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The bilayer microbeam can be assigned with two different thermal expansion coefficients, so that the microbeam
can be used as a thermal actuator, which can provide bending with thermal loading. As a microdevice, the size
effect plays an important role. In addition, the length height ratio L/h of the microbeam has to be smaller than
20, to provide sufficient support. With this ratio, the shear effect of the beam can not be ignored. In this work,
considering both the size and shear effects, we modified the couple stress and Timoshenko beam theories to study
the thermal bending of bilayer microbeams. By using the principle of minimum potential energy, we derived the
higher-order governing equations under thermal load. Then with specified boundary conditions, we adopted the
differential quadrature method to solve the governing equations. Finally, using a bilayer microbeam made of
aluminum and polysilicon as an example, we verified effects of transverse shear and beam size. Results show that
the size effect on beam stiffness is significant when the beam height is on the order of equivalent length scale
(leg)- Moreover, considering the transverse shear effect indicates that the lateral deflection of the Timoshenko
beam depends on the ratio L/h: as L/h increases, the tip deflection increases and converges to the classical so-
lution. Specifically, for a Timoshenko beam with h/leq = 15, the change in deflection can reach 44.6% when L/h

is increased from 5 to 25.

1. Introduction

Due to high efficiency and compact integration, micro-/nanobeams
have been widely used in semiconducting capacitors (Cheng et al.,
2013), thermal/electrical sensors, and actuators (Wang et al., 2016;
LeeladharRaturi et al., 2017; Cheng and Hu, 2021). With a quick
response, we can apply thermal loading (Wang et al., 2020) to control
these advanced devices. Single microbeams (Sellinger et al., 2010) have
been widely used as key components of thermal actuators. Moreover,
bilayer beams (Chen et al., 2011a; Sachyani et al., 2017) have been
assembled as thermal actuators to achieve unique motions. In other
words, the bilayer beam can control the motion of the thermal actuator
more accurately and efficiently. Meanwhile, the nonlinear vibration
behavior of microscale and marcoscale bilayer structures has also
attracted the attention of researchers. Hao et al. (Hao and Ke, 2022; Hao
et al., 2023) proposed analytical models for bilayer beams and unsym-
metric double-layer lattice truss core sandwich beams, and found some

interesting phenomenons of softening-spring nonlinearity due to the
bending-extension coupling effect. For micro-scale bilayer beams and
structures, it is necessary to consider the following factors: geometries,
mechanical/thermal properties, and microstructures.

Length/height ratio (L/h) is an important geometric parameter in the
micro-beam system, because for a short beam with a small value of L/h,
the shear effect of the beam can be enormous. As stated in the references
(Wang, 2013; Kim et al., 2016), the shear effect can not be ignored when
the length/height ratio (L/h) is less than 20. For instance, Salvetat’s
bending experiment shows that the shear effect on single-walled carbon
nanotube rope becomes important when the length/radius ratio is small
(Salvetat et al., 1999). Wang’s simulation results indicated that the ef-
fects of shear deformation and rotary inertia need to be considered for
predicting the performance of short piezoelectric beams (L/h < 20)
(Wang, 2013). In the micro-electromechanical systems (MEMS), many
short micro-/nanoscale beams are designed within smaller ratios L/h to
provide high stiffness, for example as motion stages (Kim et al., 2016;
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Potekhina and Wang, 2019). On another hand, an important factor
affecting the deformation behavior of micro-/nanoscale beams is the
size effect. The size effect can not be ignored (Stolken and Evans, 1998;
Lam et al., 2003) as the beam approaches the size of the material’s
microstructure, which is usually on the order of microns or sub-microns.
Ignoring the size effect, we may not only underestimate static stiffness
(Akgoz and Civalek, 2013) and buckling load (Akgoz and Civalek,
2011), but also misinterpret nonlinear resonance frequencies and
maximum amplitude (Dai et al., 2015). The size effect can not be
explained by classical elastic beam theory due to the lack of material
length scale parameters; while the intrinsic length parameters can be
taken into account by higher-order theoretical models such as the strain
gradient family, microcontinuum, and nonlocal elasticity theories (Thai
et al., 2017). The strain gradient family includes couple stress theory,
strain gradient theory, modified couple stress theory, and modified
strain gradient theory. The couple stress theory (Toupin, 1962; Mindlin
and Tiersten, 1962) requires two material length scale parameters
because only the gradient of the rotation vector is considered. The
modified couple stress theory proposed by Yang et al. (2002) reduces the
number of length scale parameters from two to one by introducing an
equilibrium condition of moments of couples to enforce the couple stress
tensor to be symmetric.

The size effect of the microbeam can be considered by using the
couple stress theory, based on which a large number of beam models
have been proposed. To study the bending stiffness, Park and Gao (2006)
first established a Euler-Bernoulli beam theory (EBT) model using the
modified couple stress theory and the principle of minimum potential
energy, and found the bending stiffness increases as the beam thickness
decreases. However, the transverse shear deformation is ignored in the
EBT; this fact may lead to imprecise estimates for a thick beam, where
the transverse shear deformation is considerable. By taking into account
shear deformation and rotational bending effects (Salvetat et al., 1999),
some microscale Timoshenko beam theory (TBT) models have been
developed (Wang et al., 2006, 2010). For example, Ma et al. (2008)
developed a modified couple stress TBT model to study static bending
and found that Poisson’s effect is of great significance to beam deflection
and rotation. Asghari et al. (2011) obtained the general form of the
boundary conditions, as well as the closed-form analytical solutions of
axial deformation, bending deflection, and cross-sectional rotation angle
of a Timoshenko beam. Subsequently, the applications of the modified
couple stress EBT and TBT models were extended to the bilayer,
three-layered (Awrejcewicz et al., 2017), and laminated composite
(Wanji et al., 2012; Chen et al., 2011b; Chen and Li, 2013; Mohammad
Abadi and Daneshmehr, 2014) microbeams. Besides, the modified
couple stress EBT model (Krysko et al., 2017; Xia et al., 2010; Wang
et al., 2015) and TBT model (Asghari et al., 2010a) were extended to
nonlinear bending by considering geometric and physical nonlinearities.
Furthermore, the thermal and electrostatic effects on static bending
were considered. For instance, the bending behavior of single layer
(Wang et al., 2015) and bilayer (Rahaeifard, 2016) Euler-Bernoulli mi-
crobeams due to temperature rise was investigated. The static pull-in
behavior of a single layer (Kong, 2013; Rahaeifard et al., 2011) and
bilayer (Mojahedi and Rahaeifard, 2015) Euler-Bernoulli microbeams
under static electricity action was analyzed. The results show that the
size dependence has an important influence on the bending deformation
of beams with thickness in the order of equivalent length scale.

Moreover, the dynamic behaviors of microbeams are also size
dependent, and several studies have investigated this issue based on the
modified couple stress theory. Kong et al. (2008) developed a dynamic
EBT model using Hamilton’s principle and found the size effect on the
beam’s natural frequency under different boundary conditions. Santos
and Reddy (Dos Santos and Reddy, 2012) incorporated Poisson’s effect
and proposed a dynamic TBT model. Liu et al. (Li et al., 2019a, 2019b)
established a modified couple stress-based Euler-Bernoulli beam model
incorporating geometric and inertial nonlinearities, and demonstrated
the size-dependency in the nonlinear regime. Besides, the thermal and
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electrostatic effects on free vibration were considered (Ghadiri et al.,
2016; Taati et al., 2014; Ke et al., 2011; Rahaeifard et al., 2015). For
instance, Ross et al. (2005) studied the vibrations of thermally activated
bilayer microbeams with both ends fixed, and found the
non-monotonicity of vibration frequency versus beam temperature.
Ghadiri et al. (2016) proposed the modified couple stress EBT and TBT
thermally induced vibration models of composite laminated micro-
beams, and indicated that the existence of couple stress increased the
natural frequency of the beam. Ke et al. (Ke and Wang, 2012; Ke et al.,
2012a) combined Timoshenko beam theory and presented the
size-dependent nonlinear vibration analysis of piezoelectric nanobeams.
Also, they developed a Mindlin microplate model based on the modified
couple stress theory for the free vibration analysis of microplates (Ke
et al., 2012b). By considering an internal material length, they discov-
ered that the size effect is significant when the thickness of the micro-
plate approaches the material length scale.

Although a large number of high-order continuum theories have
been proposed to study the static and dynamic behaviors of the micro-/
nanobeams, there are few studies on bilayer microbeams under thermal
loads. Moreover, microbeams with L/h smaller than 20 often appear in
MEMS-based actuators or stages (Zhou et al., 2020). For these beams,
shear effects cannot be neglected (Wang, 2013; Salvetat et al., 1999).
The main purpose of this work is to investigate the size and shear effects
on the thermal bending of bilayer microbeams based on the TBT and
modified couple stress theories. The rest of the paper is organized as
follows. In Section 2, the modified couple stress theory was reviewed for
clarity. In Section 3, considering the modified couple stress, we derived
the strain energy of the bilayer Timoshenko beam theory. By using the
principle of minimum potential energy, we obtained the higher-order
governing equations and boundary conditions considering the effect of
internal material length. In Section 4, taking the bilayer beam made of
aluminum and polysilicon as an example, we presented the effect of
beam size on the deflection. Finally, the conclusions were summarized in
Section 5.

2. Modified couple stress theory

For an isotropic material, the components of the strain and stress
tensors can be expressed as

1
8,-/-:5(0,-uj+0ju[) )
oy =2tr(e;)5; + 2puey @

where y; and u; are displacement components, in which i, j = x, y, z for
Cartesian coordinate, and 4 and p are Lame’s constants, which can be
obtained from

Ev E

o= 20+

3

where E is Young’s modulus and v is Poisson’s ratio. According to the
modified couple stress theory (Yang et al., 2002), the symmetric cur-
vature tensor and deviatoric part of the couple stress tensor can be
expressed as

1
= 2ul i )

where rotation vector 6; is related to displacement vector ux, which has a
value of

1
9,- :iEijk(?/uk (6)

and [ denotes the material length scale parameter, which can be
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Fig. 1. Bilayer beam configuration and coordinate system.

determined from torsion tests (Yang et al., 2002) of slim cylinders with
different diameters, bending (Park and Gao, 2006), and vibration (Li
et al., 2018) tests of thin beams with different thicknesses.

3. Modeling bilayer beam based on the modified couple stress
theory

Consider a bilayer microbeam with dimensions of length L, width b,
and height h, as shown in Fig. 1. The microbeam is made of two different
materials (#1 and #2) with heights of h; and hy noted that hy+hy = h.
The beam is initially in a stress-free state and is subjected to a uniform
temperature rise /\T. Moreover, the position of the beam neutral axis 2,
can be obtained from the equilibrium equation along the x-axis as
/, ,0xxdA = 0, where o, is the axial normal stress component and A is the
cross-sectional area of the beam (Mojahedi and Rahaeifard, 2015;
Asghari et al., 2010b).

3.1. Assumptions. The present study is carried out based on the following
assumptions

e The bilayer beam bends around a single axis (neutral axis), and un-
dergoes axial and bending deformations.

e Deformation occurs in the range of linear elasticity.

e No slippage happens at the interface of the two layers.

e Constant material properties and uniform temperature throughout
each layer.

3.2. Basic equations. According to TBT, the displacement components
along the x, y, and z directions can be expressed as®”

ue(x,y,2) = u(x) — zp(x)
u)'(xvyv Z) =0 @
uy(x,y,z) = w(x)

where u(x) and w(x) represent the axial displacement and the lateral
deflection of the point (x, 0, 0) on the neutral axis (x-axis), and ¢(x) is
the cross-sectional rotation angle to the z-axis (Fig. 1). For thermal
bending, the axial displacement u(x) consists of two parts: the thermal
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part u!(x) and the mechanical part u™(x), i.e., u(x) = w00 +u™(x). Since
the axial mechanical displacement can be neglected, i.e., u™(x) = 0, u(x)
= u'(x). The parameter z represents the distance of a point from the
neutral axis. After substituting Eq. (7) into Eq. (1), the non-zero strain
components can be obtained as

o' O
(&)1 = o Cox

1 ow
()12 =3 —f/’+a

where the subscript 1/2 (i.e., 1 or 2) denotes the value of the corre-
sponding parameter in layer 1 or 2. When the temperature changes, the
axial strain (exx);,, consists of two parts: the thermal part (&)1, =

(8

a1/2AT, and the mechanical part as follows

- ou' Oy
(SXX)I/ZZE_Za_aI/zAT 9
where a is the thermal expansion coefficient and AT is the temperature
rise. Furthermore, substituting Egs. (8) and (9) into Eq. (2) give non-zero
stress components as

o' O
(Gu)l/z = (/11/2 +2,u]/2) (a — Za — al/zAT)

ou' %))

(Uyy)l/z = (Uz:>1/2 = j~1/2 (g —2 ox 10)

ow
(G.vz)l/z =26 = i)y ( - +a>

Substituting Eq. (7) into Egs. (4)-(6) gives non-zero rotation, sym-
metric curvature, and deviatoric part of couple stress components as

0)=-3(e+3)

dp w

1
(ZX,")I/Z = *Z (a%’ﬁ) (11)

1 dp Fw
(M) 1) = =5 2h/2° (a + ﬁ)

Additionally, the normal bending moment M, couple moment Y, and
transverse shear force Q can be expressed as follows

M(x) = /A 0,,ZdA

= 2Dy~ ) =)+ Dl ~2)' — (h-2))]b

Ox

3 _ _
+=[Dihyoy (hy — 2Z.) + Dbyt (B + hy — 2Z.)|bAT
2[ thay (hy Ze) Loty ( 1 Ze)] a2)

00) = [[owdh = bl + ph) ( —g+ aw)
A

ox
1 dp w
Y(x)= [ mydA = —=b(u,h P B ==+ =%
(x) /Am> ) (ﬂ11|+/42 22)(0x+0x2)

where the coefficients related to Lame’s constants are recorded as D; =
= (&1 +21,) /3, D2 = — (2 + 25) /3.

Basing on Egs. 8-11, the strain energy II; of a deformed bilayer
Timoshenko beam in isotropic linear elastic materials can be obtained as
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13)
Satisfying the principle of minimum potential energy yields (Maj-
doub et al., 2008)
Sl =0 a4

Substituting Eq. (13) into Eq. (14) and letting the coefficients of éu,
éw, and S¢ be equal to zero (the detail of the derivation is shown in
Appendix A), gives the higher-order governing equation of the bilayer
beam, as given by Egs. 15-17.

) ow Po Fw
KW*Z(&*‘”)*K (ﬁ*?) 0 1)
dp Fw Po  Otw _
K2<a‘ﬁ) K (a s o) =0 e
ou
52 =0 17)

where Kj, Ko, and K3 are the equivalent first, second, and third bending
stiffnesses defined as

= ((/1+2ﬂ)/z2dA> =E ~ @ —m))Dib+((h—2) —(h ~Z.)’)D:b
A e
Ky =(uA), =b(u b +pyh)
AR\ b
ko= (155) =Gt +piet)
18)

which reflects the ability of a Timoshenko microbeam to resist bending
deformation. Similar to the reference (Mojahedi and Rahaeifard, 2015),
the equivalent shear modulus and equivalent length scale parameter of
the bilayer beam can be defined as p,, = (4171 +pxh)/h and g =

VB + ughal2)/nha + pisha).

As shown in Egs. 15-18, the governing equations of the Timoshenko
bilayer beam contain additional material constants [; and . In this way,
the microstructural features have been coupled into the equations,
which can reflect the size effect. This will be further illustrated through
numerical results in Section 4. When the upper and lower layers are
made of the same material, these equivalent bending stiffnesses in Eq.
(18) will be reduced to ones of a single-layer beam (Ma et al., 2008).

Substituting Eq. (13) into Eq. (14) also gives the boundary conditions
at the free end (x = L) as shown in Egs. 19-22.

M(L)=0 (19)
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1ov(L)
QL) 45— ==0 (20)
Y(L)=0 1)
ou'(L)

(2Dyhy + 2Dy hy) =2(Dyhya; + Dyhyay) AT (22)

ox
where M(L), Y(L), and Q(L) are the normal bending moment, couple
moment, and transverse shear force at the free end of the beam (x = L).
Also, the boundary conditions at the free end (x = 0) are

(0)=0 (23)

w(0) =0 (24)

»(0)=0 (25)

wO) _, (26)
ox

Introducing the nondimensional geometric dimensions and material
property parameters defined by

X wh _, u hy ~ hy ~ b h . Z
=2 = U =—VY=p,hh=—h="b=-n=—7.=-—
C=pV et pYEeh == b ==
~ ~ ~ D, ~ D, ~ 1 ~ !
m=a, = p =D, =2 =1 =2

Hy I D, D, h

(27)

and substituting Eq. (27) into Eq. (18), the first, second, and third
dimensionless bending stiffnesses can be obtained as

R = =0z~ G =) +bDs((1-2) = (h —2.)
'S DL (@ =@ —m)) 2((1=2) = (I =2.)°)
- Ky o~~~
K, = hip, b(H hi + Hyha) (28)
~ K3 Z A2 A
= i, :Z(/"lhlll + Hyha1,)

Subscribing Egs. 27 and 28 into Egs. 15-17, the governing equations
can be expressed in a non-dimensional form as

o 10w LW a'w
Kz(i_” a@)““( ac”u”aﬁ)*o @

2 a?/\

~ oY 1 ow = ,0°F
KID]”Z()_{Z_KZMI(IZZ()_?_W) —K3ﬂ1( o — 127 oc ):0 (30)

azil\r
o

For bilayer beams having a height much greater than the length scale
parameters (i.e., h> 13, I), these relationships can be reduced to those of
the classical TBT. By using Eq. (27) in Egs. 19-22, the associated
nondimensional boundary conditions at the free end ({ = 1) are obtained
as

pRuTo S (22 )+ Defoas(22. - 2~ B)PAT (32)
s 1 ow(1) LP¥(1) a%m))

Kz( ) +12, SO )J@(q e (33)
(1) 1aw()

a noor ©9
(;l\] +52h2) du = (21(11 +522202)AT (35)
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Table 1 temperature rises (AT = 25-100 °C). Herein, by combining the defini-

Mechanical properties of two layers (Rahaeifard, 2016). tion of the equivalent length scale parameter in Section 3 with the

Upper layer Lower layer material parameters in Table 1, we can obtain l,q = 0.30 pm. As a

(Polysilicon) (Aluminum) comparison, the classical dimensionless deflection of a bilayer cantilever

Elastic modulus (GPa) 150.0 70.0 with the same length L and h;/h was also given in Fig. 2(a). Fig. 2(a)

Shear modulus (GPa) 60.98 26.3 shows a significant size effect, i.e., the smaller the beam height, the

Length scale parameter (ym) 0.27 0.35 smaller the lateral deflection of the beam, reflecting the greater the
Thermal expansion coefficient 4.7 x 10°° 2.55 x 107°

beam stiffness. As an example, for a beam with h/leq = 2, the equivalent
stiffness is 2.0 times that of a classical one. While for h/leq = 10, the
difference between the equivalent stiffness and the classical stiffness is

Regarding Eq. (27) and Egs. 23-26, the dimensionless boundary reduced to 4.3%. In addition, we found that the size dependency on the
conditions at the clamped end ({ = 0) can be expressed as beam lateral deflection is negligible for h/l.q>20. This indicates that the
solution of the present model is reducible to the classical model, which

(9]

'(0)=0 (36) verifies the correctness of the present model. Fig. 2(b) shows that the

. dimensionless lateral deflection increases almost linearly with the in-

w(0)=0 (7 crease in temperature rise. This phenomenon is also consistent with the

w(0) =0 38) classical thermal bending of bilayer beams. Without loss of generality,
the temperature rise was set to 50 °C in all subsequent studies.

aw(0) Fig. 3 displays the size-dependency of the dimensionless tip deflec-

TC:O (39) tion of the microbeam for h;/h = 0.25, 0.5, and 0.75, which are also

Considering the governing equation Eq. (31) with boundary condi-
tions Egs. (35) and (36), the dimensionless axial deformation of the "
bilayer beam can be obtained as =10

(ﬁlal + lel’.l\zaz)AT

— (40) 6.0
(hy + Dahy)

()=

Afterward, to obtain the deformed shape of the bilayer beam, the
differential quadrature method (Liang et al., 2015) is employed to solve
the governing Egs. (29) and (30) together with the boundary conditions
specified in Egs. (32)—(34) and (37))-(39). Through numerical solutions,
w(¢) and ¥(¢) can be determined (details of the solution are shown in
Appendix B).

dimensionness wy,
N
=
1

4. Results and discussions

Consider a thermal bilayer actuator with an upper layer made of

polysilicon and a lower layer made of aluminum. Their material prop- 204
erty parameters (Rahaeifard, 2016), including elastic modulus, shear T T T
modulus, length scale parameters, and thermal expansion coefficients 5 10 15 20
are listed in Table 1. hll
Fig. 2 shows the dimensionless lateral deflection of a 5-pm-long N
bilayer cantilever with constant hi/h = 0.5, different ratios of beam Fig. 3. Dimensionless tip deflection of the beam versus the ratio of beam height

height to equivalent length scale parameter (h/lq = 2-10), and different to equivalent length scale parameter (L = 5 pum, AT = 50 °C).

(@) (b)
10 <10 10.0
6.0 1 “10° —0— AT=25°C
—8—h/l =2 e " |[Fo—aT=50C
—e—h/l =3 8.0 1 3 - —— AT=75°C
q g . —7— AT=100°C ¢
2 —&—h/l,;=5 —Present model 3 S .
g 4.0 —7— hll =10 g 604 e
$ —o— Wil ;=20 5 W
g —— Classical model g 00
g g 4.0 ! lcmpcra(::l'c variation (:8')
2.0 =
2.0
0.0 et 0.0 roeres
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x/L x/L

Fig. 2. Dimensionless lateral deflection of the bilayer beam. (a) L = 5 pm, hy/h = 0.5, AT = 50 °C. (b) L = 5 pm, hy/h = 0.5, h/lq = 3.

5
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Fig. 4. Dimensionless tip deflection of the beam versus length/height ratio (AT
=50 °C, hy/h = 0.5, h/leq = 3, 4, 6, ). Real lines represent the results of the
Timoshenko beam and the dotted lines represent ones of the Euler-
Bernoulli beam.

x107
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0.0 0.2 04 0.6 0.8 1.0
hy/h

Fig. 5. Relationship between dimensionless tip deflection and height ratio (AT
=50°C,L =5 pm).

compared with their classical theoretical solutions. When 0 < h/l.q<5,
as the beam height decreases, the tip deflection of the microbeam
sharply decreases, and the gap between the modified couple stress and
classical theoretical solutions increases. This may be because the size
effect plays an important role when the beam height is small, resulting in
a significant increase in the equivalent bending stiffness of the beam.
When 5 < h/l,q<15, as the beam height increases, the tip deflection of
the microbeam slowly increases and the equivalent bending stiffness
slowly decreases, which indicates that the size effect is not outstanding.
When h/l.>15, the tip deflection of the beam tends to a stable value,
which is the classical theoretical solution. Thus, the size effect can be
ignored.

Fig. 4 presents the dimensionless lateral deflection of the beam tip
versus length/height ratio (L/h) at hi/h = 0.5 and h/leq = 3, 4, 6, ©
(classical beams). For classical Timoshenko and Euler-Bernoulli beams,
their dimensionless tip deflections are independent of L/h. For beams
with the height of orders of the equivalent length scale parameter, the
lateral deflections of both Timoshenko and Euler-Bernoulli beams are
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suppressed. It is worth noting that the dimensionless tip deflection of the
Euler-Bernoulli beam always does not change with the variation of L/h,
while that of the Timoshenko beam increases as L/h increases. E.g., for a
Timoshenko beam with h/leq = 3, when L/h increases from 5 to 25, the
deflection difference can reach 44.6%. Specifically, when L/h is small
(corresponding to the short and stubby beam), the dimensionless tip
deflection of the Timoshenko beam approaches that of the Euler-
Bernoulli beam. When L/h is moderate, the dimensionless tip deflec-
tion of Timoshenko beams increases as L/h increases, and the deflection
difference from the Euler-Bernoulli beam also increases. When L/h is
large, the dimensionless tip deflection of Timoshenko beams converges
to the classical Timoshenko solutions. The reason is that the size effect
starts to work when h/l.q<15 (Fig. 3), which increases the equivalent
bending stiffness of the beam, thus, decreases the dimensionless tip
deflection of Euler-Bernoulli beams. However, for the Timoshenko
beam, the size effect also increases the equivalent shear stiffness, which
in turn promotes the shear deformation of the beam. Under the joint
action of these two deformation mechanisms, the bilayer Timoshenko
beam exhibits the characteristic that the dimensionless tip deflection is
related to L/h.

Fig. 3 shows that the tip deflection of the beam is affected by the
height ratio hy/h. Thus, the relationship between the tip deflection and
the height ratio was studied here, as shown in Fig. 5. The results show
that the maximum deflection always occurred at h;/h ~ 0.55-0.6,
regardless of whether the size effect is considered or not. We infer that
this phenomenon depends only on the differences in material and
structural parameters between the upper and lower layers, i.e., the
elasticity modulus and thickness. In addition, the equivalent stiffness of
the beam increases after considering the size effects, reducing the
amplitude of the maximum deflection.

5. Conclusions

This paper investigated the size-dependency of the static bending of a
bilayer microbeam under thermal load. With the modified couple stress
and Timoshenko beam theories, the higher-order governing equations
and boundary conditions are obtained, and then solved by the differ-
ential quadrature method. The main conclusions are as follows.

(1) The analysis of a bilayer microbeam made of aluminum and
polysilicon shows that the classical theory underestimates the
lateral deflection of the microbeam, and the size effect on beam
stiffness is significant when the beam height is on orders of the
equivalent length scale parameter. For instance, for a beam with
h/leq = 2, the equivalent stiffness is 2.0 times that of a classical
one.
Unlike the Euler-Bernoulli beam, the lateral deflection of the
Timoshenko beam under temperature rise is affected by the L/h.
When L/h is small, the dimensionless tip deflection Wy, of the
Timoshenko beam approaches that of the Euler-Bernoulli beam.
When L/h is moderate, Wy, of Timoshenko beam increases as L/h
increases, and the deflection difference from the Euler-Bernoulli
beam also increases. When L/h is large, wgp of Timoshenko
beam converges to the classical Timoshenko solution.
(3) The microbeam deflection was affected by the height ratio h;/h,
and the maximum deflection always occurred at a height ratio of
0.55-0.6.

(2

—
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For this static system, the total strain energy is shown in Eq. (13), and the kinetic energy and external force work is equal to zero. Considering the

principle of minimum potential energy:
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Letting the coefficients of su, sw, and 5¢ be equal to zero, one can obtain the governing equations as:

dp 0 me + uhl (P o
(py 1y +ﬂ2h2)( ?_ W) +w (_¢+_W> =0

ox  0x?

2{(203—(207/11)3)le+((h720) — (i —Z))Dsb— b(ﬂ1h11f+u2h21§) %

4

x> ox*

ow\ b Fw
+2b(u 1y + poha) <§0 *a) -3 (B + ) =—=5=0

2

ou
2(Dihib+ Dahab) 3 5

=0

ox3

(A.2)

(A.3)

(A4

Considering the beam cantilever structure (with one end fixed and the other end free), one can obtain boundary conditions as follow:
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u'(0)=0 (A9

w(0)=0 (A.10)
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Appendix B. Solution of governing equations and boundary conditions

The differential quadrature method is taken to solve the governing equations Egs. (29) and (30) together with the boundary conditions specified in
Egs. (32)-(34) and (37)—(39) to obtain w(¢) and ¥(¢). The dimensionless beam can be discretized as

2

1 i —
== (lfcosnl(\; P) (i=1,2..N) (B.1)
To solve the complex Egs. (29) and (30), the dimensionless w(¢) and ¥({) can be expressed as a linear combination of a complete set of linearly

independent basis functions

= (B.2)

N
where the basis function can be Lagrange interpolation polynomials as I;({;) = H u Thus, the higher derivatives of w({) and ¥(¢) can be
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and the higher derivatives of the basis function are
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Moreover, governing equations from Egs. (29) and (30) and boundary conditions from Egs. (32)-(34) and (37)-(39) can be discretized as



X. Yeet al

(sz,J + ']21?3C,])\P] + (’731?3Dij —-n I?zB,])WJ =0
(7" K\D\By; + pu, KoLy =y K3By) W) — (i KoAy + 1, K5 Cy) Wy = 0
atg =gy =1=N),
-~ 3 ~ N ~ ~ ~ =" ~ ~ i~
}]KlAij‘Ilj = 5 [hl(ll (ZZC - h]) + Dzhzaz(ZZC - 2h1 - hZ)]bAT
—(7]21?3317 + I?zLU)‘P] + (ﬂI?zAU - 7]31?3C,]){4;j =0

A¥; +nB;w; =0

atf{=¢=0i=1),
W) =0

Y(¢) =

Ayw; =0

European Journal of Mechanics / A Solids 100 (2023) 105029

(B.5)

To sum up, w; and ¥; (j = 1,2 ... N) can be obtained to calculate the static deflection.
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