur-
rounding cells, as shown in Fig. 4. Then, the background fluid velocity
is calculated as follows:

u ¼

XN
j¼1

uðrjÞVc;j

XN
j¼1

Vc;j

; (21)

where j is the index of cell j with a corresponding volume Vc;j, and
uðrjÞ is the fluid velocity in cell j. In this paper, the expanding factor n
of the optimized big particle method is set as 5.0, which will be dis-
cussed in Sec. VA. Similarly, the corrected particle volume fraction for
drag force calculation is calculated as

�ap ¼

XNp

j¼1

ap;jVc;j

XNp

j¼1

Vc;j

; (22)

where ap;j is the particle volume fraction in cell j.

V. NUMERICAL SIMULATIONS AND COMPARISONS

For accessing the performance of different methods for calculat-
ing the volume fraction of coarse particles, three test cases are pre-
sented. The first one is a particle distribution case. The second one is a
monodisperse gas–solid fluidized bed. The last one is a binary water–
solid fluidized bed case. In the first case, our focus is solely on the parti-
cle volume fraction field, disregarding the movement of particles. This
approach allows us to evaluate the efficacy of different methods in
accurately calculating the particle volume fraction. In the second and
third cases, the interactions between particles and particles, as well as
particles and fluids, are to assess the effectiveness of different methods
in determining the instantaneous particle volume fraction and the
resulting distribution of particles. The polydisperse effects are consid-
ered in the third case, compared to the second case.

A. Particle distribution

The particle distribution case is conducted in this section, as
shown in Fig. 5. A domain with three dimensions, measuring 160d in
length, 160d in width, and 4d in thickness, is employed. The thickness
is set as 4d to ensure that the CFD cell is a regular hexahedron.
Particles are located in the middle of the domain with a size of
60d� 60d� 4d. The particle numbers are calculated from the average
particle volume fraction (ap),

Np ¼ 60d � 60d � 4d � ap
1
6
pd3

¼ 86 400ap
p

: (23)
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The average particle volume fraction is 0.3 in this case. Since the pur-
pose is to compare the particle volume fraction calculated by different
methods, the two-phase interactions, particle collisions, particle grav-
ity, etc., are not considered. The initial velocity of the two-phase is
zero. The boundary conditions for the velocity and pressure of the
fluid phase at the four boundaries are zero gradient.

Five cell sizes are used with the ratio of cell size to particle size
Dx=d ranging from 0.5 to 2.0, as shown in Table I. The Nx, Ny, and Nz

are the number cells in the x, y, and z directions, respectively. The cell
size is computed by Dx ¼ V1=3

c . Figure 6 gives the contour of particle
volume fraction based on different methods, including the DPVM, the

two-grid method, the big particle method, and the diffusion-based
method. Dx=d is set as 1.0. Each cell is colored according to the corre-
sponding ap value in the cell. Because the particle size distribution is
monodisperse, the limiting particle volume fraction is 0.63. As is evi-
dent from the contours, some high or low values (thus large gradients)
are frequent in the DPVM results, also occasionally occur in the two-
grid method and big particle methods result. No such large values are
present in the contour obtained with the diffusion-based method.

Figure 7 shows the particle volume fraction in line y¼ 0. The
maximum value of y axis is 0.63, which is the limiting particle volume
fraction. At Dx=d ¼ 2:0, the particle volume fraction based on DPVM
is close to the average value, which is set as 0.3 initially. However,
when Dx=d tends to the value of 1.0, the particle volume fraction in
line y¼ 0 oscillates violently [Fig. 7(a)]. The maximum particle volume
fraction can exceed 0.6, and the minimum value is less than 0.1. The
characteristics of the oscillation distribution may have an important
influence on the simulation results of CFD-DEM. Therefore, the
DPVMmay be inapplicable when the particle size is equal to or greater
than the cell size.

FIG. 5. Diagram of the particle distribution with a size of 60 d� 60 d� 4d in the
middle region.

TABLE I. The details of the cell sizes for investigating the different methods.

Mesh Nx Ny Nz Dx=d

M1 80 80 2 2.0
M2 160 160 4 1.0
M3 239 239 6 0.67
M4 320 320 8 0.5

FIG. 6. The particle volume fraction field
based on, (a) DPVM, (b) two-grid method,
(c) big particle method, and (d) diffusion-
based method, with Dx=d ¼ 1:0.
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Figures 7(b) and 7(c) show the results of the two-grid method
and the big particle method, respectively. According to the discussion
in Sec. II, the coarse CFD cell size determined based on the particle
size in the two-grid method to ensure that the ratio between the coarse
cell size and the particle size is greater than 3.0. In this paper, the sim-
plified two-grid method is used to avoid data exchange between the
CFD mesh and the particle mesh. In general, the simplified two-grid
method is similar to the big particle method with the expanding factor
of n¼ 3. As a result, the particle volume fraction in line y¼ 0 obtained
from the two-grid method and the big particle method shows similar
trend. Some high and low values are also frequently observed in the
results of the two-grid and big particle methods. This may be attrib-
uted to the small value of the expanding factor, n. Figure 7(d) is the
simulation results of the diffusion-based method, where the particle
volume fraction curve is smooth and the values are close to the average
volume fraction for all four size ratios. The comparison shows that the
diffusion-based method has the widest application range and provides
the most accurate calculation results. For quantitative comparison of
particle volume fraction distributions, Fig. 8 gives the histograms of
the particle volume fraction distributions calculated from different
methods. The ratio of cell size to particle size is Dx=d¼ 1.0. It can be
seen in the figure that the particle volume fraction obtained from the
DPVM is totally different from the average particle volume fraction
because maximum probability density occurs at approximately
ap ¼ 0:05. In addition, the probability density around ap¼ 0.6 is also
comparable to the small particle volume fraction. The maximum prob-
ability density of the particle volume fraction based on the two-grid
method, the big particle method, and the diffusion-based method

occurs at ap¼ 0.3. However, the particle volume fraction of the two-
grid and the big particle methods is distributing between 0 and 0.63,
while it distributes between 0 and 0.35 for the diffusion-based method.

In the above simulation, the particle radius expands to three times
of the initial particle radius in the two-grid method and four times in
the big particle method. However, the appropriateness of n¼ 3.0 or
4.0 requires further discussion. Figure 9 shows the particle volume
fraction calculated based on the big particle method with different
expanding factors. For example, n¼ 2.0 means twice the particle
radius. The size ratio is set as Dx=d ¼ 0:67. When the particle radius
is expanded to two times or three times the initial particle radius in the
big particle method, the maximum particle volume fraction is larger
than 0.6, which is much greater than the average particle volume frac-
tion. Furthermore, there is a significant fluctuation observed in the
particle volume fraction field. However, the particle volume fraction
curve becomes stable when the particle radius expands to four times
and five times. As a result, the expanding factor n should be set at four
or five in the optimized big particle method or the simplified two-grid
method.

Since the big particle method needs to search for the number of
cells occupied by the expanded particles, the number of cells obtained
in the boundary region and the middle region of the domain may be
different, which will result in different particle volume fraction. To dis-
cuss the effect of the expanding size of the big particle method on the
calculation of the particle volume fraction at the boundary region, the
particles are initially distributed in the near-wall region. Then, the par-
ticle volume fraction at the line y¼ 0 is shown in Fig. 10 with different
expanding factors n. The particle volume fraction at the near boundary

FIG. 7. The particle volume fraction calculated from different methods, (a) DPVM, (b) two-grid method, (c) big particle method, and (d) diffusion-based method.

FIG. 8. The histograms of the particle volume fraction distributions calculated from different methods, (a) DPVM, (b) two-grid method, (c) big particle method, and (d) diffusion-
based method. The ratio of cell size to particle size is Dx=d¼ 1.0.
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is greater than that far from the boundary. It will lead to an inaccurate
calculation of the two-phase interaction force at the boundary, which
will be discussed in Sec. VB.

B. Monodisperse gas–solid fluidized bed

In this section, a monodisperse gas–solid fluidized bed case is
used to compare the simulation results with different methods for cal-
culating the particle volume fraction. The gas–particle and particle–
particle interactions are considered. Figure 11 shows the computation
domain with size of 10 � 44 � 120mm3 in three directions, which
references the experiment of M€uller et al.50,51 The particle diameter
and density are 1.2mm and 1000 kg/m3, respectively. At the initial
state, approximately 9240 particles are free to accumulate at the bot-
tom, and the stack height is 30mm, as shown in Fig. 11. Thereafter, a
constant flux of gas is introduced from the bottom to fluidize the

packed particles. M€uller et al.50,51 used magnetic resonance to measure
the time-averaged gas volume fraction and the particle velocity.
Therefore, the simulation results can be compared to the experimental
measurement. All the parameters used in this simulation case are given
in Table II.

The pressure boundary condition on the upper z and lower z face
is set as a fixed value and zero gradient, respectively. The gas velocity is
set as zero gradient on the upper z face and fixed value of 0.9m/s on
the lower z face. At the four side faces, the gas velocity is set as zero
value and the pressure is set as zero gradient. Initially, the velocity and
pressure of the gas are zero in the interior domain and the velocity of
the particles is also zero. The time-averaged gas volume fraction at the
heights of z¼ 16.4 and 31.2mm and particle vertical velocity at the
heights of z¼ 15 and 25mm are extracted from the numerical simula-
tion since the experimental measurement data only covered these four
sections. The simulation first runs for 10 s, and then, the time averag-
ing starts to ensure that the calculated averages are free from the initial
condition and associated startup transient, which means that the total
duration of each case is 10 s plus the averaging time. We set different
averaging times in the CFD-DEM simulations, 12, 16, and 20 s, respec-
tively, to investigate the effect of averaging time on the time-averaged
results. It is found that statistical convergence is achieved at an averag-
ing time of approximately 16 s. As a result, we set the averaging time as
20 s in the numerical simulation, which is considered sufficiently long
to obtain statistically time-averaged results. The three methods for

FIG. 9. The particle volume fraction calculated based on the big particle method
with different expanding factors.

FIG. 10. The particle volume fraction in the boundary region based on the optimized
big particle method.

FIG. 11. The computation domain of the monodisperse gas–solid fluidized bed with
size of 10� 44� 120mm3 in the x, y, and z directions, respectively. The initial par-
ticle bed height is 30 mm.
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calculating the particle volume fraction are also applied in this case to
compare their performance. With the exception of the particle volume
fraction calculation method, all other parameters and boundary condi-
tions are the same. The cell size is set as Nx � Ny � Nz ¼ 8� 36
�100, with the ratio of cell size to particle size Dx=d¼ 1.0. The
expanding factor n of the big particle method is set as 5.0 according to
the simulation results in Sec. VA. Both the simulation results of the
optimized big particle method and the diffusion-based method appear
to be consistent with the experiment. The different particle behavior of
the two methods may be due to the different instantaneous particle
volume fraction, which significantly affects the gas–particle interac-
tions. However, after time averaging, the simulation results of the two
methods are similar, which is shown below.

First, the gas volume fraction obtained from different methods is
compared with the experimental measurement data. Figure 12 shows
the contours of particle volume fraction to illustrate the bubble dynam-
ics in the fluidized bed. The bubbles can be clearly identified from the
contours of the gas volume fraction based on the big particle method
and the diffusion-based method. However, in the DPVM results
shown in Fig. 12(a), the bubbles are not identified, which is due to the
large local variations in the gas volume fraction field. From Figs. 12(b)
and 12(c), the bubble formation (t¼ 0.55 and 0.65 s), growth (0.65 and
0.70 s), and burst (0.70 and 0.80 s) can be clearly identified. The bubble
dynamics observed in the numerical simulation are physically reason-
able as confirmed in previous experiments.50

Figure 13 gives the time-averaged gas volume fraction at two dif-
ferent heights, z¼ 16.4 and 31.2mm based on different methods.
Although whenDx=d¼ 1.0, the instantaneous particle volume fraction
calculated on the basis of the DPVM has a significant error [Fig. 7(a)],
the oscillation characteristics of the volume fraction disappear after a
long time average. The average gas volume fraction of the DPVM is
generally consistent with the experimental measurement data. The gas
volume fraction calculated based on the big particle method also agrees
well with the experimentally measured value along the y direction at
the height of z¼ 16.4mm [Figs. 13(a) and 13(c)]. It should be noted

that the gas volume fraction near the wall is larger than the experimen-
tal measurement. This phenomenon is particularly evident at the
height of z¼ 31.2mm. For the big particle method, this is due to that
the number of cells occupied by the particle by expanding the particle
size near the wall is less than that in the middle region. Then, the parti-
cle volume fraction near the wall will increase due to the decrease in
searching cell numbers. It then increases the drag force on the particles.
For the diffusion-based method, M€uller et al.51 attributed the phenom-
enon to the over-prediction of the bubbles width in the CFD-DEM. It
is worth noting that the instantaneous and time-averaged volume frac-
tion calculated by the diffusion-based method are smooth, and the
calculation results are accurate. The main reason is that the diffusion-
based method obtains the particle volume fraction field by solving the
volume fraction diffusion equation, which on the one hand ensures the
conservation and on the other hand makes the volume fraction field
smooth. This treatment is very effective in dense particulate flows.
Comparing Figs. 13(a) and 13(c), we find that the gas volume fraction
is basically unchanged for the diffusion-based method and the opti-
mized big particle method, which proves the wide application range of
these two methods.

The time-averaged particle vertical velocity obtained from differ-
ent methods at the height of z¼ 15 and 25mm is shown in Fig. 14. In
general, the particle vertical velocities calculated by the three methods
are basically agreeing with the experimentally measured data. It can be
found that the particle vertical velocity is larger than the experimental
data based on the big particle method, which is obvious at the height
of z¼ 25mm. This is because the instantaneous particle volume frac-
tion field calculated from the big particle method is not smooth, which
makes the particle volume fraction in a certain cell may be very large
or small. Then, the drag force on the particles increases or decreases
dramatically with the change of the particle volume fraction because
the drag force is related to the instantaneous particle volume fraction.
At the height of z¼ 25mm, the particle vertical velocity obtained from
the diffusion-based method is smaller than the experimental data. In
general, the big particle method and the diffusion-based method all
perform well. However, the simulation results obtained from the opti-
mized big particle method are closer to the experimental value.

C. Binary water–solid fluidized bed

The above cases only involve single size particles. However, par-
ticulate flows in industry usually involve coarse particles of different
sizes. In this section, we simulate a binary water–solid fluidized bed
where the CFD cell sizes approach the sizes of the large particles and
are three times larger than the small particles to see the utility of using
a revised particle volume calculation. The geometry of the simulation
domain is a square tube with dimension 0.01� 0.01 � 0.12m3 in the
x, y, and z directions, respectively. The particles are uniformly distrib-
uted in the tube initially with the diameter of big particles and small
particles of 1 and 0.3mm, respectively. The numbers of the big and
small particles are 42 441 and 1146. The water is uniformly injected
from the bottom with a constant superficial velocity of 0.01, 0.015,
0.02, and 0.025m/s. The particle density is 2000 kg/m3, while the water
density is 1000 kg/m3 with the viscosity of 1:0� 10�6 m2=s. The com-
putational domain is divided into 10� 10� 120 structured mesh cells,
where the ratio of cell size to particle size Dx=d is 1.0 and 3.3 for
the big particles and small particles, respectively. Different from the
gas–solid fluidized bed case, the lubrication force is important in

TABLE II. All parameters used in the monodisperse gas–solid fluidized bed case.
The sliding friction coefficient is used when calculating the normal collision force
between particles. Details about particle collisions can be found in Ref. 52.

Parameters Values

Geometry of the fluidized bed
Width, length, height (mm) 10, 44, 120

Solid properties
Density 1000 kg/m3

Diameter 1.2mm
Number 9240
Young’s modulus 1.0�107 Pa
Poisson’s ratio 0.33
Coefficient of restitution 0.90
Sliding friction coefficient 0.10

Gas properties
Density 1.2 kg/m3

Viscosity 1:5� 10�5m2=s
Inlet velocity 0.9m/s
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water–solid case. For dense water–particle flow simulation, lubrication
force, which results from radial pressure of fluid when two particles get
close and the interstitial fluid is squeezed out, is also an important
mechanism. The particle collisions immersed in fluid are more inelas-
tic than dry particle collisions. In this paper, the mesh is not fine
enough to resolve the lubrication effect. It can be considered by intro-
ducing a relatively small restitution coefficient, i.e., e¼ 0.1, for parti-
cle–particle and particle–wall collisions for simplicity. This
approximate approach is applied by other researchers for simulating

fluid–particle interactions.53–55 All the parameters used in this simula-
tion case are shown in Table III. We simulate this case with different
methods for calculating the particle volume fraction. It was found that
the mixed binary particles will eventually separate each other with the
small particles on the top and large particles on the bottom.56 As a
result, we use the drag law of monodisperse particles.

We can estimate the particle volume fraction by using the
Richardson and Zaki relation. Richardson and Zaki57 proposed a well-
known empirical relationship between the superficial fluid velocity and

FIG. 12. Contours of particle volume fraction during a cycle of bubble formation and evolution obtained from (a) DPVM, (b) big particle method, and (c) diffusion-based method.
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the particle volume fraction based on experiment, which is expressed
as

u
wt

¼ ð1� apÞn; (24)

where u is the superficial fluid velocity, and wt is the terminal settling
velocity of a single particle in an infinitely large domain, which can
be calculated with Ret ¼ ð2:33Ar0:018 � 1:53Ar�0:016Þ13:3,58 where
Ret ¼ wtd=�f is the particle Reynolds number, Ar ¼ ðs� 1Þd3g=�2f is
the Archimedes number, d is particle diameter, �f is the kinematic vis-
cosity of the fluid, and s ¼ qp=qf is the density ratio between the parti-
cle and fluid. The exponent n depends on Ret, which can be calculated
by a correlation ð5:1� nÞ=ðn� 2:7Þ ¼ 0:1Re0:9t .59 Then, based on the
formula (24), we can obtain the particle volume fraction of the small
and big particles.

Figure 15 shows a qualitative comparison of the particle distribu-
tion under different inlet velocities (u¼ 0.01, 0.015, and 0.02m/s) at
the time of 20 s. In each subfigure, the simulation results are obtained
based on the diffusion-based method, the big particle method, and
DPVM from left to right. Figure 15 clearly shows differences in the

FIG. 13. The time-averaged results obtained from different methods for calculating the particle volume fraction with (a) gas volume fraction at the height of z¼ 16.4 mm and
Dx=d¼ 1.0, (b) gas volume fraction at the height of z¼ 31.2 mm and Dx=d¼ 0.67, and (c) gas volume fraction at the height of z¼ 16.4 mm and Dx=d¼ 1.0. The experimen-
tal measurement data are also given for comparison.

FIG. 14. The time-averaged results
obtained from different methods for calcu-
lating the particle volume fraction with (a)
particle vertical velocity at the height of
z¼ 15mm and Dx=d¼ 1.0, and (b) parti-
cle vertical velocity at the height of
z¼ 25mm and Dx=d¼ 1.0. The experi-
mental measurement data are also given
for comparison.

TABLE III. All parameters used in the binary water–solid fluidized bed case.

Parameters Values

Geometry of the square tube
Length, width, height (mm) 10, 10, 120

Solid properties
Density 2000 kg/m3

Diameter (mm) 0.3 and 1
Number 42 441 (0.3mm) and 1146 (1mm)
Young’s modulus 1.0�108 Pa
Poisson’s ratio 0.23
Coefficient of restitution 0.10
Sliding friction coefficient 0.10

Water properties
Density 1000 kg/m3

Viscosity 1.0�10�6m2=s
Inlet velocity 0.01, 0.015, 0.02, 0.025m/s
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fluidization behavior depending on the particle volume fraction meth-
ods. The small and big particles are clearly separated with no mixing
region for the diffusion-based method. However, the small and big
particles are mixed each other at the interface for the simulation results
based on the big particle method and the DPVM. The size of the mix-
ing region obtained from the big particle method is larger than that of
the DPVM. The difference in the size of the mixing region leads to dif-
ferent fluidization heights of the particles. Actually, according to the
experiment of Khan et al.,56 the small and big particles will mix with
each other at their interface after separation. The simulation results
based on the big particle method and the DPVM are more consistent
with the experimental phenomena than the diffusion-based method. It
may be due to the fact that the diffusion-based method does not con-
sider the polydisperse effects when calculating the particle volume frac-
tion because it does not consider the variation in particle sizes and sets
the same diffusion coefficient for both small and big particles. It results
in an even smoothing of exchanged information across all particles
with different sizes.60 The polydisperse effects are very important at
the interface between the small and big particles. In this paper, we opti-
mize the big particle method by referring the statistical kernel method
to diffuse the coarse particles effects to the surrounding CFD cells. The
particle is expended in a certain factor n and the expansion region is a
spherical region with the center coinciding with the particle center,
whose radius is nR. The size of the expansion region is related to the
particle size. For particles of varying sizes, we obtain different

expansion regions, which mean that the effects of particle size (polydis-
perse effects) are taken into account when calculating the particle vol-
ume fraction field. For the small particles in this simulation case where
the cell size is three times larger than the small particle size, even we
expand the small particle size by three times, the particle volume frac-
tion calculated is still same to the PCM because the expanded particle
is smaller than the cell size. The optimized big particle method has no
effect on the volume fraction calculation for small particles. In addi-
tion, the DPVM also consider the polydisperse effects due to exact por-
tion of particle in each cell are determined. However, as discussed
above, the DPVM is not applicable when the particle size approaches
the cell size. As a result, the optimized big particle method proposed in
this paper is the best choice for the binary water–solid fluidized bed.

Similarly, Fig. 16 shows the particle volume fraction at the central
axis line (x¼ 0 and y¼ 0) under different inlet velocities at the time of
20 s. The black dotted lines in the figure represent the predicted average
volume fraction of small (line in the bottom) and big particles (line in
the top) based on the Richardson and Zaki relation given in Eq. (24).
It can be seen in the figure that all the three methods (diffusion-based,
big particle, and DPVM) give accurate volume fraction of the big
particles. For example, in Figs. 16(b)–16(d), the particle volume fraction
in the big particle region is around the predicted line (line in the top).
Some high or low values are frequently observed in the DPVM results
due to the big particle size approaching the cell size, which is similar to
the discussion in Sec. VA. At the small particle region, the calculated

FIG. 15. The particle distribution under different inlet superficial fluid velocities (a) u¼ 0.01 m/s, (b) u¼ 0.015 m/s, and (c) u¼ 0.02 m/s at the time of 20 s. In every subfigure,
the simulation results are obtained based on the diffusion-based method (abbreviated as Diff in the figure), the big particle method (abbreviated as Big in the figure), and DPVM
from left to right.
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particle volume fraction is clearly larger than the predicted value. We
use the inlet velocity at the bottom to predict the small particle volume
fraction. However, the water needs to pass through the big particles
first, which may affect the distribution of small particles. Abrupt
change on the particle volume fraction line can be found for the
diffusion-based method, which shows the interface of the small and
big particles. For the results of the big particle method and the DPVM,
we can observe the mixing region from the high particle volume frac-
tion at the interface.

At last, we discuss the computation costs of different methods.
The computational costs of CFD-DEM can be divided into four parts:
cost of solving the fluid phase governing equations, cost of solving the
DEM (particles), cost induced by the complicated solid quantity calcu-
lations, and cost induced by the fluid phase reconstruction (back-
ground fluid velocity, background particle volume fraction, etc.). The
most expensive part of the simulations is associated with solving the
DEM model such as the particle position updates and collision detec-
tion. We use the binary water–solid fluidized bed case as an example,
where 43 578 particles are tracked. The simulation cost for the DEM
model is about 23 times as much the cost associated with solving the
water phase governing equations. We use the CPU time spent on solv-
ing the water phase governing equations as a reference for each case.
For different particle fraction calculation methods, the solid quantity
calculation costs are computed as 4.82 (diffusion based), 4.37 (big par-
ticle), 4.91 (DPVM), and 3.85 (PCM), respectively. The costs induced
by the fluid phase reconstruction are calculated about 2.69. As a result,
after using these methods, the total computation costs increase by no
more than 5% compared with the PCM. The big particle method needs
less costs than the diffusion-based method. We then give the compari-
son between different methods in Table IV, such as the application
range, the computation cost, etc., to show the advantages and disad-
vantages of these methods.

VI. SUMMARY AND CONCLUSION

The particle volume fraction is a vital factor that greatly affects
the accuracy of CFD-DEM simulations. In some situations, the particle
size is large. It may result in particle size comparable to or larger than
the CFD cell size. Therefore, the methods for calculating the volume
fraction of coarse particles were given by some researchers, such as the
DPVM, the two-grid method, the big particle method, and the
diffusion-based method.

In this paper, we thoroughly investigate the performance of dif-
ferent methods for computing volume fraction of coarse particles with
different particle sizes and CFD cell sizes. The different methods, such
as the DPVM, the two-grid method, etc., are reviewed by introducing
their origin, principle, and disadvantages. The two-grid method uses
two independent meshes for the coarse particles and the CFD simula-
tion. We simplify the two-grid method to avoid the data exchange
between the CFD mesh and particle mesh. The big particle method is
similar to the DPVM. We optimize it by expanding the particle size to
obtain the number of cells occupied by the particle. Then, the particle
volume is uniformly distributed to the occupied cells. The diffusion-
based method distributes the particle effects to the surrounding CFD
cells by solving a transient, homogeneous diffusion equation. We use a
variable diffusion coefficient in this paper to make the diffusion-based
method suitable for different particle sizes. All the above methods are
implemented in the open-source code CFDEM.

Three numerical tests were conducted to compare the simulation
results obtained from different methods. These tests include a station-
ary particle distribution case, a monodisperse gas–solid fluidized bed
case, and a binary water–solid fluidized bed case. Extreme high or low
values of the instantaneous particle volume fraction are frequent in the
DPVM results when d=Dx > 1:0 with the largest value being approxi-
mately 0.6, which is close to the particle packing limit. As a result, the
DPVM should not be used when d=Dx > 1:0. When the expanding

FIG. 16. The particle volume fraction at the central axis line (x ¼0 and y¼ 0) under different inlet superficial fluid velocities (a) u¼ 0.01 m/s, (b) u¼ 0.015 m/s, (c) u¼ 0.02 m/s,
and (d) u¼ 0.025 m/s at the time of 20 s. The black dotted lines in the figure are the predicted average volume fraction of the small (line in the bottom) and big particles (line in
the top) based on the Richardson and Zaki relation.

TABLE IV. Comparison between different methods, such as the DPVM, the optimized big particle method, and the diffusion-based method. The number in computation cost
means the multiple of the CPU time spent on solving the fluid phase governing equations.

Methods DPVM Optimized big particle method Diffusion-based method

Application range Dx=d > 1:0 Dx=d > 0:5 Dx=d > 0:5
Computation cost 4.91 4.37 4.82
Model implementation Difficult Easy Easy
Polydisperse effects Considered Considered Not considered
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factor is small, the particle volume fraction obtained from the simpli-
fied two-grid method and the optimized big particle method shows
oscillation, which leads to large errors in calculation results. The
expanding factor should be set as four or five in the big particle
method based on comparison. The diffusion-based method does not
consider the polydisperse effects because it does not consider the varia-
tion in particle sizes and sets the same diffusion coefficient for the
small and big particles. It results in an even smoothing of exchanged
information across all particles with different sizes. However, the opti-
mized big particle method does consider the polydisperse effects
because the expansion size of the particles is related to the particle size.
As a result, the optimized big particle gives more consistent results
with the experimental phenomena than the diffusion-based method in
the binary fluidized bed discussed in this paper. In addition, the simpli-
fied two-grid method and the optimized big particle method are both
easy for code implementation and require less computation costs than
the diffusion-based method.
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APPENDIX A: VOLUMETRIC TWO-PHASE INTERACTION
FORCE

The mass and momentum conservation equations of the fluid
phase are written as38�

@qf af
�

@t
þr � �qf af u� ¼ 0; (A1)

@
�
qf af u

�
@t

þr � �qf af uu� ¼ �afrp� Fpf þr � �af qf s�þ qf af g;

(A2)

where Fpf is the volumetric two-phase interaction force, which is
calculated by

Fpf ¼ 1
Vc

Xk
i¼1

fd;i þ f lift;i þ fvm;ið Þ; (A3)

where fd;i is the drag force, f lift;i is the lift force, fvm;i is the virtual
mass force, and k is the number of particles in a CFD cell. The drag
force fd is calculated as follows:16

fd ¼ p
8
Cdqf d

2a2�v
f jurjur ; (A4)

Cd ¼ 0:63þ 4:8ffiffiffiffiffi
Re

p
� �2

; (A5)

v ¼ 3:7� 0:65 exp � 1:5� logReð Þ2
2

� �
; (A6)

Re ¼ jurjd
�f

; (A7)

where Cd is the drag coefficient, v is an empirical constant,
ur ¼ u� v is the relative velocity between the fluid and particle, v is
the particle velocity, d is the particle diameter, and �f is the viscosity
of the fluid phase. The virtual mass force is written as

fvm ¼ � qf Vp

2
Du
Dt

� Dv
Dt

� �
; (A8)

where D=Dt is the material derivative. The lift force is calculated by

f lift ¼ pd2

4
qf CLjurj urð Þ � r � u

jr � uj
� �

; (A9)

where CL is the lift coefficient and is calculated based on the model
proposed by Kurose and Komori.18

APPENDIX B: DERIVATION OF THE FLUID PHASE
EQUATIONS

Extracting the density item from Eqs. (A1) and (A2), the mass
conservation equations of the fluid phase can be rewritten as

af
@qf
@t

þ qf
@af
@t

þ qfr � ðaf uÞ þ af u � rqf ¼ 0;

qf
@af
@t

þr � ðaf uÞ
� �

¼ �af
@qf
@t

þ u � rqf

� �
¼ �af

Dqf
Dt

:

(B1)

The left-hand side of Eq. (A2) is rewritten as

@
�
qf af u

�
@t

þr � �qf af uu�
¼ qf

@
�
af u
�

@t
þr � ðaf uuÞ

� �
þ af u

@qf
@t

þ u � rqf

� �

¼ qf
@
�
af u
�

@t
þr � ðaf uuÞ

� �
þ af u

Dqf
Dt

: (B2)

Substituting Eq. (B1) into Eq. (B2), we obtain
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@
�
qf af u

�
@t

þr � �qf af uu�
¼ qf

@
�
af u
�

@t
þr � ðaf uuÞ

� �
� qf u

@af
@t

þr � �af u�
� �

:

(B3)

Then, Eq. (A2) can be rewritten as

@

@t

�
af u
�þr � �af uu�� u

@af
@t

þr � �af u�
� �

�r � �af s�
¼ �afr p

qf
� Fpf

qf
þ af g : (B4)
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