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Numerical heat transfer of non-similar ternary hybrid
nanofluid flow over linearly stretching surface
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aSchool of Mathematics and Statistics, Xi’an Jiaotong University, P.R. China; bInstitute of Mechanics, Chinese
Academy of Sciences, Beijing, P.R. China; cDepartment of Mathematics, COMSATS University Islamabad,
Pakistan

ABSTRACT
The primary objective of this research is to construct a 2D mathematical
model to understand the heat transfer phenomena in a ternary hybrid
nanofluid across a stretched surface. We endorsed viscous dissipation for-
mulations in energy equations and the radiation impacts may also be pre-
cisely handled by using Rosseland approximation. Nanoparticles and their
effects are also considered including Al2O3, MgO and TiO2: The equations
used in the model are made nondimensional through non-similarity trans-
formation. In addition, the local non-similarity approach is employed to
convert non-similar partial differential equations into ordinary differential
equations. These equations can subsequently be solved using the bvp4c
MATLAB tool. Key factors have been thoroughly mapped out in graphical
form for easy comprehension. In a flow regime, increasing nanoparticle
concentration, magnetic number, and Eckert number lowers heat transmis-
sion and raises the ternary hybrid nanofluid’s temperature profile. The
effective skin friction coefficient and Nusselt number are tabulated con-
cerning the aforementioned important factors.
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1. Introduction

Magnetohydrodynamics (MHD) is a topic of immense interest both in academia and industry
due to its wide range of practical applications that include chemical processing, cooling of
vehicles, preservation of digital chips, and extraction of heat from nuclear power plants. Rashidi
et al. [1] investigated boundary layer flows in a magnetic field over a spinning disk at a steady
state with the aid of numerical simulations. Shafiq et al. [2] performed statistical analysis of
Williamson fluid under the impact of hydro-magnetic on a porous stretching surface, whereas
natural convection was studied by Haq et al. [3] for MHD flow within a curved porous cavity at
different wavelengths and temperatures in a partly heated domain. Shekaramiz et al. [4] studied
the MHD boundary layer flow of a nanofluid across a stretched sheet. Using finite difference
scheme, Ullah et al. [5] examined the effects of magnetic field and Joule heating on a highly
viscous hybrid nanofluid consisted of suspensions of copper-alumina nanoparticles in ethylene
glycol. Ahmed et al. [6] investigated the heat transfer in ohmic heating by taking into account
the flow of a magnetized, time-dependent viscous fluid induced by a spinning disk. MHD bound-
ary layer flow was studied by Cui et al. [7], who used a different kind of analysis than previously
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used to look at forced convection, and the steady buoyant convective boundary layer flow over
Maxwell fluids was taken into account by Fayz-Al-Asad et al. [8].

Ternary hybrid nanofluids are of interest as a heat storage technology despite their much better
thermal efficiency compared to hybrid nanofluids and nanofluids. The concept of ternary hybrid
nanofluids introduced a third generation of heat transfer fluids. The systematization of these fluids is
entirely dependent on the mixture of three nanoparticles and based fluids. The stagnation point flow
of Williamson fluid in mixed convection MHD was investigated by Nazir et al. [9]. The effects of a
Darcy-Forchheimer precursor surface on a ternary hybrid nanofluid as it moves over a nonlinear
stretching surface were studied by Gul & Saeed [10]. The rheology of Prandtl fluid was studied along-
side the movement of a ternary hybrid nanofluid in a porous media subject to varying magnetic fields
by Sohail et al. [11]. A hybrid nanofluid with preliminary stretching sheet and joule dissipation effects
was reported by Khashi’ie. et al. [12], and their flow was shown to be a forced convection boundary
layer. Using a Gr � Fe3O4 �H2O hybrid nanofluid, Khazayinejad and Nourazar investigated spatial
fractional heat transfer and continuous laminar MHD boundary layer flow [13]. An applied magnetic
field and thermal generation and absorption effects on Buongiorno’s Sisko fluid model were investi-
gated by Jan et al. [14]. A stretched sheet of fluid was modeled by Cui et al. [15] using a Casson fluid
model with nanofluids as the magnetized boundary layer. The Researchers had studied nanofluids in
a variety of plates and surface dimensions, likely seeing a wide range of effects depending on the spe-
cifics of the setup. By coupling fluid motion with magnetic fields, magnetohydrodynamic (MHD)
plays a role in regulating boundary layer flow [16–20]. Imtiaz [21] conducted a study to investigate
the influence of thermal radiation on the magnetohydrodynamic (MHD) flow of a Maxwell fluid over
a bidirectionally stretched surface, and solved nonlinear differential system using shooting method
and the RK-5 scheme.

Radiant heat effects are significant in the industry due to their utilization in energy production,
solar energy systems, turbines for gas, and diverse propulsion processes in aircraft. An analysis of the
flow of nanoparticles across a stretched membrane in 3D MHD was conducted by Nayak [22], taking
into account thermal radiation and viscous dispersion effects. The significance of thermal radiation
for the MHD interface of a nanofluid over a nonlinear stretching film was investigated by
Mahanthesh et al. [23]. Ullah et al. [24] numerically investigate the effects of thermal radiation on
heat transfer rate and drag force over a radially stretching surface. This study employed the Carreau
fluid model to characterize the fluid behavior. The ohmic heating and thermal radiation in the
Banjourno nanofluid were studied by Hayat et al. [25] where they applied finite difference technique
to analyze the MHD flow of a Jeffery model across a stretchable cylinder. Lanjwani et al. [26] investi-
gated the stability and dual analysis of the steady-state laminar flow of radiative Casson fluid incorpo-
rated with magnetic effects. Reddy et al. [27] explored the transport analysis of Williamson nanofluid
with a porous medium. The thermal radiation slip condition and magnetic are also considered.
Swalmeh et al. [28] studied the convective boundary layer flow of effective radiation with MHD in a
polar nanofluid in a spherical shape. Oreyeni et al. [29] utilized a combination of hybrid magnetite
particles ðFe₃O₄Þ and silver ðAgÞ to investigate the thermal characterization function in solar-powered
ships under the influence of heat radiation, magnetic fields, and viscous dissipation. Heat flow in the
thermal boundary layer was evaluated using the Cattaneo-Christov model, whereas the Galerkin
weighted residual method (GWRM) was employed as the methodology for analysis.

In this work, aluminum oxide, magnesium oxide and titanium oxide have been chosen due to
their distinctive thermal properties. Nanoparticles of metallic oxides, such as Al2O3,
SiO2, ZnO, MgO, and TiO2, are readily soluble in the base fluids; among these metal oxides,
Al2O3 has strong thermal properties. Pure metallic nanoparticles, such as aluminum, magnesium,
and titanium, are known to have a high aspect ratio, a high heat conductivity and a low specific
gravity. The nanofluids are unstable for short periods, however, the incorporation of aluminum
oxide, titanium oxide and magnesium oxide in the fluids not only ensures long-term stability but
also imparts exceptional thermal properties. Al2O3 þMgOþ TiO2 ternary hybrid and Al2O3 þ
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MgO hybrid nanoparticles may be made in this fashion, and the resulting product is very stable.
Reviewing the existing research, it becomes clear that the effect of viscous dissipation on the
MHD heat and mass transfer flow of Al2O3 þMgOþ TiO2 ternary hybrid and Al2O3 þMgO
hybrid nano liquids across a stretched surface via a permeable medium have not yet been investi-
gated. In addition, the Local Non-similarity approach [30–33] that we have proposed is not cur-
rently being used to clarify the dynamical issue of hybrid nanofluid via porous media. The LNS
method, in conjunction with the bvp4c up to its second truncation level, yields numerical solu-
tions to nonlinear-coupled PDEs. Relevant results of the topic at hand, obtained by adjusting the
appropriate parameters, are explained, and shown visually via tables and diagrams.

2. Mathematical modeling

Ternary hybrid nanoparticles are observed in a non-Newtonian Williamson fluid embedded in
porous media over a linear stretching surface. The Williamson fluid (Blood) contains three kinds
of nanoparticles (Al2O3, MgO, and TiO2) and the Magnetic field is assumed normal to the
stretching sheet. The stretching sheet velocity is u ¼ bx, where b is constant, in the direction of
the x-axis. There is no injection/subjection, which means v ¼ 0: The use of thermal radiation,
joule heating, and viscous dissipation is central to the concept of thermal expansion. The tem-
perature of the free stream and the temperature of the wall are T1 and Tw, respectively; heat
generation/absorption effect is assumed. According to [9, 34], Williamson fluid rheology is
described by the following equations

S ¼ �pI þ s,

s ¼ l1 þ lo � l1
1� ffiffiffi

_c
p

� �
A1,

where S represents the extra stress tensor. The viscosity under restrictive conditions at an infinite
shear rate is defined as l1, whereas the one with zero shear rate is l0: The first Rivlin Erickson
tensor is represented by A1: Additionally, C > 0 denotes the time constant and _c is given by

_c ¼
ffiffiffi
p
2

r
, p ¼ trace A2

1

� �
:

The prevailing notion l1 equals zero and _c is less than one, resulting in s ¼ lo
1�

ffiffi
_c

p� �
A1:

Utilizing binomial expansion, this can be expressed as s ¼ lo 1� ffiffiffi
_c

p� �
A1: The geometry of the

problem is shown in Figure 1. Using the above assumptions, the flow problem is:

@u
@x

þ @v
@y

¼ 0 (1)

qthnf u
@u
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þ v
@u
@y
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¼ lthnf

@2u
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 !
þ lthnf

ffiffiffi
2
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C
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@y

@2u
@y2

� rthnf B
2
0u� lthnf

K
u, (2)

u
@T
@x

þ v
@T
@y

¼ 1
qcpð Þthnf

kthnf þ 16
3
r�T3

1
k�

� �
@2T
@y2

þ lthnf
qcpð Þthnf

1þ Cffiffiffi
2

p @u
@y

� �
@u
@y

� �2

þ rthnf
qcpð Þthnf

uBoð Þ2 þ lthnf
K qcpð Þthnf

u2:
(3)

with boundary conditions [35, 36]:
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u ¼ bx ¼ uw xð Þ, v ¼ 0 , T ¼ Tw, at y ¼ 0,
u ¼ 0 ¼ v, T ! T1 at y ! 1:

(4)

The variables u and v represent the velocity vectors in the x and y directions, respectively. K,
C are permeability of porous medium and the Williamson fluid parameter, k� represents the
Boltzmann constant, base fluid density is qf , cpð Þf , T1 and Tw indicates base fluid heat cap-

acity ambient and wall temperature. In order to establish a non-similar flow, it is necessary to
introduce a new variable denoted as nðxÞ to represent non-similarity, while gðyÞ is used to repre-
sent pseudo-similarity variables.

n ¼ x
L
, g ¼ y

ffiffiffiffiffi
b
�f

s
, u ¼ bx

@f
@g

n, gð Þ, v ¼ �
ffiffiffiffiffiffiffi
b�f

q
f n, gð Þ þ n

@f
@n

n, gð Þ
� �

,

h n, gð Þ ¼ T � T1ð Þ
Tw � T1ð Þ :

(5)

After applying the aforementioned transformations, Eq. (1) is identically satisfies and the solu-
tions to Eqs. (2)–(4) are the following:

mthnf
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1þWen

@2f
@g2

� �
@3f
@g3

� qf

qthnf

rthnf
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M � k

lthnf
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� �
@f
@g
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� @f
@n
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@g2

� �
, (6)

1
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� �
@2f
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qcpð Þf
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,

(7)

Figure 1. Flow diagram.
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Transformed boundary conditions are:

@f n, 0ð Þ
@g

¼ 1, f n, 0ð Þ þ n
@f n, 0ð Þ

@n
¼ 0, h n, 0ð Þ ¼ 1,

@f n,1ð Þ
@g

¼ 0, h n,1ð Þ ¼ 0,
(8)

Weissenberg number We ¼ CL 2b3
�f

� �1
2, magnetic factor M ¼ rB2

o
bqf

, porosity factor k ¼ lf
bKqf

,

radiation factor Rd ¼ 16
3
r�T3

1
k�k , Eckert number Ec ¼ c2L2

Cp Tw�T1ð Þ and Prandtl number Pr ¼ �f
af
:

Surface friction coefficient Cf and local Nusselt number Nux are:

Cf ¼ sw
1
2 qthnf uwð Þ2 , Nu ¼ xqw

knf Tw � T1ð Þ , (9)

where sw surface shear stress, qw is the surface flux:

sw ¼ lthnf
@u
@y

þ Cffiffiffi
2

p @u
@y

� �2
 !

y¼0

, qw ¼ � kthnf þ Rd
� � @T

@yy¼0
: (10)

The dimensionless form of Cf , Nux are:

1
2
Re

1
2Cf ¼

lthnf

lf

qf

qthnf
n�1 1þ nWe

@2f
@g2

0ð Þ
� �

@2f
@g2

0ð Þ,

Re
�1
2 Nu ¼ �n

kthnf
kf

þ Rd

 !
@f
@g

0ð Þ:
(11)

Where Re ¼ bL2
�f

3. Methodology

To tackle the problem of boundary layer nanofluid flow over a stretched surface, the LNS method
is used for the dimensionless governing model given in Eqs. (6)–(8) and the imposed boundary
conditions (9). The next subsection will provide the step-by-step details of the LNS approach for
solving the problem stated above.

3.1. First level truncation

Presumably, (n � 1) exhibits this behavior given that the term n
@ :ð Þ
@n are very small at the first

level of truncation. This results in the following forms for Eqs. (6)–(8):

mthnf

mf
1þWenf 00
� �

f 00
0 � qf

qthnf

rthnf

rf
M � k

lthnf

lf

� �
f 0 � f 02 þ f f 00 ¼ 0, (12)

1
Pr

kthnf
kf

þ Rd

 !
h00 þ Ecn2 1þWenf

00
� �

f
002 þ n2Ec

rthnf

rf
M þ k

lthnf

lf

� �
f
0 2 þ

qcpð Þthnf
qcpð Þf

f h
0 ¼ 0,

(13)

accompanying by boundary conditions:
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f 0 n, 0ð Þ ¼ 1, f n, 0ð Þ ¼ 0, h n, 0ð Þ ¼ 1,
f 0 n,1ð Þ ¼ 0, h n,1ð Þ ¼ 0:

(14)

3.2. Second level truncation

To obtain the 2nd order truncation, differentiating Eqs. (6)–(8) concerning n and introducing

new functions g n, gð Þ ¼ @f n, gð Þ
@n , h n, gð Þ ¼ @h n, gð Þ

@n , and put the n derivatives of the introducing

function equal to zero as @g n, gð Þ
@n ¼ @h n, gð Þ

@n ¼ 0: The transformed equations are:

g00
0 ¼ 1

�thnf
�f

1þWenf 00ð Þ
�thnf

�f
Wef 00f 00

0 þWeng00f 00
0

� �
� 3f 0g0 þ f 00g0 þ g00f 0

	

� qf
qthnf

rthnf
rf

M þ k
� �

f 0 þ gf 00 � n g02 � gg00
� �


(15)

kthnf
kf

þ Rd

 !
h00 ¼ 2Ecn 1þWenf 00

� �
f 002 þ 2Ecn2 1þWenf 00

� �
f 00g00 þ Ecn2g00f 002

h

þ2nEc
rthnf
rf

M þ k
� �

f 002 þ
qcpð Þthnf
qcpð Þf

f h0 þ
qcpð Þthnf
qcpð Þf

f 0h� gh0
� �þ n g0h� gh0

� �n o
� (16)

with boundary conditions:

g0 0ð Þ ¼ 0, g 0ð Þ ¼ 0, h 0ð Þ ¼ 0,
g0 1ð Þ ¼ 0, h 1ð Þ ¼ 0:

(17)

4. Results and discussion

In this article, a non-similar model is designed, and the LNS approach is implemented via a
bvp4c MATLAB-based algorithm to achieve a numerical solution. After resolving the governing
system numerically, the outcomes obtained are depicted in figures and tables. This study centres
on a ternary hybrid nanofluid flow model comprising Blood the base fluid along with alumina
(Al2 O3), magnesium oxide (MgO), and titanium dioxide (TiO2) [38, 39] nanoparticles to exem-
plify its characteristics. Table 1 elucidates the correlations employed in ternary hybrid nanofluid
formulation [37], while Table 2 delineates the numerical attributes of alumina (Al2 O3), magne-
sium oxide (MgO), and titanium dioxide (TiO2) nanoparticles. To verify the applied method and
present the accuracy, the results are compared with the previous studies [40, 41] through Table 3.
Computational findings of the drag coefficient and heat transfer rate for the considered nano-
fluids (Al2O3 �Williamson fluid, Al2O3 þ MgO�Williamson fluid and Al2O3 þ MgOþ
TiO2 �Williamson fluids are presented in Tables 4 and 5. In Table 4, it is clear that the drag
coefficient increases when new values of the magnetic parameter ðMÞ and the porosity parameter
ðkÞ are found. It is observed that increasing the values of M and k leads to a decrease in skin fric-
tion decreases, while We increases. From the analysis presented in Table 5, it is evident that
higher values of the radiation parameter ðRdÞ and Weissenberg number (WeÞ result in an
increase in Nusselt number. On the other hand, accumulated estimations of porosity parameter
ðkÞ, magnetic number (MÞ, and Eckert number ðEcÞ are responsible to reduce the Nusselt
Number. Notably, the Al2O3 þMgOþ TiO2 �Williamson fluid exhibits a more pronounced
influence on both skin friction and Nusselt number compared to Al2O3 þMg �Williamson fluid
and Al2O3 �Williamson fluid:
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Table 1. Model of thermophysical properties [37].

Viscosity

nanofluid
lðAl2O3ÞBlood ¼ lblood

1�/Al2O3ð Þ2:5
hybrid nanofluid

lðAl2O3þMgOÞBlood ¼ lf
1�/Al2O3ð Þ2:5 1�/MgOð Þ2:5

ternary hybrid nanofluid
lðAl2O3þMgOþTiO2ÞBlood ¼ lf

1�/Al2O3ð Þ2:5 1�/MgOð Þ2:5 1�/TiO2ð Þ2:5Density
nanofluid

qðAl2O3ÞBlood ¼ 1� /Al2O3

� �
qBlood þ /Al2O3

qAl2O3

hybrid nanofluid
qðAl2O3þMgOÞBlood ¼ 1� /MgO

� �
1� /Al2O3

� �
qBlood þ /Al2O3

qAl2O3

� �þ /MgOqMgO ternary hybrid nanofluid
qðAl2O3þMgOþTiO2ÞBlood ¼ 1� /TiO2

� �
1� /MgO
� �

1� /Al2O3

� �
qBlood þ /Al2O3

qAl2O3

� �þ /MgOqMgO
� �

þ /MgOqTiO2

Heat capacitance
nanofluid

qcpð ÞðAl2O3ÞBlood ¼ 1� /Al2O3

� �
qcpð ÞBlood þ /Al2O3

qcpð ÞAl2O3
hybrid nanofluid

qcpð ÞðAl2O3þMgOÞBlood ¼ 1� /MgO
� �

1� /Al2O3

� �
qcpð ÞBlood þ /Al2O3

qcpð ÞAl2O3

� �
þ /MgO qcpð ÞMgO

ternary hybrid nanofluid
qcpð ÞðAl2O3þMgOþTiO2ÞBlood ¼ 1� /TiO2

� �
1� /MgO
� �

1� /Al2O3

� �
qcpð ÞBlood þ /Al2O3

qcpð ÞAl2O3

� �
þ /MgO qcpð ÞMgO

� �
þ /TiO2

qcpð ÞTiO2

Electric conductivity
nanofluid

rðAl2O3 ÞBlood
rBlood

¼ rAl2O3þ2rBlood�2/Al2O3
rBlood�rAl2O3ð Þ

rAl2O3þ2rBloodþ/Al2O3
rBlood�rAl2O3ð Þ

hybrid nanofluid

r Al2O3�MgOð ÞBlood
rðAl2O3 ÞBlood

¼ rMgOþ2rðAl2O3 ÞBlood�2/MgO rðAl2O3 ÞBlood�rMgOð Þ
rMgOþ2rðAl2O3 ÞBloodþ/MgO rðAl2O3 ÞBlood�rMgOð Þ

ternary hybrid nanofluid

r Al2O3�MgO�TiO2ð ÞBlood
r Al2O3�MgOð ÞBlood

¼
rþ2r Al2O3�MgOð ÞBlood�2/TiO2

r Al2O3�MgOð ÞBlood�rTiO2ð Þ
rTiO2þ2r Al2O3�MgOð ÞBloodþ/TiO2

r Al2O3�MgOð ÞBlood�rTiO2ð Þ
Thermal conductivity
nanofluid

kðAl2O3 ÞBlood
kBlood

¼ kAl2O3þ2kBlood�2/Al2O3
kBlood�kAl2O3ð Þ

kAl2O3þ2kBloodþ/Al2O3
kBlood�kAl2O3ð Þ

hybrid nanofluidk Al2O3�MgOð ÞBlood
kðAl2O3 ÞBlood

¼ kMgOþ2kðAl2O3 ÞBlood�2/MgO kðAl2O3 ÞBlood�kMgOð Þ
kMgOþ2kðAl2O3 ÞBloodþ/MgO kðAl2O3 ÞBlood�kMgOð Þ

ternary hybrid nanofluid

k Al2O3�MgO�TiO2ð ÞBlood
k Al2O3�MgOð ÞBlood

¼ kTiO2þ2k Al2O3�MgOð ÞBlood�2/TiO2
k Al2O3�MgOð ÞBlood�kTiO2ð Þ

kTiO2þ2k Al2O3�MgOð ÞBloodþ/TiO2
k Al2O3�MgOð ÞBlood�kTiO2ð Þ

Table 2. Properties of the Al2O3 (Aluminum Oxide), MgO (Magnesium oxide), TiO2 (Titanium Oxide)
and water [38, 39].

Materials cp (J/kgK) q (kg/m3) k(W/mK) rðXmÞ�1

Al2O3 765 3970 40 36:9� 106

MgO 960 3580 48.4 2:4� 106

TiO2 686.2 4250 8.9538 2:38� 106

Blood 3594 1063 0.492 0.8
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The Darcy parameter is used to study the resistance a porous Darcy media poses to the flow
of Al2O3 þMgOþ TiO2 �Williamson fluid, Al2O3 þMgO�Williamson fluid, and Al2O3 �
Williamson fluid: An increase in the Darcy porous medium parameter correlates to a reduction
in the permeability of the porous, which causes a significant slowing of the fluid’s motion.
According to Darcy’s model, the resistance of a porous medium is proportional to its permeabil-
ity; so, a reduction in permeability indicates an increase in porous medium resistance, which in
turn slows down the movement of fluids inside the porous medium. Additionally, if the fluid is
pushed through a porous media with extremely low permeability, the BL thickness may be
decreased to the required value. In Figure 2, it is also noticed that the Boundary Layer thickness
for Al2O3 þMgOþ TiO2 �Williamson fluid is greater than the thickness of the Boundary Layer
associated with the flow of Al2O3 þMgO�Williamson fluid and Al2O3-Williamson fluid. It
means that l2O3 þMgOþ TiO2 �Williamson fluid experience more porous medium resistance
relative to Al2O3 þMgO�Williamson fluid and Al2O3-Williamson fluid. Figure 3 depicts the
effects of the magnetic field on the velocity profile. By applying transverse magnetite fields pro-
duce Lorentz forces, which are resistive forces, when applied orthogonally to a flow direction.
Because the Lorentz force resists the flow of fluid, the velocity decreases, thereby slowing down
fluid flow in the boundary layer. This result quantitatively matches what we expected since mag-
netic fields retard natural convection flow. Figure 4 displays the results of numerical simulations

Table 3. A comparison of the @f
@g 0ð Þ with published literature for different values of Pr, putting

M ¼ k ¼ We ¼ Ec ¼ /1 ¼ /2 ¼ /3 ¼ Rd ¼ 0 and n ¼ 0:1:

Pr Golra and Sidawi [40] Megahed [41] Present study

0.007 0.06562 0.065531 0.1222647925
0.2 0.16912 0.169117 0.2529709253
2.0 0.91142 0.911358 0.9804025184
7.0 1.89546 1.895453 1.9240861311
20.0 3.35391 3.353902 3.3227827227

Table 4. Computed values of Re
1
2Cf for various values of M, k, and We:

M k We
Re

1
2Cf Al2O3

�Williamson fluid
Re

1
2Cf Al2O3 þ MgO

�Williamson fluid
Re

1
2Cf Al2O3 þMgOþ TiO2
�Williamson fluid

0.1 0.1 0.1 �0.5085659092 �0.5379949862 �0.5746465827
0.3 �0.5413009524 �0.5636778551 �0.6052535964
0.6 �0.5860588976 �0.5997018210 �0.6479427472
0.1 0.1 �0.5085659092 �0.5379949862 �0.5746465827

0.5 �0.3970596958 �0.4301016854 �0.4663653380
0.1 �0.5085659092 �0.5379949862 �0.5746465827
0.5 �0.5800153955 �0.6228564221 �0.6730519213

Table 5. Computed values of Re�
1
2Nu for various values of /, M, Q, Rd, Ec, and Pr:

M k Rd Ec We
Re�

1
2NuAl2O3

Williamson fluid
Re�

1
2NuAl2O3þ

Williamson fluid
Re�

1
2NuAl2O3 þ MgOþ TiO2

Williamson fluid

0.3 0.3 0.2 0.1 0.1 1.6870981029 1.5602713933 1.5385418163
0.6 1.7552725974 1.5786816550 1.5578544907
0.3 0.3 1.6870981029 1.5602713933 1.5385418163

0.5 1.7265128258 1.5765272268 1.5551905718
0.2 1.6870981029 1.5602713933 1.5385418163
0.4 1.3670819963 1.2757618076 1.2588423127

0.10 1.6870981029 1.5602713933 1.5385418163
0.13 1.9491890064 1.7960665079 1.7706423250

0.1 1.6870981029 1.5602713933 1.5385418163
0.2 1.6681925746 1.5591472865 1.5374987246
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of fluid particle motion as a function of the Weissenberg number. It can be seen that the fluid
motion slows down with larger values of the Weissenberg number. The viscosity of a fluid
increases as the We number is increased, which is the ratio between the viscous force and the
elastic force. Due to this force attenuation, the particles in a fluid have a greater increase in viscosity.
Increasing the We number lessens the thickness of the boundary layers. This is true of all three types
of Williamson fluids: Al2O3 þMgOþ TiO2 �Williamson fluid, Al2O3 þMgO�Williamson fluid,
and Al2O3 �Williamson fluid: It is also observed that Al2O3 þMgOþ TiO2 �Williamson fluid
has a larger retardation in fluid motion compared to Al2O3 þMgO�Williamson fluid and Al2O3 �

Figure 2. Effect of a on f 0 gð Þ, when M ¼ 0:3, We ¼ 0:5,/1 ¼ /2 ¼ /3 ¼ 0:1, Pr ¼ 21, Ec ¼ 0:1, Q ¼ 0:8, and Rd ¼ 0:1:

Figure 3. Effect of M on f 0 gð Þ, when k ¼ 0:2, We ¼ 0:5,/1 ¼ /2 ¼ /3 ¼ 0:1, Pr ¼ 21, Ec ¼ 0:1, Q ¼ 0:8, and Rd ¼ 0:1:
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Williamson fluid: It follows that a higher Weissenberg number fluid may be used to decrease the
thickness of the boundary layer (BL).

Figure 5 depicts the temperature field’s change for porosity parameter values. As the porosity
parameter is increased for the nanofluid (Al2O3 �Williamson fluid) hybrid nanofluid
(Al2O3 þMgO-Williamson fluid) and ternary hybrid nanofluid (Al2O3 þMgOþ TiO2-
Williamson fluid), it is seen that the temperature rises. When the porosity is high, fluid particles
are propelled downward, where the temperature is higher. Figure 6 shows comparative scrutiny of
the temperature profile h gð Þ of nano, hybrid, and ternary hybrid fluid for numerous measurements
of the magnetic parameter ðMÞ: Figure 6 demonstrates that the h gð Þ of the nanofluid grows with

Figure 5. Effect of a on h gð Þ, when M ¼ 0:3, We ¼ 0:5,/1 ¼ /2 ¼ /3 ¼ 0:1, Pr ¼ 21, Ec ¼ 0:1, Q ¼ 0:8, and Rd ¼ 0:1:

Figure 4. Effect of We on f 0 gð Þ, when, k ¼ 0:2, PM ¼ 0:3,/1 ¼ /2 ¼ /3 ¼ 0:1, Pr ¼ 21, Ec ¼ 0:1, Q ¼ 0:8, and Rd ¼ 0:1:
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the increasing estimations of M: Physically, this is because of the Lorentz force generated by the
magnetic field, which retards velocity and improves the uniformity of the thermal boundary layer.
As the indented graph demonstrates, the temperature distribution of nanofluid ðAl2O3 �
Williamson fluidÞ and hybrid nanofluid ðAl2O3 þMgO�Williamson fluidÞ is continually lower
than that of ternary hybrid nanofluid (Al2O3 þMgOþ TiO2 �Williamson fluid). Figure 7 demon-
strates that when the radiation parameter ðRdÞ is raised, the thermal boundary layer thickens.
When examining the data, this becomes evident. This is because the boundary layer is heated by
the imposition of thermal radiation, leading to a rise in fluid temperature. This explains why this is
happening. Eckert number ðEcÞ influence on the thermal boundary layer, as seen in Figure 8. The

Figure 7. Effect of Rd on h gð Þ, when k ¼ 0:2,M ¼ 0:3, We ¼ 0:5,/1 ¼ /2 ¼ /3 ¼ 0:1, Pr ¼ 21, Ec ¼ 0:1, and Q ¼ 0:8:

Figure 6. Effect of M on h gð Þ, when k ¼ 0:2, We ¼ 0:5,/1 ¼ /2 ¼ /3 ¼ 0:1, Pr ¼ 21, Ec ¼ 0:1, Q ¼ 0:8, and Rd ¼ 0:1:
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Ec number first showed up as a coefficient of the viscous dissipation term, suggesting that this is
the mechanism through which it first arose. The rate of work done, or viscous dissipation, increases
with large values of Ec: Work done is also put to use in the motion of fluid particles, and it helps
to increase the internal energy of fluid particles. However, particle temperatures were rising at the
same time. To calculate the kinetic energy of moving Al2O3 þMgO�Williamson fluid, Al2O3 �
Williamson fluid, and Al2O3 þMgOþ TiO2 �Williamson fluid the parameter Ec is used. The Ec
is used to communicate enthalpy fluctuations across boundary layers associated with thermal
energy, and it is largely used to analyze the rate of heat dissipation in the motion of fluid particles.
The effect of a rising Weissenberg number on the temperature is seen in Figure 9. A temperature

Figure 8. Effect of Ec on h gð Þ, when k ¼ 0:2,M ¼ 0:3, We ¼ 0:5,/1 ¼ /2 ¼ /3 ¼ 0:1, Pr ¼ 21, Q ¼ 0:8 and Rd ¼ 0:1:

Figure 9. Effect of Rd on h gð Þ, when ¼ 0:2,M ¼ 0:3, k ¼ 0:2,/1 ¼ /2 ¼ /3 ¼ 0:1, Pr ¼ 21, Ec ¼ 0:1, and Q ¼ 0:8:
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rise is indicated by an increase in the Weissenberg number. The duration of relaxation divided by
the time of retardation yields the Weissenberg number. As the retardation time decreases, the
Weissenberg number increases, and the thermal boundary layer extends more in Al2O3 þMgOþ
TiO2 �Williamson fluid than in Al2O3 þMgO�Williamson fluid or Al2O3 �Williamson fluid:

5. Conclusion

In this investigation, we examined the Williamson fluid model with magnetic, and thermal radi-
ation impacts on nanofluid, hybrid nanofluid, and ternary hybrid nanofluid flow embedded in
porous media over a linear stretching surface. The resultant set of nondimensional equations is
solved using a local non-similarity (LNS) strategy up to the second truncation level through the
bvp4c MATLAB tool. Additionally, the effects of several developing factors have been fully cov-
ered. The followings are the primary findings of the current investigation:

� For Al2O3 þMgOþ TiO2 �Williamson fluid, Al2O3 þMgO�Williamson fluid and Al2O3 �
Williamson fluid flows, k has a significant effect on the momentum boundary layer’s thickness.
As the value of k increased and the velocity profile decreased, the thermal boundary layer
became more effective. Additionally, this influence skin friction and the rate of heat transmis-
sion. With a rise in temperature, heat conduction is accelerated and skin friction is reduced.

� The Weissenberg number plays a significant role in determining the momentum boundary layer
thickness for Al2O3 þMgOþ TiO2 �Williamson fluid, Al2O3 þMgO�Williamson fluid, and
Al2O3 �Williamson fluid flows. The thickness of the boundary layer for a Williamson fluid
exhibits notable differences in comparison to that of a Newtonian fluid. The boundary layer thick-
ness of Williamson fluid exhibits an intriguing contrast in comparison to that of Newtonian fluid.

� Simulated flows of Al2O3 þMgOþ TiO2 �Williamson fluid show a larger Lorentz force com-
pared to those of Al2O3 þMgO�Williamson fluid and Al2O3 þ�Williamson fluid:
Therefore, the flow of Al2O3 þMgOþ TiO2 �Williamson fluid has a thinner momentum
boundary layer than that of Al2O3 þMgO�Williamson fluid and Al2O3 �Williamson fluid,
respectively. As a result, the Al2O3 þMgOþ TiO2 �Williamson fluid causes a smaller change
in magnetic flux owing to distortion of magnetic lines than the Al2O3 þMgO�
Williamson fluid and the Al2O3 �Williamson fluid:

� It is noticed that the coefficient of convective heat transfer depreciates for the rising values of
Eckert number have significant effects on Al2O3 �Williamson fluid, and Al2O3 þMgO�
Williamson fluid has compared to that of Al2O3 þMgOþ TiO3 �Williamson fluid:

Numerical simulations reveal that the skin friction associated with Al2O3 þMgOþ TiO2 �
Williamson fluid is higher than that of Al2O3 þMgO�Williamson fluid and Al2O3 þ
Williamson fluid with the same composition. Additionally, the drag force is found to increase as
the values of M and We increase, while it decreases with the increase in k:
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