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Abstract: The design of non-buckling interconnects with thick sections has gained important applica-
tions in stretchable inorganic electronics due to their simultaneous achievement of high stretchability,
low resistance, and low heat generation. However, at the same time, such a design sharply increased
the tensile stiffness, which is detrimental to the conformal fit and skin comfort. Introducing the fractal
design into the non-buckling interconnects is a promising approach to greatly reduce the tensile
stiffness while maintaining other excellent performances. Here, a hierarchical theory is proposed
for the tensile stiffness of the non-buckling fractal-inspired interconnects with an arbitrary shape
at each order, which is verified by the finite element analysis. The results show that the tensile
stiffness of the non-buckling fractal-inspired interconnects decreases with the increase in either the
height/span ratio or the number of fractal orders but is not highly correlated with the ratio of the two
adjacent dimensions. When the ratio of the two adjacent dimensions and height/span ratio are fixed,
the tensile stiffness of the serpentine fractal-inspired interconnect is smaller than that of sinusoidal
and zigzag fractal-inspired interconnects. These findings are of great significance for the design of
non-buckling fractal-inspired interconnects of stretchable inorganic electronics.

Keywords: fractal design; tensile stiffness; hierarchical theory; stretchable inorganic electronics

1. Introduction

Stretchable inorganic electronics have been extensively developed over almost two
decades for diverse applications, including health monitoring [1–3], medical treatment [4–6],
human–computer interactions [7], aerospace engineering [8], etc. One of the most impor-
tant technological innovations of stretchable inorganic electronics is the achievement of
stretchability through mechanically guided structural designs, which guarantees that the
electronic systems can conformally wrap arbitrarily complex target surfaces and maintain
electronic functions. Among various strategies to achieve stretchability, the “island-bridge”
structure is the most popular one [9,10]. The interconnects are referred to as the “bridges”
and provide both stretchability and electrical conductivity, while the functional components
reside at the “islands” and undergo negligible deformation during the stretch of the whole
structure. Therefore, the structural design of the interconnects is crucial for stretchable
inorganic electronics.

Up to now, various geometric layouts include the wavy structure [11–13], arc-shaped
interconnects [9,14–16], serpentine interconnects [3,10,17–21], 2D spiral interconnects [22–25],
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3D helical interconnects [26–29], etc., have been proposed successively. Corresponding
analytical models are established to guide the optimization design of these structures. For
example, Khang et al. provided an analytical solution for the wave structure [11], Lu et al.
obtained the stretchability and compliance of freestanding serpentine interconnects [18,21],
Pan et al. analyzed the serpentine interconnects on ultrathin elastomers [17], Li et al.
proposed an analytical model for the buckled serpentine interconnects after the prestrain
release in the substrate [30], and Ranji et al. discussed the stiffness of different types of
folded-beam springs, including the serpentine spring, the U-shape spring, and crab-length
beams [31]. To overcome the disadvantages of relatively low stretchability, high resistance,
and high heat generation of the early buckling interconnects with thin sections, the non-
buckling interconnects with thick sections have been proposed [10] and have gained
important applications in stretchable inorganic electronics [8]. However, at the same time,
such a non-buckling design sharply increased the tensile stiffness, which is detrimental
to the conformal fit and skin comfort. Introducing the fractal-inspired design, which has
been applied to the buckling interconnects for a high filling ratio and high stretchability
(Figure 1 [6,32–39]), into the non-buckling interconnects is a promising approach to greatly
reduce the tensile stiffness while maintaining the other excellent performances.
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serpentine interconnects. On the basis of mechanical optimization, interconnects with 
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ratio of 70%. In addition, a hierarchical computational model [41] has been established to 
analyze the equivalent flexibilities and elastic stretchability of the interconnects with 
fractal-inspired designs. This hierarchical model extremely reduces the computational 
efforts of the full model without the loss of prediction accuracy. Furthermore, the elastic 

Figure 1. Typical applications of the fractal-inspired design in stretchable inorganic electronics:
(a) Stretchable batteries [35]; (b) a wireless electrophysiological sensor [36]; (c) multifunctional and
MRI-compatible epidermal electrical interfaces [37]; (d) smart prosthetic skin instrumented with
various sensors and actuators [38].

Mechanical analyses of fractal-inspired interconnects have made great progress in
the past few years. Zhang et al. [40] have established an analytical model to evaluate
the stretchability of the fractal-inspired structure and derived the recursive formulae at
different orders of self-similarity (all orders have a similar shape) for the rectangular and
serpentine interconnects. On the basis of mechanical optimization, interconnects with
fractal-inspired design can provide a stretchability as high as ~90% with a surface-filling
ratio of 70%. In addition, a hierarchical computational model [41] has been established
to analyze the equivalent flexibilities and elastic stretchability of the interconnects with
fractal-inspired designs. This hierarchical model extremely reduces the computational
efforts of the full model without the loss of prediction accuracy. Furthermore, the elastic
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stiffness of the fractal-inspired interconnects has been analytically determined and verified
by the experiments and the finite element analysis (FEA) [42]. Fan et al. [32] summarized
six different patterns of metal interconnects. The elastic and plastic mechanics of these
fractal-inspired layouts have been fully identified by both high-precision measurements
and FEA, and it has also been pointed out that an increase in the angle of the arc section
can improve the elastic stretchability of the horseshoe interconnects. More recently, the
horseshoe fractal-inspired interconnects have been systemically investigated by Ma et al.
through both the FEA and the experiments [43]. The nonlinear stress–strain curves of the
horseshoe fractal-inspired interconnects have been discussed to achieve maximum elastic
stretchability. Despite these important developments, the curve configurations of each
order may not always remain similar in practical applications, which has not been studied
by researchers.

In this paper, the tensile stiffness of the non-buckling fractal-inspired interconnects
with arbitrary shapes at each order is investigated based on the energy method for the
guidance of the structure design. In Section 2, a hierarchical theory is developed to obtain
the load–displacement relationship of the interconnects, i.e., the flexibility matrix. Then
the zigzag interconnects of multiple orders are studied in Section 3, and the relationships
between the shape parameters and the deformation are particularly concerned and dis-
cussed. In Section 4, the hierarchical theory is verified by the FEA, and two key shape
parameters for the multi-order fractal-inspired interconnects with different shapes are
discussed. Concluding remarks are given in Section 5.

2. Theory of the Non-Buckling Fractal-Inspired Interconnects with Arbitrary Shape at
Each Order

The non-buckling fractal-inspired interconnects at each order may not maintain the
same pattern in practical applications, and it poses a challenge to the evaluation of the
mechanical properties of the interconnects with a multi-order structure. This section aims
to obtain the mechanical properties of the non-buckling fractal-inspired interconnects with
arbitrary shapes at different orders, as shown in Figure 2. Due to the arbitrary shape of
curves at different orders, one cannot simply obtain the relation between the flexibility of
adjacent orders through the recursion formula. We first take the order-1 curve as an example
to illustrate the theory as in Section 2.1, and then generalize the theoretical framework to
an arbitrary order based on a concept of elastic strain energy density in Section 2.2, without
the need for disassembly and force analysis from scratch as in previous studies [40,43].
After that, both the flexibility matrix and the tension stiffness of the entire interconnects,
i.e., the order-n structure, are derived in Section 2.3.
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2.1. Elastic Strain Energy Density of the First-Order Interconnects

This subsection introduces the non-buckling fractal-inspired interconnects that contain
the arbitrary shape at each order, which is different from the previously proposed self-
similar interconnects [40]. Figure 3a shows a representative order-1 cell, and its geometry
is described by the local Cartesian coordinates (Y1, Z1)

Y1 = Y1(S1), Z1 = Z1(S1), (1)

where the origin of (Y1, Z1) is at the center of the order-1 structure; the curvilinear coordinate
S1 is along the arc length of the order-1 structure, with S1 = 0 at the center. At two ends
of the representative cell, we have Y1(−S1t/2) = −Y1(−S1t/2) = 0, where S1t is the total
length of the representative cell in the order-1 structure.
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M1 in the order-1 structure. (b) The curvilinear coordinate Sn and the internal forces in the order-n
structure. (c) The internal forces and the corresponding generalized displacements in the order-n
structure. (d) The simplified model of the order-n structure fixed at the left end and sliding at the
right end.

The interconnects at each order are modeled as beams. Figure 3b shows the sign
convention for the positive internal axial force Pn, shear force Qn, and bending moment
Mn in the order-n interconnects. Thus, for the order-1 structure, i.e., n = 1, let P1 and Q1
denote the internal forces along the local coordinates Y1 and Z1, respectively, at the center
S1 = 0, and M1 is the bending moment for the order-1 structure. Then the axial and shear
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forces and bending moment at any curvilinear coordinate S1 are obtained from the force
equilibrium as

M0(S1) = M1 + P1Y1(S1)−Q1Z1(S1)

P0(S1) = P1
dZ1(S1)

dS1
+ Q1

dY1(S1)
dS1

Q0(S1) = Q1
dZ1(S1)

dS1
− P1

dY1(S1)
dS1

, (2)

where M0(S1) is in a counterclockwise direction, P0(S1) is along the tangent of S1, and
Q0(S1) is along the normal direction of S1 (rotating π/2 counterclockwise from the tangent
of S1). Since the membrane energy is negligible as compared to the bending energy, the
energy density of the order-1 structure is dominated by the bending energy per apparent
length, which is given by

Uaver,1(M1, P1, Q1) =
1

2EIL1

∫ S1t

0
[M0(S1)]

2dS1. (3)

The nominal energy density is defined by the total elastic energy divided by the
apparent length of the representative cell L1 (see Figure 3a). EI is the bending stiffness of
the order-1 structure. Substitution of Equation (2) into Equation (3) gives the energy density

Uaver,1(M1, P1, Q1) =
1

2EI

(
α1,1M2

1 + α1,2P2
1 L2

1 + α1,3Q2
1L2

1 + α1,4M1P1L1 + α1,5M1Q1L1 + α1,6P1Q1L2
1

)
, (4)

where

α1,1 = γ1, α1,2 = γ2, α1,3 = γ3, α1,4 = 2γ4, α1,5 = −2γ5, α1,6 = −2γ6. (5)

Here, αn,m are the shape parameters only related to the geometry of interconnects,
regardless of the overall size, and the subscripts n and m represent the order of the inter-
connects and the parameter number. For the order-1 structure, i.e., n = 1, the parameters in
Equation (5) are given by

γ1 = S1t
L1

, γ2 = 1
L3

1

∫ S1t
0 [Y1(S1)]

2dS1, γ3 = 1
L3

1

∫ S1t
0 [Z1(S1)]

2dS1

γ4 = 1
L2

1

∫ S1y
0 Y1(S1)dS1, γ5 = 1

L2
1

∫ S1t
0 Z1(S1)dS1, γ6 = 1

L3
1

∫ S1t
0 Y1(S1)Z1(S1)dS1

. (6)

2.2. Recursion Relations between the Interconnects of Adjacent Two Orders

As shown in Figure 3b, the order-n structure is an arbitrary shape. Similar to the
analysis of the order-1 structure, the geometric shape of the representative order-n unit cell
can be described by the local Cartesian coordinates (Yn, Zn)

Yn = Yn(Sn), Zn = Zn(Sn). (7)

Here, Sn is the curvilinear coordinate along the arc length of the order-n structure. Let
Pn and Qn denote the internal forces along the local coordinates and Mn bending moment
at Sn = 0. The bending moment and the internal forces in the order-n structure can be
generally given as

Mn−1(Sn) = Mn + PnYn(Sn)−QnZn(Sn)

Pn−1(Sn) = Pn
dZn(Sn)

dSn
+ Qn

dYn(Sn)
dSn

Qn−1(Sn) = Qn
dZn(Sn)

dSn
− Pn

dYn(Sn)
dSn

, (8)

where the signs of Mn−1(Sn), Pn−1(Sn), and Qn−1(Sn) are defined to be similar to those
in the order-1 structure. Once the internal forces and the moment are obtained in the
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order (n − 1) by the derivation from the higher order, the energy density for order n is the
integration of that of the order n − 1,

Uaver,n(Mn, Pn, Qn) =
1

Ln

∫ Snt

0
Uaver,n−1(Mn−1, Pn−1, Qn−1)dSn, (9)

where Snt and Ln are the total arc length and the apparent length of the representative cell
in the order-n interconnects, as shown in Figure 3b. In the case of linear elastic deformation,
the energy density of the order-(n − 1) interconnects can be expressed as a quadratic form
of the generalized forces,

Uaver,n−1(Mn−1, Pn−1, Qn−1) =
1

2EI

(
αn−1,1 M2

n−1 + αn−1,2P2
n−1L2

n−1 + αn−1,3Q2
n−1L2

n−1

+αn−1,4 Mn−1Pn−1Ln−1 + αn−1,5 Mn−1Qn−1Ln−1 + αn−1,6Pn−1Qn−1L2
n−1

)
. (10)

Then, by combining Equations (8)–(10), the energy density of the order-n interconnects
can be calculated by the integration of that of the order n − 1, which can also be expressed
as a quadratic form,

Uaver,n(Mn, Pn, Qn) =
1

2EI

(
αn,1M2

n + αn,2P2
n L2

n + αn,3Q2
nL2

n

+αn,4MnPnLn + αn,5MnQnLn + αn,6PnQnL2
n

)
. (11)

Here, the parameters αn,m (m = 1~6) in Equation (11) can be given by

αn,1 = αn−1,1β1

αn,2 = 1
η2

n,n−1

(
η2

n,n−1αn−1,1β2 + αn−1,2β8 + αn−1,3β7 + ηn,n−1αn−1,4β12 − ηn,n−1αn−1,5β10 − αn−1,6β9

)
αn,3 = 1

η2
n,n−1

(
η2

n,n−1αn−1,1β3 + αn−1,2β7 + αn−1,3β8 − ηn,n−1αn−1,4β13 − ηn,n−1αn−1,5β11 + αn−1,6β9

)
αn,4 = 1

ηn,n−1
(2ηn,n−1αn−1,1β4 + αn−1,4β15 − αn−1,5β14)

αn,5 = 1
ηn,n−1

(−2ηn,n−1αn−1,1β5 + αn−1,4β14 + αn−1,5β15)

αn,6 = 1
η2

n,n−1

[
−2η2

n,n−1αn−1,1β6 + 2(αn−1,2 − αn−1,3)β9 + ηn,n−1αn−1,4(β10 − β11)

+ηn,n−1αn−1,5(β12 + β13) + αn−1,6(β8 − β7)

]
. (12)

In the recursive relationship above, ηn,n−1 = Ln/Ln−1 is the ratio of the two adjacent
dimensions. The parameters βi (i = 1~15) are only related to the geometric shape of the
structure at each order, given by

β1 = Snt
Ln

, β2 = 1
L3

n

∫ Snt
0 [Yn(Sn)]

2dSn, β3 = 1
L3

n

∫ Snt
0 [Zn(Sn)]

2dSn

β4 = 1
L2

n

∫ Sny
0 Yn(Sn)dSn, β5 = 1

L2
n

∫ Snt
0 Zn(Sn)dSn, β6 = 1

L3
n

∫ Snt
0 Yn(Sn)Zn(Sn)dSn

β7 = 1
Ln

∫ Snt
0

[
dYn(Sn)

dSn

]2
dSn, β8 = 1

Ln

∫ Snt
0

[
dZn(Sn)

dSn

]2
dSn, β9 = 1

Ln

∫ Snt
0

dYn(Sn)
dSn

dZn(Sn)
dSn

dSn

β10 = 1
L2

n

∫ Snt
0 Yn(Sn)

dYn(Sn)
dSn

dSn, β11 = 1
L2

n

∫ Snt
0 Zn(Sn)

dZn(Sn)
dSn

dSn

β12 = 1
L2

n

∫ Snt
0 Yn(Sn)

dZn(Sn)
dSn

dSn, β13 = 1
L2

n

∫ Snt
0 Zn(Sn)

dYn(Sn)
dSn

dSn

β14 = 1
Ln

∫ Snt
0

dYn(Sn)
dSn

dSn, β15 = 1
Ln

∫ Snt
0

dZn(Sn)
dSn

dSn

. (13)

From the derivation above, it can be further confirmed that the shape parameters αn,m
are only related to the geometry of interconnects at each order. The relationship between
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the shape parameters of the structure of the adjacent two orders is given by Equation (12),
which can be further written in a matrix form as

αn,1

αn,2

αn,3

αn,4

αn,5

αn,6


= [D]n,n−1



αn−1,1

αn−1,2

αn−1,3

αn−1,4

αn−1,5

αn−1,6


, (14)

where the recursive coefficient matrix [D]n,n−1 can be expressed as

[D]n,n−1 =



β1 0 0 0 0 0

β2
1

η2
n,n−1

β8
1

η2
n,n−1

β7
1

ηn,n−1
β12 − 1

ηn,n−1
β10 − 1

η2
n,n−1

β9

β3
1

η2
n,n−1

β7
1

η2
n,n−1

β8 − 1
ηn,n−1

β13 − 1
ηn,n−1

β11
1

η2
n,n−1

β9

2β4 0 0 1
ηn,n−1

β15 − 1
ηn,n−1

β14 0

−2β5 0 0 1
ηn,n−1

β14
1

ηn,n−1
β15 0

−2β6
2

η2
n,n−1

β9 − 2
η2

n,n−1
β9

1
ηn,n−1

(β10 − β11)
1

ηn,n−1
(β12 + β13)

1
η2

n,n−1
(β8 − β7)


. (15)

Thus, the shape parameters αn,1∼6 in an arbitrary order can be derived from the
order-1 structure,

[αn,1∼6] =
n

∏
j=2

[D]j,j−1[α1,1∼6], (n > 1) (16)

Here, the initial shape parameters [α1,1∼6] have been given in Equation (5).

2.3. Flexibility Matrix and Tensile Stiffness of Order-n Interconnects

In this section, the flexibility matrix of the order-n interconnects is established based on
the recursion relations above. A representative cell of the order-n interconnects is illustrated
in Figure 3c. Considering fixing the left end of the cell, the forces and bending moment,
as well as the corresponding generalized displacements, are shown in Figure 3c. ũn is the
generalized displacement parallel to the axial direction, ṽn is the generalized displacement
perpendicular to the axial direction, and θ̃n is the rotation angle of the right end. The
relationship between the displacements at the right end and the forces/moment can be
written in the following general form:


∼
θ n

ũn

ṽn

 = [Sn]


∼
Mn

∼
Pn

∼
Qn

, (17)

where [Sn] is the flexibility matrix.
To obtain the flexibility matrix, the equivalent translational forces at the center point

are first calculated from the external loading at the right end as


Mn

Pn

Qn

 =


1 0 1

2 Ln

0 1 0

0 0 1



∼
Mn

∼
Pn

∼
Qn

, (18)
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Then, according to Equation (11), the total deformation energy of the order-n intercon-
nects is obtained as

Un(Mn, Pn, Qn) = Uaver,n(Mn, Pn, Qn)Ln =
Ln

2EI


Mn

Pn

Qn


T

αn,1
1
2 αn,4Ln

1
2 αn,5Ln

1
2 αn,4Ln αn,2L2

n
1
2 αn,6L2

n

1
2 αn,5Ln

1
2 αn,6L2

n αn,3L2
n




Mn

Pn

Qn

. (19)

Substitution of the equivalent translational forces in Equation (18) into Equation (19)
gives a new formula of the total deformation energy in terms of the external loading at the
left end:

Un(Mn, Pn, Qn) = Uaver,n(Mn, Pn, Qn)Ln =

= Ln
2EI


∼
Mn

∼
Pn

∼
Qn


T

1 0 0

0 1 0
1
2 Ln 0 1




αn,1
1
2 αn,4Ln

1
2 αn,5Ln

1
2 αn,4Ln αn,2L2

n
1
2 αn,6L2

n

1
2 αn,5Ln

1
2 αn,6L2

n αn,3L2
n




1 0 1
2 Ln

0 1 0

0 0 1



∼
Mn

∼
Pn

∼
Qn



= Ln
2EI


∼
Mn

∼
Pn

∼
Qn


T

αn,1
1
2 αn,4Ln

1
2 (αn,1 + αn,5)Ln

1
2 αn,4Ln αn,2L2

n
1
2

(
αn,6 +

1
2 αn,4

)
L2

n

1
2 (αn,1 + αn,5)Ln

1
2

(
αn,6 +

1
2 αn,4

)
L2

n

(
1
4 αn,1 + αn,3 +

1
2 αn,5

)
L2

n



∼
Mn

∼
Pn

∼
Qn

.

(20)

Thus, the flexibility matrix can be obtained as

[Sn] =
Ln

EI


αn,1

1
2 αn,4Ln

1
2 (αn,1 + αn,5)Ln

1
2 αn,4Ln αn,2L2

n
1
2

(
αn,6 +

1
2 αn,4

)
L2

n

1
2 (αn,1 + αn,5)Ln

1
2

(
αn,6 +

1
2 αn,4

)
L2

n

(
1
4 αn,1 + αn,3 +

1
2 αn,5

)
L2

n

. (21)

The dimensionless flexibility matrix is defined as

[
Sn
]
=


αn,1

1
2 αn,4

1
2 (αn,1 + αn,5)

1
2 αn,4 αn,2

1
2

(
αn,6 +

1
2 αn,4

)
1
2 (αn,1 + αn,5)

1
2

(
αn,6 +

1
2 αn,4

) (
1
4 αn,1 + αn,3 +

1
2 αn,5

)
. (22)

The tensile stiffness can be further derived from the flexibility matrix. As shown in
Figure 3d, we consider that the left side of the representative cell in the order-n interconnects
is fixed and the right end can only move horizontally, i.e., θ̃n = 0 and ṽn = 0, and then the
relationship between the external forces and displacements at the end can be expressed as

∼
Mn

∼
Pn

∼
Qn

 = [Sn]
−1


∼
θ n

ũn

ṽn

 =
EI
Ln2 ũn


k12

k22
Ln

k32
Ln

, (23)
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where

k12 =
2(αn,1+αn,5)αn,6−(4αn,3+αn,5)αn,4

2k0

k22 =
4αn,1αn,3−αn,5

2

k0

k32 =
αn,4αn,5−2αn,1αn,6

k0

k0 = 4αn,1αn,2αn,3 + αn,4αn,5αn,6 − αn,1αn,6
2 − αn,2αn,5

2 − αn,3αn,4
2

. (24)

It can be obtained from Equation (23) that

∼
Pn = Knũn, (25)

where Kn is the tensile stiffness of the whole structure,

Kn =
EI
L3

n
k22 =

EI
L3

n

4αn,1αn,3 − α2
n,5

4αn,1αn,2αn,3 + αn,4αn,5αn,6 − αn,1α2
n,6 − αn,2α2

n,5 − αn,3α2
n,4

. (26)

3. Theoretical Analysis of Self-Similar Zigzag Interconnects

In Section 2, the flexibility matrix and the tensile stiffness of the order-n fractal-inspired
interconnects with arbitrary shapes are obtained. Here, as a simple case, the analytical
model for the self-similar zigzag fractal-inspired interconnects is established to show the
practical operation process.

3.1. Shape Parameters and Recursive Formula

The geometrical parameters of the order-1 zigzag interconnects are illustrated in
Figure 4a. Specifically, the included angle at the inflection point of the zigzag interconnects
is 2ϕ. The geometric shape of the structure can be expressed as

Y1 =


cot ϕ

(
sin ϕS1 − L1

2

)
+ cot ϕL1

2 (0 ≤ S1 ≤ L1
4 sin ϕ )

− cot ϕ
(

sin ϕS1 − L1
2

)
( L1

4 sin ϕ < S1 < 3L1
4 sin ϕ )

cot ϕ
(

sin ϕS1 − L1
2

)
− cot ϕL1

2 ( 3L1
4 sin ϕ ≤ S1 ≤ L1

sin ϕ )

Z1 = sin ϕS1 − L1
2

. (27)
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Figure 4. (a) The geometric construction of the order-1 zigzag interconnects. (b) The internal forces
and generalized displacements in the order-n zigzag interconnects.
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Substitution of Equation (27) into Equation (13) gives the parameters of order-1 zigzag
interconnects as

β1 = S1t
L1

= csc ϕ, β2 = 1
L3

1

∫ S1t
0 [Y1(S1)]

2dS1 = 1
48 cot2 ϕ csc ϕ

β3 = 1
L3

1

∫ S1t
0 [Z1(S1)]

2dS1 = 1
12 csc ϕ, β4 = β5 = 0

β6 = 1
L3

1

∫ S1t
0 Y1(S1)Z1(S1)dS1 = − 1

32 cot ϕ csc ϕ

β7 = 1
L1

∫ S1t
0

[
dY1(S1)

dS1

]2
dS1 = cot ϕ cos ϕ

β8 = 1
L1

∫ S1t
0

[
dZ1(S1)

dS1

]2
dS1 = sin ϕ

β9 = β10 = β11 = β12 = β13 = β14 = 0

β15 = 1
L1

∫ S1t
0

dZ1(S1)
dS1

dS1 = 1

. (28)

Such that the shape parameters in the order-1 zigzag interconnects can be expressed as

[α1,1∼6]
T =

[
1

sin ϕ
1

48
cos2 ϕ

sin3 ϕ
1
12

1
sin ϕ 0 0 1

16
cos ϕ

sin2 ϕ

]
, (29)

The recursive formula in the self-similar zigzag interconnects becomes

[αn,1∼6] =
n

∏
j=2

[D]j,j−1[α1,1∼6], (30)

where the recursive coefficient matrix is

[D]n,n−1 =



csc ϕ 0 0 0 0 0
1

48 cot2 ϕ csc ϕ 1
η2

n,n−1
sin ϕ 1

η2
n,n−1

cot ϕ cos ϕ 0 0 0

1
12 csc ϕ 1

η2
n,n−1

cot ϕ cos ϕ 1
η2

n,n−1
sin ϕ 0 0 0

0 0 0 1
ηn,n−1

0 0

0 0 0 0 1
ηn,n−1

0

1
16 cot ϕ csc ϕ 0 0 0 0 − 1

η2
n,n−1

csc ϕ cos 2ϕ


, (31)

In practical applications, the apparent length of the adjacent representative cells differs
greatly. For the case of ηn,n−1 = η >> 1 of the self-similar zigzag interconnects, the
recursive coefficient matrix in Equation (31) can be simplified to

[D]n,n−1 =



csc ϕ 0 0 0 0 0
1

48 cot2 ϕ csc ϕ 0 0 0 0 0
1

12 csc ϕ 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
1

16 cot ϕ csc ϕ 0 0 0 0 0


. (32)

Then the recursive formula becomes

[αn,1∼6] = cscn−1 ϕ[α1,1∼6]. (33)
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3.2. Flexibility Matrix of the Self-Similar Zigzag Interconnects

The order-n zigzag interconnects are subjected to an axial force
∼
Pn, a shear force

∼
Qn,

and a bending moment
∼
Mn at the right end, as shown in Figure 4b. The flexibility matrix

can be given as the same as that in Equation (21). Each component in the flexibility matrix,
i.e., the shape parameters, can be calculated by Equation (29).

The flexibility matrix can be further simplified by considering two different combina-

tions of external loads. (1) For
∼
Mn = 0,

∼
Qn = 0,

∼
Pn 6= 0, Equations (17) and (21) give the

rotation angle
∼
θ n =

[∼
PnL2

n/
(
2EI

)]
αn,4, and under these external loads, θ̃n = 0, it can be de-

termined that αn,4 = 0. (2) For
∼
Pn = 0,

∼
Qn 6= 0,

∼
Mn = −

∼
QnLn/2, Equations (17) and (21)

give the rotation angle
∼
θ n =

[∼
QnL2

n/
(
2EI

)]
αn,5, and under these external loads, θ̃n = 0,

it can be determined that αn,5 = 0. Thus, the flexibility matrix of the order-n zigzag
interconnects can then be expressed as

[Sn] =
Ln

EI


αn,1 0 1

2 αn,1Ln

0 αn,2L2
n

1
2 αn,6L2

n

1
2 αn,1Ln

1
2 αn,6L2

n

(
1
4 αn,1 + αn,3

)
L2

n

. (34)

The tensile stiffness Kn of the zigzag interconnects can be calculated by Equation (26).

4. Finite Element Analysis and Discussion on the Shape Parameters

In this section, a series of finite element analyses are carried out to verify the validity
of the hierarchical theory. The “island-bridge” structure and corresponding geometric
parameters are shown in Figure 5a. The space L between adjacent rigid islands is 4 mm,
and the thickness and width of the interconnects are 0.2 µm and 1 µm, respectively. The
elastic modulus E of the interconnects is 78 GPa. Two kinds of fractal-inspired interconnects
with different shapes in each order are calculated and compared with the hierarchical
theory. The dimensionless flexibility matrix

[
Sn
]

and the dimensional tensile stiffness Kn
are discussed.

4.1. Dimensionless Flexibility Matrix

In this subsection, two different interconnects are investigated to clarify the hierarchical
theory. As shown in Figure 5b, the order-1 curve is serpentine and the order-2 curve is
sinusoidal (type I). The ratio of the horizontal length L1 : L2 in the two orders is 1:10.6.
Subsequently, the fractal structures with three orders also analyzed as the type II shown in
Figure 5b, the order-1 curve is sinusoidal, and the order-2 curve and order-3 curve are both
zigzag. The ratio of the horizontal length of each order L1 : L2 : L3 is 1 : 8

√
2 : 64. S11 is

the angular value generated by applying a unit bending moment at the right end; S12 is
the Z-direction displacement value generated by applying a unit bending moment at the
right end; S13 is the Y-direction displacement value generated by applying a unit bending
moment at the right end; S21 is the angular value generated by applying a unit force in the Z
direction at the right end; S22 is the Z-direction displacement value generated by applying
a unit force in the Z direction at the right end; S23 is the Y-direction displacement value
generated by applying a unit force in the Z direction at the right end; S31 is the angular
value generated by applying a unit force in the Y direction at the right end; S32 is the
Z-direction displacement value generated by applying a unit force in the Y direction at the
right end; S33 is the Y-direction displacement value generated by applying a unit force in
the Y direction at the right end. Both the analytical calculation and the FEA are performed
to evaluate each component of the dimensionless flexibility matrix in Equation (22), as
shown in Figure 5c,d. The analytical results match the FEA results well, which proves the
validity of the hierarchical theory.
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4.2. Effect of the Shape Parameters γ and η

Furthermore, two key geometrical parameters are investigated in the self-similar
interconnects in this subsection. At each fractal order, the interconnects have the same,
centrosymmetric shape, as shown in Figure 6a–c. The height and the span of the order-n
structure are Hn and Ln, respectively. Then the height/span ratio for different cells can
be defined by γ = Hn/Ln. The ratio of the two adjacent dimensions ηn,n−1 is set to be a
constant η. The dimensional tensile stiffness Kn, which can be obtained from Equation (26)
by Kn = KnLn

3/EI, is evaluated by both analytical calculation and FEA. In detail, the Kn of
the self-similar interconnects with different orders and height/span ratio are calculated as a
function of η, as shown in Figure 6d. It can be seen that the hierarchical theory can predict
the deformation behavior of the fractal interconnects with an arbitrary shape accurately. The
self-similar structures become more flexible with the increase in the order. With the increase
in the height/span ratio γ, the tensile stiffness also decreases. However, the parameter η
has a very limited effect on the stiffness of the structure when it becomes larger.

For the ratio of the two adjacent dimensions η = 6 and the height/span ratio γ = 0.5,
the relationship between dimensionless tensile stiffness Kn and the number of fractal
orders n for the zigzag, sinusoidal, and serpentine fractal-inspired interconnects was
obtained through the hierarchical theory, as shown in Figure 6e. It can be seen that the
dimensionless tensile stiffness Kn of the three types of interconnects decreases with the
increase in the fractal orders. Under the same fractal orders, the dimensionless tensile
stiffness of serpentine interconnects is the smallest, the dimensionless tensile stiffness
of sinusoidal interconnects is in the middle, and the dimensionless tensile stiffness of
zigzag interconnects is the highest. For the ratio of the two adjacent dimensions η = 6
and the fractal order n = 1, the relationship between dimensionless tensile stiffness Kn
and the height/span ratio γ for the zigzag, sinusoidal, and serpentine fractal-inspired
interconnects was obtained through the hierarchical theory, as shown in Figure 6f. The
dimensionless tensile stiffness Kn of the three types of interconnects decreases with the
increase in the height/span ratio γ. When γ ≤ 1.6, the dimensionless tensile stiffness
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of the serpentine interconnects is the smallest, the dimensionless tensile stiffness of the
sinusoidal interconnects is in the middle, and the dimensionless tensile stiffness of the
zigzag interconnects is the highest; however, when γ > 1.6, the dimensionless tensile
stiffness of the three interconnects is very close and tends toward zero. For the ratio of
the two adjacent dimensions η = 6 and orders n from 1 to 4, the relationship between
dimensionless tensile stiffness Kn and the height/span ratio γ for the serpentine fractal-
inspired interconnects was obtained through the hierarchical theory, as shown in Figure 6g.
The dimensionless tensile stiffness Kn of the serpentine interconnects decreases with the
increase in the height/span ratio γ. Under the same height/span ratio γ, the tensile stiffness
also decreases with the increase in the fractal orders n.

Nanomaterials 2023, 13, x FOR PEER REVIEW 15 of 18 
 

 

 
Figure 6. The self-similar interconnects: (a) The zigzag interconnects, (b) the sinusoidal intercon-

nects, and (c) the serpentine interconnects. (d) The dimensional tensile stiffness nK  of the self-
similar interconnects versus the ratio of the two adjacent dimensions η  with different orders and 
height/span ratio. (e) The relationship between dimensionless tensile stiffness and the number of 
fractal orders for the zigzag, sinusoidal, and serpentine fractal-inspired interconnects with =6η  
and γ = 0.5. (f) The relationship between dimensionless tensile stiffness and the height/span ratio γ 
for the zigzag, sinusoidal, and serpentine fractal-inspired interconnects with =6η  and n = 1. (g) 
The relationship between dimensionless tensile stiffness and the height/span ratio γ for the serpen-
tine fractal-inspired interconnects with =6η  and different fractal orders. 

For the ratio of the two adjacent dimensions 6η =  and the height/span ratio γ = 0.5, 

the relationship between dimensionless tensile stiffness nK  and the number of fractal 
orders n for the zigzag, sinusoidal, and serpentine fractal-inspired interconnects was ob-
tained through the hierarchical theory, as shown in Figure 6e. It can be seen that the di-
mensionless tensile stiffness nK  of the three types of interconnects decreases with the 
increase in the fractal orders. Under the same fractal orders, the dimensionless tensile stiff-
ness of serpentine interconnects is the smallest, the dimensionless tensile stiffness of si-
nusoidal interconnects is in the middle, and the dimensionless tensile stiffness of zigzag 
interconnects is the highest. For the ratio of the two adjacent dimensions 6η =  and the 

fractal order n = 1, the relationship between dimensionless tensile stiffness nK  and the 

Figure 6. The self-similar interconnects: (a) The zigzag interconnects, (b) the sinusoidal interconnects,
and (c) the serpentine interconnects. (d) The dimensional tensile stiffness Kn of the self-similar
interconnects versus the ratio of the two adjacent dimensions η with different orders and height/span
ratio. (e) The relationship between dimensionless tensile stiffness and the number of fractal orders
for the zigzag, sinusoidal, and serpentine fractal-inspired interconnects with η = 6 and γ = 0.5.
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5. Conclusions

This paper develops a hierarchical theory for the non-buckling fractal-inspired inter-
connects with arbitrary shapes in each order. The flexibility matrix and the tensile stiffness
of the non-buckling fractal-inspired interconnects are derived based on the energy method
by introducing a concept of elastic strain energy density, which is further verified by the
FEA. Both the analytical calculation and the FEA are carried out to investigate the effect
of the shape parameters on the dimensionless flexibility matrix

[
Sn
]

and the dimensional
tensile stiffness Kn. The results show that the tensile stiffness of the non-buckling fractal-
inspired interconnects decreases with the increase in either the height/span ratio γ or the
number of fractal orders, but is not highly correlated with the ratio of the two adjacent
dimensions η. When the ratio of the two adjacent dimensions η and the height/span ratio γ

are fixed, the tensile stiffness of the serpentine fractal-inspired interconnect is smaller than
those of sinusoidal and zigzag fractal-inspired interconnects. These findings are of great
significance for the design of the non-buckling fractal-inspired interconnects of stretchable
inorganic electronics.
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