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a b s t r a c t 

A simplified surface correction formulation is proposed to diminish the far-field spurious sound gener- 

ated by the quadrupole source term in Ffowcs Williams and Hawkings (FW-H) integrals. The proposed 

formulation utilizes the far-field asymptotics of the Green’s function to simplify the computation of its 

high-order derivatives, which circumvents the difficulties reported in the original frequency-domain sur- 

face correction formulation. The proposed formulation has been validated by investigating the benchmark 

case of sound generated by a convecting vortex. The results show that the proposed formulation success- 

fully eliminates the spurious sound. The applications of the proposed formulation to flows with some 

special parameters are also discussed. 

© 2021 The Author(s). Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and 

Applied Mechanics. 
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The Ffowcs Williams and Hawkings (FW-H) equation ex- 

ends Lighthill’s acoustic analogy method to flows with moving 

olid/permeable boundaries, resulting in an inhomogeneous wave 

quation that includes monopole, dipole and quadrupole sources 

n the right hand side. The solution to the FW-H equation can 

e expressed as integrals of the sources (hereinafter referred to as 

he FW-H integrals) by using the Green’s function. The integrals 

f monopole and dipole sources are surface integrals and that of 

uadrupole sources is a volume integral [1] . 

The computation of the volume integral is much more challeng- 

ng than that of surface integrals [ 2 , 3 ]. In computing the far-field

ound generated by low Mach number flows, the volume integral is 

sually ignored with the assumption that the sound is dominated 

y the monopole and dipole sources. However, recent researches 

nd that the ignoration of the quadrupole sources may generate 

purious sound even though the flow is at low Mach numbers [4–

] . 

Different methods have been proposed to eliminate the spuri- 

us sound associated with the quadrupole sources [ 5 , 9 , 10 ]. In par-

icular, Wang et al. [11] found that the spurious sound is caused by 

he eddy crossing the surface of the integral domain. Then a new 

urface integral (hereinafter referred to as surface correction) is 

roposed to correct the contribution of quadrupole sources to the 
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ar-field sound. The surface correction formulation is constructed 

ith the assumption that the eddy is frozen when it is convected 

cross the integral surface. The convection velocity is usually com- 

uted by scaling the freestream velocity [11] . The spurious sound 

an be correctly eliminated as long as the eddy leaves the in- 

egral surfaces with relatively uniform velocity [11] . The surface 

orrection formulation is then improved by Nitzkorski et al. [12] , 

ahier et al. [8] and Ikeda et al. [4] by taking into account the 

ffects of non-uniform convection velocity. The above surface cor- 

ection formulation is derived in a convective frame of reference 

nd employed in the time-domain method for the FW-H integrals. 

he application of the above surface correction to the frequency- 

omain method is usually not straight forward, because most of 

he frequency-domain methods are derived in a laboratory frame 

f Ref. [11] . 

Ikeda et al. [13] examined the far-field approximation for the 

urface correction between the laboratory frame of reference and 

onvective frame of reference and derived a frequency-domain for- 

ulation via a Fourier transform of the time-domain formulation. 

ockard and Casper [12] proposed an alternative method to derive 

he surface correction formulation in the frequency domain. This 

lternative method converts the volume integral into a series of 

urface integrals by repeatedly using the formulation of integration 

y parts. The proposed surface correction is validated by comput- 

ng the sound generated by a 2D convecting vortex. The advan- 

age of this method is that the surface correction formulation is 

irectly derived in the frequency domain without referring to the 
ety of Theoretical and Applied Mechanics. This is an open access article under the 
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urface correction formulation in the time domain. The disadvan- 

age is that the surface correction formulation involves high-order 

erivatives of the Green’s function. The computation of the high- 

rder derivatives of the Green’s function are quite complicated and 

ontrivial [14] . 

The objective of this letter is to propose a simplified surface 

orrection formulation based on the work of Lockard and Casper 

14] . We simplify the computation of the high-order derivatives of 

he Green’s function based on its far-field approximations and val- 

date the proposed formulation by using the 2D convecting vortex. 

The solution to the FW-H equation in the frequency domain can 

e given by the FW-H integrals as follows 

p ′ ( x , ω ) = −
∫ 

f=0 

i ωQ ( y , ω ) G ( x ; y ) d S 

I T 

−
∫ 

f=0 

F i ( y , ω ) 
∂G ( x ; y ) 

∂ x i 
d S 

I L 

−
∫ 

f> 0 

i ω T i j ( y , ω ) G ( x ; y ) d V 

I Q 

, (1) 

here the I T and I L terms are the surface integrals of monopole 

ources and dipole sources, respectively, I Q term is the vol- 

me integral of quadrupole sources. Q = ( ρ( u i + U i ) − ρo U i ) n i , F i = 

 P i j + ρ( u i − U i )( u j + U j ) + ρo U i U j ) n j , T i j = ρu i u j + P i j − c 2 o ρ
′ δi j , u i 

s the i th component of the velocity of the fluid, U i is the i th com-

onent of the freestream velocity, P i j = ( p − p 
0 
) δi j − τi j is the com- 

ressive stress tensor and τi j is viscous stress tensor. Here, we ig- 

ore the viscous part according to the work of Lockard and Casper 

14] . f is a level set function where f = 0 indicates the FW-H sur-

ace and f > 0 is the region outside the FW-H surface. n j is the

nit normal of the FW-H surface. ρo , c o and p o represent the den- 

ity, speed of sound and pressure in the background flow, respec- 

ively. ρ′ = ρ − ρo and p ′ = p − p o are perturbations of density and 

ressure, respectively. In accordance with the work of Lockard and 

asper [14] , we set the o − y 1 direction as the freestream flow di- 

ection. Hence, the Green’s functions G in Eq. (1) for 2D and 3D 

ows are 

 2 D ( x ; y ) = 

i 

4 β
exp 

(
i Mk ( x 1 − y 1 ) 

β2 

)
H 

( 2 ) 
0 

(
k 

β2 
R 

)
, (2) 

 3 D ( x ; y ) = 

−1 

4 πd 
exp ( ϕ 3 D ( x ; y ) ) , (3) 

espectively. Here β = 

√ 

1 − M 

2 , R = 

√ 

( x 1 − y 1 ) 
2 + β2 ( x 2 − y 2 ) 

2 
, 

 = 

√ 

( x 1 − y 1 ) 
2 + β2 ( x 2 − y 2 ) 

2 + β2 ( x 3 − y 3 ) 
2 
, k = 

ω 
c o 

and 

 3 D ( x ; y ) = −i k 
d−M( x 1 −y 1 ) 

β2 . M is the Mach number of the 

reestream flow. H 

(2) 
0 

is the zero-order Hankel function of the 

econd kind. 

The terms I T and I L in Eq. (1) are surface integrals. I Q is the vol- 

me integral over the region f > 0 . The computation of I Q is much

ore challenging than I T and I L , because the Lighthill stress tensor 

t all grid points within the region f > 0 is needed to be experi-

entally measured or numerically simulated. Usually, the domain 

f > 0 extends to far downstream of the wake for high Reynolds 

umber flows. It is very difficult to measure or compute the large 

omain of f > 0 in flows of practical interest. To compute the 

ontribution of the quadrupole term efficiently, many effort s have 

een devoted to transforming the quadrupole term from a volume 

ntegral to surface integrals [ 10 , 11 , 13 ]. The frequency-domain sur-

ace correction proposed by Lockard and Casper [14] is as follows, 

 Q ( x ;ω ) ≈ −
n ∑ 

l=1 

∫ 
f=0 

(
U 1 

i ω 

)l 

T i j ( y , ω ) 
∂ l−1 

∂y l−1 
1 

(
∂ 2 G ( x ; y ) 

∂ y i ∂ y j 

)
d S. (4) 
2 
To ensure the accuracy of the series, n ≥ 2 is necessary [14] . 

owever, as pointed out by Lockard and Casper [14] , the com- 

utation of high-order derivatives of the Green’s function is quite 

omplicated. They refer to the work of Gloerfelt et al. [15] to com- 

ute the second derivatives of the Green’s function in two dimen- 

ion and use a symbolic algebra package to obtain the higher-order 

erivatives. 

We propose a simplified surface correction formulation as fol- 

ows to diminish the spurious far-field sound generated by the 

ddy crossing the FW-H integral surface, 

 Q ( x ;ω ) ≈ −
n ∑ 

l=1 

∫ 
f=0 

(
U 1 

i ω 

)l 

T i j ( y , ω ) 

(
∂ϕ ( x ; y ) 

∂ y 1 

)l−1 
∂ 2 G ( x ; y ) 

∂ y i ∂ y j 
d S, 

(5) 

here G = G 3 D , ϕ = ϕ 3 D for 3D flows and G = G 

′ 
2 D , ϕ = ϕ 

′ 
2 D for 2D

ows. G 

′ 
2 D 

is the asymptotic Green’s function in 2D space 

 

’ 
2 D ( x ; y ) ≈ i 

4 β

(
2 β2 

πkR 

) 1 
2 

ex p 

(
ϕ 

’ 
2 D ( x ; y ) 

)
, 

 

’ 
2 D ( x ; y ) = i 

[
Mk ( x 1 − y 1 ) 

β2 
+ 

π

4 

− k 

β2 
R 

]
. (6) 

Equation (5) employs the approximations as follows to simplify 

he computation of the high-order derivatives of the Green’s func- 

ion at the far-field 

∂ k 

∂y k 
1 

(
∂ 2 G 

′ 
2 D ( x ; y ) 

∂ y i ∂ y j 

)
≈

(
∂ϕ 

′ 
2 D ( x ; y ) 

∂ y 1 

)k 
∂ 2 G 

′ 
2 D ( x ; y ) 

∂ y i ∂ y j 
, (7) 

∂ k 

∂y k 
1 

(
∂ 2 G 3 D ( x ; y ) 

∂ y i ∂ y j 

)
≈

(
∂ ϕ 3 D ( x ; y ) 

∂ y 1 

)k 
∂ 2 G 3 D ( x ; y ) 

∂ y i ∂ y j 
. (8) 

The proof of Eq. (7) is briefly reported as follows. The k th-order 

erivative of G 

′ 
2 D 

with respect to y 1 is 

∂ l G 

’ 
2 D ( x ; y ) 

∂y l 
1 

= 

i 

4 β

(
2 β2 

πk 

) 1 
2 l ∑ 

k 1 =0 

C k 1 
l 

∂ k 1 exp 

(
ϕ 

’ 
2 D ( x ; y ) 

)
∂y k 1 

1 

×
∂ l−k 1 

(
R 

− 1 
2 

)
∂y l−k 1 

1 

, (9) 

here C 
k 1 
l 

is the binomial coefficient. We use the far-field con- 

ition | x | >> | y | to approximately compute the h th-order partial

erivatives of R and R −
1 
2 with respect to y 1 

∂ h R 

∂y h 
1 

≈ α1 
1 

R 

h −1 

∂ R 

∂y 
1 

, 

∂ h 
(
R 

− 1 
2 

)
∂y h 

1 

≈ α2 
1 

R 

h −1 

∂ R 

− 1 
2 

∂y 
1 

, (10) 

here h ≥ 1 . In the far field, α1 and α2 are O (1) and independent

f R [16] . By using the first line of Eq. (10) , the s 1 -order derivative

f exp ( ϕ( x ; y ) ) is approximated as follows 

∂ s 1 ex p ( ϕ ( x ; y ) ) 

∂y s 1 
1 

≈
(

∂ϕ ( x ; y ) 

∂y 1 

)s 1 

ex p ( ϕ ( x ; y ) ) ( s 1 ≥ 1 ) . (11) 

Equation (7) is obtained by ignoring the small terms in 

q. (9) according to Eqs. (10) and (11) . More details of the proof

an be found in the supplementary material [14] . Thus, Eq. (7) is 

roved. Eq. (8) can be proved by using the similar method. Com- 

ared with Eq. (4) , the computation of the high-order derivatives 

∂ l−1 

∂y l−1 
1 

( 
∂ 2 G ( x ;y ) 
∂ y i ∂ y j 

) are replaced by ( ∂ϕ( x ;y ) 
∂ y 1 

) l−1 ∂ 2 G ( x ;y ) 
∂ y i ∂ y j 

. The computa- 

ion of high-order derivatives of the Green’s function is circum- 

ented. 
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Fig. 1. Schematics of the FW-H surface position and pressure contours of the vor- 

tex. 
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Fig. 2. Negative of the spurious sound pressure and the correction computed by 

using the proposed simplified surface correction for the sound generated by a con- 

vecting vortex crossing the FW-H integral surface. 
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In accordance with the work of Lockard and Casper [14] , we 

alidate the simplified surface correction formulation ( Eq. (5) ) by 

sing the benchmark case of spurious sound generated by a 2D 

onvecting vortex crossing the FW-H integral surface. The normal- 

zed pressure and velocity of the 2D convecting vortex is given by 

12] 

p ′ = 

1 
γ

[
1 − a 2 exp 

(
1 − r 2 

)] γ
γ −1 

, 

ρ = 

(
p 

Po 

) 1 
γ
, 

u 1 = U 1 − a 0 a 1 y 2 exp 

(
1 −r 2 

2 

)
, 

u 2 = a 0 a 1 ( y 1 − Mt ) exp 

(
1 −r 2 

2 

)
, 

(12) 

here a 0 = 1 , a 1 = 1 / (2 π) , a 2 = ( γ − 1 ) a 2 
0 
a 2 

1 
/ 2 and r 2 =

 y 1 − Mt) 2 + y 2 2 . γ = 1 . 4 is the specific heat ratio of air. Po is

he pressure in the background flow. 

A permeable square with each side of 10 unit lengths centered 

t origin is used as the FW-H integral surface, as shown in Fig. 1 .

he convecting vortex moves at the Mach number of Ma = 0 . 2 . The

bserver location is at ( 100 , 0 ) in the downstream of the convect- 

ng vortex. A spurious sound is generated when the vortex crosses 

hrough the FW-H surface. The spurious sound can be computed 

y using I S = I T + I L for this special flow, because sound pressure 

pproaches to zero exponentially in the far-field. The negative of 

he spurious sound pressure generated by the vortex crossing the 

W-H interface is plotted in Fig. 2 . The surface corrections com- 

uted by using Eq. (5) with n = 1 , 2 and 3 are also plotted in Fig. 2 .

he spurious sound pressure is correctly diminished by the pro- 

osed simplified surface correction with n ≥ 2 . The result is con- 

istent with that of Lockard and Casper [14] . 

We also compared the details of the simplified surface correc- 

ion ( Eq. (5) ) with the original surface correction ( Eq. (4) ) proposed

y Lockard and Casper [14] . The surface corrections computed by 

sing these two equations are plotted in Fig. 3 . The results show 

hat the surface corrections computed by using the simplified sur- 

ace correction ( Eq. (5) ) are in good agreement with the corre- 

ponding results of the original surface correction ( Eq. (4) ) with 

 = 1 , 2 and 3 at the downstream observer (100, 0). Figure 4 plots

he surface correction computed by Eq. (5) with n = 2 and 3 at
3 
ifferent downstream observers when the non-dimensional time is 

 = 120 . The distance between the downstream observer and the 

nitial vortex center is denoted by R . It is observed that the sur- 

ace correction computed by using Eq. (5) with n = 2 and 3 can 

orrectly diminish the spurious sound when R > 60 . The results 

how that the simplified surface correction proposed by this work 

s valid for computing the far-field sound. 

The simplified surface correction formulation ( Eq. (5) ) not only 

rovides a simplified surface correction but also helps to iden- 

ify the limitations of the previous surface correction. As pointed 

ut by Lockard and Casper [14] , the series of surface integrals of 

q. (4) is divergent when the convecting vortex moves at Ma = 0.6. 

he divergence of the series can be clearly inferred from Eq. (5) , 

ince Eq. (5) is the approximation of Eq. (4) at the far field. We 

ote that Eq. (5) is a geometric series with a ratio of 
U 1 
i ω 

∂ϕ 
∂ y 1 

. The

eries is divergent when | U 1 
i ω 

∂ϕ 
∂ y 1 

| > 1 . Therefore, the divergence of 

q. (4) may occur when the convection velocity is larger than the 

hase velocity (| U 1 
i ω 

∂ϕ 
∂ y 1 

| > 1) . 

It is worth noting that 
U 1 
i ω 

∂ϕ( x ;y ) 
∂ y 1 

� = 1 for subsonic flows. This in- 

quality can be interpreted by analysing the 2D subsonic flows as 

ollows. According to Eq. (6) , 
U 1 
i ω 

∂ϕ( x ;y ) 
∂ y 1 

can be simplified as follows, 

U 1 

i ω 

∂ ϕ 2 D ( x ; y ) 

∂ y 1 
= 

U 1 

i ω 

[
− i k ( M + A ) 

β2 

]
= 1 − 1 + AM 

1 − M 

2 
, (13) 

here A is ( y 1 − x 1 ) /R . We have −1 ≤ A ≤ 1 since R =
 

( x 1 − y 1 ) 
2 + β2 ( x 2 − y 2 ) 

2 
. Thus −1 < AM < 1 and 0 < 

 1 + AM ) / ( 1 − M 

2 ) < 2 / ( 1 − M 

2 ) for subsonic flows due to

 < M < 1 . Using the inequality 0 < ( 1 + AM ) / ( 1 − M 

2 ) , we

btain 

U 1 

i ω 

∂ ϕ 2 D ( x ; y ) 

∂ y 1 
< 1 . (14) 

Equation (14) shows that 
U 1 
i ω 

∂ϕ( x ;y ) 
∂ y 1 

� = 1 for 2D subsonic flows. 

e can also prove 
U 1 
i ω 

∂ϕ( x ;y ) 
∂ y 1 

� = 1 for 3D subsonic flows by using 

he similar method. 

For the special case of 
U 1 
i ω 

∂ϕ( x ;y ) 
∂ y 1 

= −1 , the I Q term in Eq. (1) can

e expressed as follows by using the integral by parts repeatedly 

12] 
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Fig. 3. Comparison between the simplified surface correction proposed in the present work ( Eq. (5) ) and the surface correction proposed by Lockard and Casper [12] ( Eq. (4) ) 

with a n = 1 , b n = 2 , c n = 3 . 

Fig. 4. The instantaneous surface correction at the downstream observer at t = 120 . 
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 Q ( x ;ω ) = −
∫ 

f> 0 
( −1 ) 

n T i j ( y , ω ) 
∂ 2 G ( x ; y ) 

∂ y i ∂ y j 
d V 

−
n ∑ 

l=1 

∫ 
f=0 

( −1 ) 
l T i j ( y , ω ) 

(
∂ϕ ( x ; y ) 

∂ y 1 

)−1 
∂ 2 G ( x ; y ) 

∂ y i ∂ y j 
d S. 

(15) 

When n is even, Eq. (15) reduces to the identity I Q = I Q . When 

 is odd, Eq. (15) reduces to 

 Q ( x ;ω ) = 

1 

2 

∫ 
f=0 

T i j ( y , ω ) 

(
∂ϕ ( x ; y ) 

∂ y 1 

)−1 
∂ 2 G ( x ; y ) 

∂ y i ∂ y j 
d S. (16) 

Equation (16) is much simpler than Eq. (5) for the surface cor- 

ection, because Eq. (16) consists of only one surface integral in- 

tead of the series of surface integrals in Eq. (5) . Equation (16) can

e utilized for surface correction for the special case of 
U 1 
i ω 

∂ϕ( x ;y ) 
∂ y 1 

= 

1 . 

It is also worth noting that another much simpler surface cor- 

ection formula consisted of only one surface integral for surface 

orrection can be derived for the special case of nearly uniform 

ighthill stress distribution ( 
∂ T i j 

∂ y 1 
≈ 0 ) near the FW-H integral sur- 

ace. The simplified surface correction for this special case is 

 Q ( x ;ω ) ≈
∫ 
f=0 

T ij ( y , ω ) 

(
∂ϕ ( x ; y ) 

∂y 1 

)−1 
∂ 2 G ( x ; y ) 

∂ y i ∂ y j 
d S. (17) 
4 
Equation (17) is derived from the definition of I Q and the prod- 

ct rule for derivatives with the assumption 

∂ T i j 

∂ y 1 
≈ 0 as follows, 

 Q ( x ;ω ) = −
∫ 

f> 0 

T i j ( y , ω ) 
∂ 2 G ( x ; y ) 

∂ y i ∂ y j 
d V 

= −
∫ 

f> 0 

∂ 

∂ y 1 

(
T i j ( y , ω ) 

∂ 2 G 

1 ( x ; y ) 

∂ y i ∂ y j 

)

− ∂ T i j ( y , ω ) 

∂ y 1 

∂ 2 G 

1 ( x ; y ) 

∂ y i ∂ y j 
d V 

≈ −
∫ 

f> 0 

∂ 

∂ y 1 

(
T i j ( y , ω ) 

∂ 2 G 

1 ( x ; y ) 

∂ y i ∂ y j 

)
d V 

= 

∫ 
f=0 

T i j ( y , ω ) 
∂ 2 G 

1 ( x ; y ) 

∂ y i ∂ y j 
d S, (18) 

here ∂ 2 G 1 ( x ;y ) 
∂ y i ∂ y j 

= 

∫ y 1 ∞ 

∂ 2 G ( x ;ξ1 , y 2 ) 
∂ y i ∂ y j 

d ξ1 . When the observer is located 

n the far field, the derivatives of G 

1 can be approximated by the 

quation as follows [16] , 

∂ 2 G 

l ( x ; y ) 

∂ y i ∂ y j 
≈

(
∂ϕ ( x ; y ) 

∂ y 1 

)−l 
∂ 2 G ( x ; y ) 

∂ y i ∂ y j 
, (19) 

ith l = 1 . More detailed derivation of Eq. (19) can be found in

he supplementary material [14] . Combination of Eq. (19) with 

q. (18) results in the simplified surface correction Eq. (17) . 

We have proposed a simplified surface correction formulation 

or the quadrupole source term of the Ffowcs Williams and Hawk- 

ngs integrals in frequency domain. The proposed surface correc- 

ion consists of a series of surface integrals and is applicable to 

liminating the spurious sound at far field. The simplified for- 

ulation improves the original surface correction by circumvent- 

ng the difficulties in computing the high-order derivatives of the 

reen’s function. An easy-to-use expression is derived to compute 

he high-order derivatives by referring tothe far-field asymptotic 

f the Green’s function. The spurious sound generated by a con- 

ecting vortex crossing the FW-H integral surface is investigated 

o validate the proposed surface correction formulation. The re- 

ults show that the proposed formulation can successfully elimi- 

ate the spurious sound generated by the quadrupole term. The 

erms of the simplified surface correction formulation are consis- 

ent with these of the original surface correction formulation at 

he far field. The proposed formulation also helps to analyse the 

ailure of the original surface correction formulation and further 

implify the surface correction to a formulation with only one sur- 

ace integral when the magnitude of the convection velocity equals 

o the phase velocity ( 
U 1 
i ω 

∂ϕ( x ;y ) 
∂ y 1 

= −1 ) or the flow with nearly uni- 

orm Lighthill stress distribution ( 
∂ T i j 

∂ y 1 
≈ 0 ) near the FW-H integral 

urface. 
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