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a b s t r a c t

Phononic crystal (PnC) is a kind of periodic distribution structure with elastic constants and densities,
which prevents the propagation of waves in the bandgap by the interaction of internal microstructures.
A slow convergence process and topological ill-conditioned structure cannot fail to have noticed
during the fine grid optimization process of PnC. In this paper, a multistage grid-pixel refinement
method (MGPRM) is proposed to quickly obtain the high-quality PnC topology based on the fast plane
wave expansion method. Combined with the MGPRM and genetic algorithm, the bandgap of PnC
is used to optimize. Results show that the MGPRM combined with the optimization algorithm can
provide high-quality original configurations for the tunable parameterized microstructures. Compared
with invariant grids of different densities and traditional refinement methods, the MGPRM has
higher quality and a faster convergence rate for the process of optimization. Using the MGPRM for
multi-objective optimization, the highly nonlinear correspondence between the characteristic bandgap
and the topological morphology is obtained. In addition, the dynamic response of the finite PnC
microstructure plate composed of the optimized topology and the calculated transmission spectrum
are in perfect agreement with the bandgap of PnC. The MGPRM is further applied to the structure
design and performance optimization of PnC.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Phononic crystal (PnC) is a kind of artificially periodic material
r structural material that may have bandgaps, which make the
ave within bandgaps decay rapidly and prevent wave propaga-
ion. Based on the characteristics of bandgaps, PnC can control
coustic and elastic waves and has broad application prospects,
uch as vibration isolation [1], environmental noise control [2],
nd directional wave propagation [3].
Analyzing the band structure of PnC plays an important role

n quantitatively studying PnC performance. At present, there are
any methods to calculate the band structure of PnC, among
hich the mainstream methods include transfer matrix method
4], finite element method [5], finite difference time domain
ethod [6], and plane wave expansion method [7]. Among them,

he plane wave expansion method (PWEM) is one of the most
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Y. Sun).
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352-4316/© 2023 Elsevier Ltd. All rights reserved.
commonly used methods to calculate the band structure. How-
ever, the traditional PWEM can only study PnC with regular
scatterers (square, round). Later, the fast plane wave expansion
method (FPWEM) improves the shortcomings of the traditional
PWEM and can calculate the band structure of PnC with arbi-
trarily distributed pixel scatterers, which makes it more widely
used. Liu et al. [8] adopted the FPWEM to study the bandgap of
two-dimensional (2D) steel-epoxy resin PnC in in-plane mode,
out-of-plane mode and mixed mode, and the results showed that
the FPWEM can effectively calculate the band structure of PnC in
the three modes. Xie et al. [9] investigated the time consumed by
various methods to calculate the band structure of PnC, and the
results showed that the FPWEM was faster in bandgap research
than the finite element method. Later in 2020, Han et al. [10]
further extended the FPWEM to 2D three-phase PnC and studied
the influence of volume fraction and symmetry on the bandgap.

Since the bandgap is the most significant feature of PnC and
the primary indicator affecting its performance, the optimization
of the bandgap has attracted widespread attention. Yi et al. [11]
comprehensively summarized the recent work on the topological

optimization design of PnC and proposed future directions and

https://doi.org/10.1016/j.eml.2023.102036
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hallenges. Topology optimization methods of PnC have been
ivided into gradient [12,13] optimization methods and non-
radient optimization methods [14,15] according to whether gra-
ient information is needed in the optimization process. Among
hem, the non-gradient algorithm has been widely used in many
ields because its optimization results show that it is not af-
ected by the initial configuration and has the potential to per-
orm global searches. In the field of metamaterials, genetic al-
orithms have been widely used due to their strong versatility
nd achieved excellent results [16]. For PnC, Dong et al. [17] used
he finite element method and genetic algorithm to optimize the
andgap of the symmetrical 2D solid/solid PnC under constrained
nd unconstrained conditions, respectively. Later, Dong et al. [18]
ptimized the relative bandgap of 2D asymmetric PnC based
n the multi-elite genetic algorithm. These results suggest that
enetic algorithms are both feasible and efficient to optimize PnC.
The work mentioned above, however, is related to single-

bjective optimization, whereas PnC is frequently required to
ave a range of features in engineering applications, including
ide bandgap [19], multi-bandgap [20], lightweight [21,22], etc.
single-objective optimization algorithm cannot simultaneously

atisfy the design criteria of many objectives, so it is necessary
o introduce multi-objective topology optimization in PnC. The
ulti-objective optimization algorithm can obtain the optimal
olutions by making each objective as optimal as possible under
he contradictory optimization objectives. These optimal solu-
ions give engineers more options to solve practical application
roblems better. The multi-objective topology optimization has
een successfully applied to PnC optimization, and a large num-
er of excellent results have been achieved. Hussein et al. [19]
ombined the transfer matrix method and multi-objective ge-
etic algorithm to carry out a multi-objective optimization design
f one-dimensional (1D) two-phase PnC, in which the design
ariables are the number of layers of material in the unit cell
nd the thickness of each layer. Dong et al. [20,21] performed
ulti-objective topological optimization based on the nondom-

nated sorting genetic algorithm (NSGA-II) for 2D symmetric and
ow-symmetric porous PnC with the optimization objectives of
aximizing the bandgap and minimizing the mass and analyzed

he mechanism of the optimized bandgap. Hedayatrasa et al. [22]
tudied the topology optimization of 1D PnC plates by combining
he finite element method and the multi-objective genetic algo-
ithm and investigated the effect of different volume fractions and
spect ratios on the bandgap. Subsequently, Hedayatrasaet al. [23,
4] conducted a multi-objective optimization to study porous
unable PnC plates under equibiaxial stretch and PnC plates con-
idering in-plane equivalent stiffness. Xu et al. [25] used the
PWEM to study the optimization design of 2D three-phase PnC
or in-plane wave mode, and the study showed that the multi-
bjective topology optimization under different multi-objective
ombinations had good optimization results.
In general, PnC with greater performance is more likely to be

ound when it is optimized in a bigger search space. Refining the
rid is the most straightforward technique to expand the search
pace for a discrete structure segmented into pixels. However, as
rid density increases, the optimization takes longer to complete
nd its pace of convergence slows down. In the past, some aca-
emics suggested a two-stage grid method, from coarse to fine,
or optimal design to address these issues [15,17]. The multi-stage
rid refinement method not only enhances the optimization effi-
iency but also improves the problem of the structure boundary
oughness with a finer grid, which results in a smoother border
or the optimized configuration. Refined grids, as compared to
oarse grids, may nevertheless suffer from dispersive scatterers of
he optimized topology and lower convergence rates in the later

tages of optimization [25]. Adding constraints restricting the f

2

minimal size to the optimization equations [21] or eliminating
the ill-conditioned structures through post-processing [26] are
the two most frequently employed strategies when there is a
possibility that ill-conditioned structures are included in the opti-
mized topology. However, little work has focused on the effect of
the relationship between grid density and pixel size on the opti-
mization efficiency and Optimized results. To solve this problem,
a multistage grid-pixel refinement method (MGPRM) is proposed
in this paper. Unlike the grid refinement operations used in the
past, the MGPRM keeps the pixel size unchanged while operating
on increasing the grid density. The proposed method restrains
the minimum pixel size in a simple way, reduces the dispersion
of scatterers and improves the optimization efficiency under the
premise of ensuring the abundant solution space.

The main content of this paper is on performing the topology
optimization design of 2D two-phase PnC based on the proposed
MGPRM, in conjunction with a genetic algorithm and the FPWEM.
In the optimization process, the grid density of the MGPRM is
changed from coarse to fine, and the performance of PnC is
optimized in three stages. In Section 2, the FPWEM for calculating
the band structure of PnC and the multi-objective optimization
method of PnC are introduced, and the proposed MGPRM and
the optimization process of this paper are described in detail. In
Section 3, numerical calculations are performed and the results
are analyzed. Briefly, the similarities and differences between the
MGPRM, the invariant grid method and the traditional refinement
grid method are discussed, and then the multi-objective opti-
mization is performed according to different objectives. Finally,
the conclusions of this article are summarized in Section 4.

2. Model and methodology

2.1. Elastic wave equation

The equation for the propagation of elastic waves in a non-
homogeneous medium is expressed as

ρü + ∇ [[λ + 2µ] (∇ · u)] − ∇ × [µ∇ × u] = 0 (1)

where ρ is the density of the material, λ and µ are the first and
second parameters of the Lamé constant, u is the displacement
vector, ∇ · u is the divergence of the displacement vector, ∇ × u
is the curl of the displacement vector.

Since the 2D PnC is studied in this paper, Eq. (1) is decomposed
into out-of-plane and in-plane modes, which are expressed as

ρ (r)
∂2uz

∂t2
=

∂

∂x

[
µ (r)

(
∂uz

∂x

)]
+

∂

∂y

[
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∂uz
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)]
(2)
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(3)

where r = {x, y} is a spatial location vector,
{
ux, uy, uz

}
are the

omponents of the displacement vector along the x, y and z axes,
espectively. Since PnC is periodically compounded with unit
ells, the material parameters ρ (r), λ (r) and µ (r) are periodic
unctions of the spatial position vector r .
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Fig. 1. (a) Square PnC with pixel P0 in the center and arbitrary scatterer pixel Pr . r denotes the displacement vector between two pixels. (b) Reciprocal lattice of
nC, the red solid line represents the irreducible brillouin zone.
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.2. FPWEM

In 2D PnC, material parameters of unit cells can be expanded
y Fourier series according to the characteristics that the material
arameters are periodic functions of space. In particular, it is
oted that in this section, the spatial location vector r represents
he vector from the center of the unit cell to the center of the pixel
s shown in Fig. 1(a). Then for the convenience of description,
he material parameters are uniformly denoted by gm. It can be
xpressed as

m (r) =

∑
G

g (G) · eiG·r (4)

here g (G) is the Fourier expansion coefficient and G is the
ector of reciprocal lattice, and for 2D PnC, the G is defined as

= nxb1 + nyb2 (5)

where nx, ny are integers and b1, b2 are the basis vectors of
reciprocal lattice. For a square lattice with lattice constant a, b1 =

2π (1, 0)/a, b2 = 2π (0, 1)/a.
The Fourier expansion coefficient g (G) can be obtained by the

following equation:

g (G) =
1
S

∫∫
S
gm (r) · e−iG·rd2r (6)

here S is the area of the unit cell.
For PnC with a scatterer pixel P0 at the center of the unit

ell [8], the Fourier expansion coefficient g0 (G) is written as

0 (G) =

{
gB + f · (gA − gB) ,G = 0

(gA − gB) · P (G) ,G ̸= 0
(7)

here gA and gB represent the material parameters of scatterers
nd matrices respectively. f = 1/N2 is the proportion of a pixel
n a cell, where N is the number of unit cell edges to be divided.
ince the central pixel is a square [9], the structure function P (G)
s written as

(G) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
f sinc(

Gya
2N

), Gx = 0,Gy ̸= 0

f sinc(
Gxa
2N

), Gy = 0,Gx ̸= 0

f sinc(
Gxa
2N

)sinc(
Gya
2N

), GxGy ̸= 0

(8)

where Gx and Gy are the components of the vector of recip-
rocal lattice G in the direction of the base vectors b1 and b2,
espectively.
3

The relative positions of the arbitrary scatterer pixel Pr and the
central scatterer pixel P0 are shown in Fig. 1(a). According to the
shift properties [10], the material Fourier expansion coefficient
gr (G) for any scatterer pixel Pr can be obtained by the Fourier
transformation of g0 (G) and is expressed as

gr (G) = g0 (G) · eiG·r (9)

Let P s be the set of all Ns scatterer pixels, and any scatterer
pixel Pr belongs to P s, i.e., Pr ∈ P s. The Fourier coefficient of the
entire metamaterial parameters [9] is written as

g (G) =

∑
Pr∈Ps

gr (G) =

∑
r

gr (G) δ (r) = g0 (G)
∑
r

eiG·rδ (r) (10)

here δ (r) represents the distribution of scatterers in the unit
ell and is expressed as

(r) =
[
δ (r1) , δ (r2) , . . . , δ (rk) , . . . , δ

(
rN2

)]
=

{
1, Pr ∈ P s

0, other

(11)

here rk is the vector from the center of the unit cell to the
enter of the kth pixel. Due to the periodicity of the structure,
he displacement field u is written according to Bloch’s theorem
s

(r, t) = ei(k·r−ωt)Uk (r) (12)

here k is the wave vector. Since Uk (r) is a function with the
ame period as material parameters, it can be expanded into a
ourier series and is written as

k (r) =

∑
G′

eiG
′
·ruk

(
G ′

)
(13)

By combining Eqs. (12) and (13), it is expressed as

u (r, t) = ei(k·r−ωt)
∑
G′

eiG
′
·ruk

(
G ′

)
(14)

Substituting Eqs. (10) and (14) into Eq. (2), the eigen equation
of the out-of-plane mode can be obtained

ω2
∑
G′

ρ
(
G ′′

− G ′
)
uz
k+G

(
G ′

)
=

∑
G′

µ
(
G ′′

− G ′
) (

k + G ′
)
x

×
(
k + G ′′

)
x u

z
k
(
G ′

)
+∑

G′

µ
(
G ′′

− G ′
) (

k + G ′
)
y

(
k + G ′′

)
y

× uz
k
(
G ′

)

(15)
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Similarly, substituting Eqs. (10) and (14) into Eq. (3), the eigen
equation of the in-plane mode can be obtained

ω2
∑
G′

ρ(G ′′
− G ′)ux

k+G =

∑
G′

[λ(G ′′
− G ′)(k + G ′)x(k + G ′′)x+

µ(G ′′
− G ′)((k + G ′)y(k + G ′′)y+

2(k + G ′)x(k + G ′′)x)]ux
k+G+∑

G′

[λ(G ′′
− G ′)(k + G ′)y(k + G ′′)x+

µ(G ′′
− G ′)(k + G ′)x(k + G ′′)y]u

y
k+G

(16)

2
∑
G′

ρ(G ′′
− G ′)uy

k+G =

∑
G′

[λ(G ′′
− G ′)(k + G ′)y(k + G ′′)y+

µ(G ′′
− G ′)((k + G ′)x(k + G ′′)x+

2(k + G ′)y(k + G ′′)y)]u
y
k+G+∑

G′

[λ(G ′′
− G ′)(k + G ′)x(k + G ′′)y+

µ(G ′′
− G ′)(k + G ′)y(k + G ′′)x]ux

k+G

(17)

here G ′ and G ′′ is taken over the reciprocal space. However, in
ractice, a finite number of vectors of reciprocal lattice near the
rigin of the reciprocal space is usually used instead of the entire
eciprocal space to find the numerical solution of the eigenvalue
roblem. The convergence of the PWEM is related to the number
f plane waves, the larger the number of waves the better the
onvergence, but this also increases the computational burden.
ue to the symmetry of PnC, the band structure can be obtained
s long as the wave vector k sweeps the irreducible Brillouin
one, i.e., the paths Γ − X − M − Γ , as shown in Fig. 1(b).

2.3. Multi-objective genetic algorithm for PnC

The unit cell of PnC with 1/8 symmetry is shown in Fig. 2(a).
The complete unit cell is obtained by transforming the blue region
symmetrically three times. The unit cell of PnC is divided into
N × N pixels. Due to symmetry, only the material distribution
of 1/8 unit cells is taken into account. The values 0 and 1 re-
spectively represent pixels as matrices and scatterers, as shown
in Fig. 2(b). Since the material is represented by 0 or 1, the
material distribution of the 2D PnC can be simply expressed
as X = [x1, x2, . . . , xk, . . . , xL] by binary coding, where L =

(N/2)2/2 + N/4 represents the gene length of the unit cell.
The genetic algorithm is a global optimization method that

uses information from past populations to iteratively optimize
each set of populations (candidate solutions). Note that genetic
algorithms are particularly suitable for multivariate nonlinear
problems. The general mathematical model for multi-objective
optimization is shown as

Find : X = [x1, x2, . . . , xk, . . . , xL]
Minmize : F1(X), F2(X)

Subject to : xi =

{
0 ,matrix
1 , scatterer

(18)

where F1 and F2 are the objective functions of the optimization.
NSGA-II is used as the optimization method to enhance the prop-
erties of PnC, and more details can be found in Deb et al. [27]. The

optimization process is described in Section 2.5.

4

2.4. MGPRM

The proposed MGPRM is obtained after improving the tradi-
tional grid refinement method (TGRM). Therefore, it is essential
to initially present the TGRM. In TGRM, coarse pixels are divided
into multiple finer pixels, and these fine pixels all have the same
material properties as the coarse pixels, as shown in Fig. 2(c). It
should be pointed out that the grid refinement rate is a two-fold
refinement. The proposed MGPRM is divided into two executive
parts, which are different from traditional methods. Part 1 is
performed prior to the genetic operations, which aims to refine
the grid and extract unit cell genes. In the process of refined
scatterers, the fine pixels in the lower left corner are marked
with the same material properties as the coarse pixels (marked in
red), and the remaining pixels are marked with the same material
properties as the matrix (marked in yellow), as shown in Fig. 2(d).
Next, the results obtained from Part 1 are binary encoded as
a gene of the unit cell for genetic operations. In Part 2, after
completing the genetic operations and before the calculation of
fitness value, each fine scatterer pixel is taken as the lower left
corner of the coarse pixel for pixel coarsening. It is equivalent to
a reverse process, i.e., from Fig. 2(d) to (b). The special cases of
coarsening operations includes two cases, i.e., overlap and out of
bounds. For case 1, there are three hinged fine scatterer pixels
(red 1) at the lower position in Fig. 2(e). Three matrix pixels
next to each scatterer pixel are converted to scatterer pixels and
given the yellow 1 designation after Part 2 of the MGPRM has
been completed. The regions of overlap is presented in the three
coarse scatterer pixels and are identified by dark shading. To solve
this problem, the union of these pixels is taken. The boundary
of the scatterer block taken by the union of three coarse pixels
is shown as the green line. For case 2, since the design space
is restricted to the 1/8 single cell region, the fine pixels close
to the edge may have a part beyond the restricted region after
performing Part 2 of the MGPRM. The fine scatterer pixels (red 1)
close to the boundary exceed the boundary after performing Part
2 of the MGPRM in Fig. 2(e). In this case, the coarse pixels are
cropped and left within the 1/8 single cell region. The blue line
(in Fig. 2(e)) is the boundary of the scatter block after the coarse
pixel interception.

Compared to the TGRM, the MGPRM can effectively alleviate
topological discontinuities and increase the size of discrete pixels,
indicating that it improves the quality of configurations. If the
matrix (yellow 0) framed by the blue square is changed to the
scatterer (red 1) in Fig. 2(d), the shape of the scatterer block is
unchanged after the implementation of Part 2. Thus, the MGPRM
can reduce the structural topology space of the solution.

2.5. Optimization process

The whole optimization process (in Fig. 3) is described as
follows:

Step 1: Initialize parameters, such as lattice constants of PnC,
population size, the maximum number of iterations, etc. The
randomly generated population is used as the parent population
PP. Then the iteration calculator t and key generation tkey are both
initialized, and tkey is set as the executed criterion for the MGPRM.

Step 2: Perform genetic algorithm operations: selection, cros-
sover, and mutation. The binary tournament selection method is
used for the selection operation, and the average method is used
for the crossover operation and mutation operation. The newly
created population is referred to as the offspring population PO.

Step 3: Before calculating the objective functions F1 and F2,
check whether the iteration calculator t is greater than or equal
to the key generation tkey. If the iteration calculator reaches the
key generation, calculate the fitness after executing Part 2 of the
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Fig. 2. Dispersion and grid refinement of unit cell. (a) The unit cell with 1/8 symmetry. (b) 1/8 zone of separated unit cell. (c) Traditional refinement grid method.
d) Proposed refinement method. (e) Coarse pixel combination and cropping method. . (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)
efined grid; otherwise, calculate the fitness directly. Note that
he FPWEM is used to calculate the band structure of PnC.

Step 4: Merge the parent population and offspring popula-
ion: PA = PP ∪ PO, and then conduct non-dominant sorting
nd crowding distance calculation operations for the merged
opulation PA.
Step 5: A new population is selected based on the ranking

nd crowding and the population is used as the new parent
opulation, and the iteration calculator is increased by one: t =

+ 1.
Step 6: Check if the maximum number of iterations is reached.

xit the loop when the maximum number of iterations is reached,
therwise continue to the next step.
Step 7: Check whether the condition of the MGPRM is met.

f so, perform Part 1 of the MGPRM and skip back to Step 2;
therwise, skip back to Step 2 directly.
For multistage, multiple key generations need to be set. In

ddition to this setting, other methods can be used, such as
xecuting the MGPRM if the optimal solution remains unchanged
n the population for 10 consecutive generations.

. Numerical results and discussion

Lead and epoxy resin are selected as the scatterer and matrix
f PnC, respectively. The specific material parameters are listed
n Table 1. The lattice constant of PnC with 1/8 symmetry is
= 0.02m. According to the formula ct =

√
µ/ρ, the transverse

wave velocity of the matrix is ct = 1160.8m/s. The normal-
ized frequency Ω = ωa/(2πct) is selected to characterize the
frequency information, which can eliminate the influence of size
and material on the results and make the proposed optimization
method more general.

3.1. Verify the validity of the proposed MGPRM

To demonstrate the performance of the MGPRM, we per-
form single-objective optimization using different grid dividing
methods and analyze the process and results in this section.
5

Table 1
Material parameters of PnC.
Material Density ρ

(kg/m3)
Elastic modulus
E (GPa)

Shear modulus
µ (GPa)

Lead 11600 40.8 14.9
Epoxy 1180 4.35 1.59

The optimization method in this section uses a genetic algo-
rithm. Compared with the NSGA-II, the genetic algorithm does
not have the process of non-dominated sorting and crowding
distance calculation, so it is simpler to optimize PnC. Details of
the genetic algorithm can be found in Han et al. [28]. This section
carries out the optimization design with the objective function
of maximizing the single relative bandgap width (RBW), and its
mathematical model is expressed as

Find : X = [x1, x2, . . . , xk, . . . , xL]

Maxmize : F (X) =
∆ωn

ωc
n

= 2
minωn+1(k) − maxωn(k)
minωn+1(k) + maxωn(k)

Subject to : xi =

{
0 , epoxy

1 , lead

(19)

where ωn(k) is the frequency at the wave vector k of the nth
band. The objective function F denotes the RBW between the nth
and n + 1th bands. Later, for the convenience of the narrative,
the lower boundary index of the bandgap refers to the index of
the bandgap, i.e., the nth bandgap denotes the bandgap between
the nth and n + 1th bands.

Since this section mainly focuses on comparing the differences
in optimization under different grids, the objective function is
chosen as the most common in the first RBW under out-of-plane
modes. Previous studies [20,25] have shown that the refinement
of the grid has a more pronounced effect on the bandgap at a
coarser grid. However, with the continuous refinement of the
grid, when the grid is fine to a certain extent, the grid density
has less effect on the bandgap. In this topology optimization,
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onsidering the grid dependence problem on the bandgap effect
nd the computational efficiency, the unit cell is divided into
hree types of grids, i.e., 10 × 10, 20 × 20 and 40 × 40.

Both the TGRM and the proposed MGPRM are divided into
hree stages, and the total number of iterations is set as 100. In
ddition, the key generations were set to 20 and 50 generations.
n other words, the number of iterations in each grid state is 20,
0 and 50 generations respectively, and the three grids change
rom coarse to fine in turn. At the same time, the invariable grids
f 10 × 10, 20 × 20 and 40 × 40 are optimized respectively
 c

6

or reference and comparison with the variable grid method.
t is pointed out that the following examples also use the key
enerations to set the multiple stages.
The parameters in the genetic algorithm are set as population

ize Pn = 30, crossover probability Pc = 0.9, and mutation
robability Pm = 0.02. The calculated evolutionary curves and
nit cell topologies are shown in Fig. 4.
As shown in Fig. 4(a), the light blue dashed line, green solid

ine, dark blue dotted line, black dashed line and red solid line
orrespond to the evolutionary curves of the 10 × 10 grids,



C. Sun, L. Wang, H. Jiang et al. Extreme Mechanics Letters 62 (2023) 102036

A
o

2
P
g
i
R
t
b
R
t
a
i
c
t
c
a
d
u
w
t
d
a
A
u

Fig. 4. Optimization of the RBW in the out-of-plane mode. (a) Evolutionary curves. (b) Optimized topologies with different grids: A1 − E1 are optimized unit cells;
2 −E2 are optimized 3 × 3 topological microstructures. . (For interpretation of the references to color in this figure legend, the reader is referred to the web version
f this article.)
0 × 20 grids, 40 × 40 grids, the TGRM and the proposed MG-
RM, respectively. The optimized topologies obtained by different
rids or grid refinement methods after 100 generations are shown
n Fig. 4(b). The corresponding bandgap boundaries and the first
BW for these optimized topologies are listed in Table 2. Among
hem, the maximum value (0.8033) of the first RBW is optimized
y the MGPRM, and the minimum value (0.6195) of the first
BW is optimized by 40 × 40 grids. In particular, by observing
he optimized unit cell topology, it can be found that there is
huge gap between the two topologies, B1 and D1, as shown

n Fig. 4(b). The reason for this large difference is that the unit
ell of PnC has period translation symmetry. Although the period
ranslation may lead to a flip in the adjacent band modes [29], this
hange does not affect the band structure and therefore does not
ffect the bandgap width. Thus, the two structures of scatterers
ispersed in the four corners and concentrated in the center of the
nit cell are equivalent topologies for the analysis of the bandgap
idth. To better analyze the nonlinear relationship between the
opological structure and the bandgap, the structure of scatterers
istributed near the center is selected as the observation unit cell,
nd the microstructure of 3 × 3 unit cells is used to show the
2 − E2 in Fig. 4(b). Moreover, the scatterers of the optimized
nit cell topology under the invariable grids are all concentrated
7

Table 2
Bandgap boundaries and the first RBW for optimized topology with different
grids.
Grid type Upper boundary Lower boundary First RBW

10 × 10 0.3087 0.7041 0.7807
20 × 20 0.3063 0.7113 0.7961
40 × 40 0.3593 0.6818 0.6195
TGRM 0.3052 0.7147 0.8032
MGPRM 0.3048 0.7140 0.8033

masses similar to circles or squares, except for the scatterers of
the optimization results under the 40 × 40 grids which are more
discrete. Similar phenomena have also appeared in Liu et al. [8]
and Dong et al. [17].

All evolution curves are monotonically ascending, indicating
that the genetic algorithm has a good effect on the RBW opti-
mization of PnC, as shown in Fig. 4(a). In addition, except for
the 40 × 40 grids, the evolution curves of other grids tend to be
stable, which indicates that the optimization process has reached
convergence.

Comparing the evolution curves under different invariant grids
reveals that both 10 × 10 and 20 × 20 grids have a faster
convergence rate than 40 × 40 grids, while having a wider



C. Sun, L. Wang, H. Jiang et al. Extreme Mechanics Letters 62 (2023) 102036

g
t
t
a
T
m
A
a
o
a
g
o
b
s

h
s
t
a
i
t
o
r

Fig. 5. 3 × 3 Microstructure and corresponding band structure of optimal individuals using MGPRM in different generations. (a) Initial generation. (b) 10th generation.
(c) 15th generation. (d) 29th generation. (c) 35th generation. (d) 100th generation.
relative bandgap. The RBW of 20 × 20 grids is larger than that
of 10 × 10 grids, which is consistent with the law of larger
bandgap width for finer grids summarized by Dong et al. [20].
However, in the 100 generations optimization, the finer grids
violate this law, which is caused by the fact that the 40 × 40
rids did not reach the convergence state. Moreover, by observing
he optimized topology of 40 × 40 grids after 100 generations,
here are a large number of discrete scatterers, discontinuities
nd other ill conditioned structures in the optimized topology.
he reason for non-convergence after 100 generations of opti-
ization under 40 × 40 grids is that more iterations are required.
fter the grid refinement, the solution space becomes larger
nd more computational solutions are needed, which makes the
ptimization time longer. Although Dong et al. [20] achieved
convergent result under 60 × 60 grids or even 100 × 100
rids, the convergent result is obtained after 3000 generations of
ptimization. The results indicate that using coarse grids at the
eginning is conducive to speeding up the convergence rate and
aving optimization time.
The evolution curves of the TGRM and the proposed MGPRM

ave faster convergence rates than traditional methods. At the
ame time, both of their corresponding final optimized unit cell
opologies have a smoother boundary. Since genetic algorithms
re heuristic algorithms with randomness, the optimization speed
s uncertain and random at the beginning. Therefore, more atten-
ion should be paid to the optimization speed after the RBW is
ptimized to a certain value. The evolution curve using the TGRM

eaches 0.7980 in the 11th generation, but it does not evolve to

8

0.8032 until the 33rd generation. After that, no more excellent
individuals are obtained. This is because the TGRM still cannot
overcome the problem of slow convergence due to large search
space in the case of high grid density and is difficult to obtain
a better convergence structure. Although the evolution curve of
the MGPRM is 0.7808 until the 17th generation, the curve rapidly
evolves twice to reach 0.8032 in the 22nd and 31st generations.
As shown in Fig. 4(a), the drawing of partial enlargement in blue
shading shows that the optimization speed of the MGPRM is
faster than that of the TGRM when a wide RBW is reached. As
shown in the drawing of partial enlargement in purple shadow in
Fig. 4(a), the evolution curve of the MGPRM has evolved to 0.8033
after 72 generations. This is a slight improvement, but not easy in
such a large search space. In addition, the boundary of the final
optimization result of the MGPRM (topology E1) is smoother than
that of the TGRM (topology D1) in Fig. 4(b). In addition, the new
MGPRM should be no longer produce useless structures such as
the dispersion of small pixels in the fine grid, so it has a smaller
search space than the TGRM and often has a faster and better
convergence effect. These results indicate that the MGPRM can
obtain topologies with wider RBW and better structural quality
than the TGRM within 100 generations.

For further analysis, the microstructures of PnC with the
largest fitness values in the initial, 10th, 15th, 29th, 35th and
100th generation populations in the evolution curve using the
MGPRM are respectively shown in Fig. 5, and the corresponding
bandgap boundaries and RBW are listed in Table 3. Fig. 5 illus-

trates that PnC topology has evolved from the initial square seed
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Table 3
Bandgap boundaries and the first RBW of optimal individuals using MGPRM in
different generations.
Generation number Upper boundary Lower boundary First RBW

0 0.4484 0.5384 0.1825
10 0.3455 0.6112 0.5555
15 0.3262 0.6333 0.6195
29 0.3074 0.7156 0.7980
35 0.3052 0.7147 0.8032
100 0.3048 0.7140 0.8033

structure to a topological configuration suitable for expanding the
first RBW. Particularly, after obtaining the appropriate topological
configuration as shown in Fig. 5(d), the configuration of the
optimal individual does not change dramatically. The edge of the
configuration becomes smoother with the gird denser, and the
bandgap width also increases slightly. Note that the direction
of topology change is not completely in a particular direction,
especially in the early optimization, as shown in Fig. 5(b–c). For
example, annular scatterers that can open a medium bandgap
width appear in the early optimization, but with the further
expansion of the bandgap, the holes in the middle of the annular
scatterers disappear, resulting in a solid block topology. The
results indicate that the genetic algorithm has excellent global
search ability in PnC optimization.

3.2. Multi-objective optimization of PnC

3.2.1. Case 1, multi-objective optimization of the first relative band-
gap and normalized mass in the out-of-plane mode

While expanding the width of the bandgap, it is important for
ractical applications to realize the lightweight of PnC. Therefore,
n this section, the RBW of out-of-plane mode and mass are cho-
en as the optimization objectives, and the mathematical model
f multi-objective optimization is shown as

ind : X = [x1, x2, . . . , xk, . . . , xL]

Maxmize : F1(X) =
∆ωn

ωc
n

= 2
minωn+1(k) − maxωn(k)
minωn+1(k) + maxωn(k)

Minmize : F2(X) =
1
L

∑
xi

Subject to : xi =

{
0 , epoxy

1 , lead

(20)

where the optimization objective F1 is the first RBW and the
optimization objective F2 is the normalized mass.

The parameters of the multi-objective genetic algorithm are
set as population size Pn, crossover probability Pc and muta-
tion probability Pm, which are the same as those of the genetic
algorithm in Section 3.1.

The Pareto optimal solutions for the multi-objective optimal
design with maximization of the first RBW and minimization of
the unit cell mass are shown in Fig. 6(a). The horizontal and
vertical axes represent the first RBW and normalized mass, re-
spectively. The blue dots represent the non-dominated optimum
solutions, while the red pentagrams represent the four selected
topologies, namely A, B, C, and D. It can be seen from Fig. 6(a)
that the optimal solutions are relatively evenly distributed on
the Pareto optimal front, which indicates that the multi-objective
optimization between the RBW and mass is effective. The normal-
ized mass of the unit cell is found to increase with the increase of
the first RBW, which means that there is a contradiction between
maximizing the first RBW and minimizing the normalized mass.
This means that the two objectives cannot be solved optimally at
the same time. Although the positions of the individual solutions
9

Table 4
Bandgap boundaries, the first RBW and normalized mass of the selected
solutions in Case 1.
Topology Bandgap boundary First RBW Normalized mass

A [0.4484, 0.5384] 0.1825 0.0400
B [0.3624, 0.6021] 0.4970 0.1075
C [0.3218, 0.6596] 0.6885 0.1900
D [0.3063, 0.7129] 0.7979 0.3000

are different, all solutions are equal and mutually non-dominant
with each other. If there is a higher requirement for lightweight,
the selection can be made from the lower left corner of Fig. 6(a).
Conversely, if the problem under study is more interested in the
width of the bandgap, the selection can be made from the upper
right corner of the solutions. Further, as seen in Fig. 6(a), the
overall trend of the bending changes from gentle to steep. Among
them, near the optimized topology C, there is a watershed of
the influence of mass on the RBW. Before this point, there is a
significant increase in the RBW as the normalized mass of the
unit cell increases. However, after this point, a large increase
in the normalized mass is required to produce a slight increase
in the RBW. This law has a good guiding significance for the
application of PnC considering lightweight design. Moreover, this
law indicates that there is a limit to the adjustment of the single
bandgap by tuning the mass. This indicates other methods to
widen the bandgap, such as the use of piezoelectric materials,
can be considered after reaching a point where the mass and the
single bandgap are relatively balanced [30].

The evolutionary curves for maximizing the first RBW and
minimizing the normalized mass are shown in Fig. 6(b). The
evolution curve of RBW shows that the individual with the largest
RBW in the population always has an increasing value of the RBW,
which is due to the nature of the genetic algorithm to prefer the
best individuals when generating new populations. Note that the
normalized mass does not monotonically decrease but suddenly
increases at the 20th generation. Since the ultralight topology
without a bandgap is deleted after the 20th generation population
to improve the population quality, the minimum normalized
mass suddenly increases. However, since configurations without
bandgaps are removed in subsequent populations, this results in
relatively few points in the region with the small RBW in Fig. 6(a).

From the optimal solutions in Fig. 6(a), solution D with the
largest RBW and solution A with the least normalized mass were
selected, and then two solutions B and C with relatively uniform
objective values were selected. These selected structures and
corresponding band structures are shown in Fig. 7.

Among optimized topologies A, B, C and D, and the first
RBW and normalized mass corresponding to different optimized
topologies are different, as shown in Fig. 7. Specific values are
shown in Table 4.

The configuration of the unit cell on the Pareto optimal front
changes regularly with the increase of the first RBW and the
decrease of normalized mass. The scatterer starts from the initial
small square, first forms a structure with four prominent corners,
and then gradually transitions into a circular structure. The con-
figuration change process indicates that the bandgap of PnC is not
only related to the normalized mass of unit cells, but also to the
scattering shape. Therefore, topological optimization to improve
the performance of materials is very helpful. The single-objective
optimization result in Fig. 5(f) is basically similar to the opti-
mization topology obtained by multi-objective optimization in
Fig. 7(d). The two optimized topologies corresponding to the RBW
are 0.8033 and 0.7979 respectively, which means that single-
objective optimization can obtain a topology structure with a
larger RBW. Therefore, the single-objective optimization can pro-
duce superior results while pursuing the maximization of the
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Fig. 6. Pareto optimal solutions and evolutionary curves. (a) For the optimal solutions of case 1. (b) Evolutionary curves of the first RBW and the normalized mass,
the red solid and the blue dashed line represent the first RBW and the normalized mass, respectively.
Fig. 7. The 3 × 3 microstructure and corresponding band diagram of the selected solutions. (a) Optimize topology A. (b) Optimize topology B. (c) Optimize topology
. (d) Optimize topology D.
andgap. However, if the factor of weight needs to be considered,
he multiple results provided by multi-objective optimization are
lso very meaningful for the lightweight of PnC.
It is worth mentioning that the normalized mass in this pa-

er is expressed in the same way as the scatterer filling rate.
herefore, the filling rate of optimal topology D with the max-
mum wide bandgap in the multi-objective optimization solu-
ions is 0.3, as shown in Fig. 7(d), which is consistent with the
ingle-objective optimization result of Dong et al. [17].

.2.2. Case 2, multi-objective optimization of the third and fifth RBW
f in-plane modes
Realizing vibration isolation and noise reduction in multiple

requency bands is of great significance for industrial manufac-
uring. Therefore, we consider the optimal design of the two
andgaps of PnC in case 2. The more complex wave under in-
lane mode is studied in this section. Because the in-plane cou-
led wave has rigid body displacement in two directions, the first
wo bands overlap at the point Γ . This is an inherent property
10
of the in-plane coupled wave, so there are no bandgaps between
the first two bands in the in-plane mode. After comprehensive
consideration, the 3rd bandgap and the 5th bandgap are selected
as the optimization objectives, and the mathematical equation of
the optimization problem could be expressed as

Find : X = [x1, x2, . . . , xk, . . . , xL]

Maxmize : F1(X) =
∆ωn1

ωc
n1

= 2
minωn1+1(k) − maxωn1 (k)
minωn1+1(k) + maxωn1 (k)

Maxmize : F2(X) =
∆ωn2

ωc
n2

= 2
minωn2+1(k) − maxωn2 (k)
minωn2+1(k) + maxωn2 (k)

Subject to : xi =

{
0 , epoxy

1 , lead

(21)

where F1 is the 3rd RBW and F2 is the 5th RBW, where n1 = 3 and
n2 = 5. The parameters in the multi-objective genetic algorithm
only change the population size Pn = 30 to 40, and the other
parameters remain unchanged.
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Fig. 8. Pareto optimal solutions and evolutionary curves. (a) For the optimal solution set of case 2, (b) Evolutionary curves of the 3rd RBW and 5th RBW, red straight
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Pareto optimal solutions obtained by multi-objective opti-
ization of the 3rd and 5th RBW are shown in Fig. 8(a). The
orizontal axis represents the 3rd RBW and the vertical axis
epresents the 5th RBW. The blue dots represent the obtained
ptimal solutions, while the red pentagrams represent the five
elected typical structures and are labeled as A, B, C, D, and E
espectively. The solutions are evenly distributed on the Pareto
ront, which indicates that the multi-objective optimization can
btain good results for the two bandgaps of case 2. The overall
ariation trend of the solutions shows that when the 3rd RBW
ncreases, the overall trend of the 5th RBW declines, and the
mplitude of decline changes greatly. The advantage of Pareto so-
utions is to provide a variety of mutually non-dominant choices,
hich can be selected according to the actual demand. For low

requencies, the corresponding structures can be chosen in the
ower right corner of Pareto optimal solutions. One the contrary,
he structures with high frequency bandgaps are obtained at the
pper left.
Fig. 9 shows the 3 × 3 topological microstructures and the

orresponding band structures of the selected typical solutions.
n addition, the corresponding boundaries of the 3rd and 5th
andgaps and the corresponding RBW are shown in Table 5.
nterestingly, the variation in the 3rd bandgap is primarily due
o the variation in the upper boundary of the bandgap, while the
hange of the 5th bandgap depends on the lower boundary of the
andgap as indicated in Fig. 9.
As can be seen from Fig. 9, the optimized topologies of the unit

ell change regularly. When the 5th RBW is larger, the scatterer
hape in a unit cell is similar to a ring. As the 5th RBW decreases
nd the 3rd RBW increases, the hole in the middle of the scatterer
ing shrinks until it closes. In addition, the outer profile of the
catterer changes from a similar circular shape to a final square
hape. The optimized topology C is a very valuable structure,
hich obtains a wide relative bandgap at both the 3rd and 5th
andgap. Fig. 9 illustrates that different bandgaps correspond to
ifferent topological features, and multi-objective optimization
an find such complex nonlinear relationships, which are difficult
o find by traditional parameter regulation and single-objective
ptimization. Therefore, multi-objective optimization has a great
ractical role in guiding the regulation of the bandgap.

.3. Frequency response of a finite PnC plate

The band structure described above is calculated based on
he structure of the infinite periodic arrangement of unit cells.
owever, in practical engineering, the structures that are really
11
Table 5
Bandgap boundaries, 3rd RBW and 5th RBW of the selected solutions in Case
2.
Topology 3rd bandgap 5th bandgap 3rd RBW 5th RBW

A 0 [0.8011, 1.1139] 0 0.3267
B [0.5417, 0.6607] [0.8197, 1.0944] 0.1979 0.2871
C [0.5104, 0.7433] [0.8997, 1.1624] 0.3716 0.2548
D [0.5081, 0.8100] [0.9657, 1.0932] 0.4581 0.1239
E [0.5057, 0.9499] 0 0.6103 0

applied are limited, and the smaller the limited structure, the
more beneficial to the practical application. In addition, assuming
that the structure is infinite, the small attenuation is amplified,
which leads to an overestimation of the vibration isolation and
noise reduction capability of the optimized topology. Therefore, it
is necessary to introduce the frequency response function T [31]
to evaluate the attenuation effect of the finite structure, and T can
be expressed as

T = 20 lg
do
di

(22)

here do and di are the displacement amplitudes of the output
port and the input port respectively.

The model of the 5 × 10 PnC microstructure plate is shown
n Fig. 10(a), which is composed of optimized unit cell topology
Fig. 9(c)). The specified displacement is input on the left of the
nC microstructure plate, and the input displacement amplitude
s di = 1mm. The output displacement amplitude do is received
on the right of the PnC microstructure plate, and the transmission
spectrum of the model is obtained by Eq. (22), as shown in
Fig. 10(b).

The red and purple lines represent the upper and lower
boundaries of the 3rd and 5th bandgaps respectively, while the
black curve represents the transmission curve. The transmis-
sion curve has two vibration attenuation peaks, among which
the first vibration attenuation peak is −113 dB and the second
vibration attenuation peak is −170 dB. The attenuation peaks
of the transmission curve and the location of the bandgaps are
in good agreement, which indicates that the topology designed
by multi-objective optimization is still effective in the finite
structure.

Fig. 10(c) shows harmonic responses of the PnC microstructure
plate at the normalized frequency Ω = 0.4, 0.6, 0.8, 1.0. The
elastic wave of in-plane mode can pass through the finite struc-
ture model at Ω = 0.4 and 0.8. However, when Ω = 0.6 and 1.0,
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Fig. 9. The 3 × 3 microstructure and corresponding band diagram of the selected solutions. (a) Optimize topology A. (b) Optimize topology B. (c) Optimize topology
. (d) Optimize topology D. (e) Optimize topology E.
he elastic wave of in-plane mode decays rapidly and cannot pass
hrough the finite structure model.

The phenomenon of elastic wave propagation and inhibition
n the PnC microstructure plate is consistent with the results of
he bandgap and the transmission spectrum. In particular, when
ormalized frequency Ω = 0.6, the elastic wave propagates the
ength of two unit cells. However, when normalized frequency

= 1.0, the elastic wave propagates the length of one unit cell.
his indicates that the PnC microstructure plate has a better at-
enuation effect on the elastic wave when normalized frequency

= 1.0, which is consistent with the fact that the first vibration
ttenuation peak is smaller than the second vibration attenuation
eak in the transmission curve. Based on this phenomenon, when
sing the bandgap characteristics of PnC for vibration isolation
nd noise reduction, not only should we consider whether there is
bandgap near the target frequency, but also should consider the
ctual attenuation capacity of the PnC microstructure. Otherwise,
he PnC microstructure plate may face the problem of insufficient
ttenuation performance or too strong attenuation performance.

. Conclusion

In this paper, we propose the MGPRM and combine the FP-
EM and the genetic algorithm to optimize the bandgap of PnC.
he main conclusions of are as follows:

1. For single-objective optimization, the bandgap result of the
proposed MGPRM is 0.8033, which is larger than that of
other grid types. This shows that the proposed MGPRM
12
has better convergence results than other grid types and
the corresponding evolution curve of MGPRM shows a fast
convergence rate.

2. For multi-objective optimization, there is a structure with
the 3rd RBW being 0.3716 and the 5th RBW being 0.2548 in
the middle of the Pareto optimal front, which indicates that
the proposed method can achieve the optimal design of
the specified multi-bandgap. By further observing the topo-
logical configurations corresponding to different bandgap
distributions, the multi-objective optimization has the ad-
vantage of discovering the physical nonlinear relationship
between the bandgap and the PnC topology.

3. The transmission spectrum of the finite PnC microstruc-
ture plate is consistent with the bandgap of PnC, and the
first and second vibration attenuation peaks are −113 dB
and −170 dB, respectively. The amplitude field of the PnC
microstructure plate shows the rapid attenuation of elastic
waves within the bandgap, which well shows the vibration
isolation characteristic of the PnC bandgap. In particular,
elastic waves near the first peak frequency propagate fur-
ther in the amplitude field than those near the second
peak frequency, which is consistent with the propagation
property in the transmission curve.

The MGPRM proposed in this paper is used in bandgap opti-
mization design and phased optimization to improve the iteration
rate. Moreover, the method can be extended to three-dimensional
space for phased optimization design.
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Fig. 10. (a) Schematic diagram of calculating the 5 × 10 PnC microstructure plate model. (b) Transmission spectrum. (c) Elastic wave transmission amplitude field
t different normalized frequencies. . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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