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Physics-informed neural networks (PINNs) have shown great potential in solving computa-
tional physics problems with sparse, noisy, unstructured, and multi-fidelity data. However, 
the training of PINN remains a challenge, and PINN is not robust to deal with some com-
plex problems, such as the sharp local gradient in broad computational domains, etc. 
Transfer learning techniques can provide fast and accurate training for PINN through in-
telligent initialization, but the previous researches are much less effective when dealing 
with transfer learning cases with a large range of parameter variation, which also suffers 
from the same drawbacks. This manuscript develops the concept of the minimum energy 
path for PINN and proposes an adaptive transfer learning for PINN (AtPINN). The Partial 
Differential Equations (PDEs) parameters are initialized by the source parameters and up-
dated adaptively to the target parameters during the training process, which can guide the 
optimization of PINN from the source to the target task. This process is essentially per-
formed along a designed low-loss path, which is no barrier in the energy landscape of 
neural networks. Consequently, the stability of the training process is guaranteed. AtPINN 
is utilized to achieve transfer learning cases with a large range of parameter variation for 
solving five complex problems. The results demonstrate that AtPINN has promising po-
tential for extending the application of PINN. Besides, three transfer learning cases with 
different ranges of parameter variation are analyzed through visualization. Furthermore, 
results also show that the idea of adaptive transfer learning can be a particular optimiza-
tion strategy to directly solve problems without intelligent initialization.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Deep learning has had a revolutionary impact in several scientific disciplines, such as computer vision (CV) [1] and 
natural language processing (NLP) [2]. With the dramatic capability of nonlinear modeling, deep learning has attracted 
tremendous attention in recent years in the field of computational mechanics [3,4]. However, typical deep learning is con-
structed as a black-box surrogate model and usually requires a large amount of labeled data, which are often unavailable in 
many scientific applications [5,6].

Recently, Raissi et al. [7] proposed physics-informed neural networks (PINNs) that known partial differential equations 
(PDEs) are utilized to constrain (or even drive) the training of neural networks with relatively small amounts of data. The 
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PDEs’ residual, initial condition, and boundary condition are incorporated into the loss function of neural networks. In this 
set, the training of neural networks is driven by minimizing the residual of the governing equations. PINN provides a mesh-
free algorithm that exploits automatic differentiation (AD) [8] to represent the differential operators. Besides, PINN has 
shown the potential in solving inverse problems with observation data [9]. Thanks to the approximation capabilities, PINN 
has already produced a series of noticeable results on a range of problems in computational science and engineering [10–14]. 
Despite these advantages, it remains a challenge to train accurate and fast PINN, which is associated with the minimization 
of the loss function [15]. The loss function is a high-dimensional and non-convex function containing multiple terms that 
compete with each other during the training process [16,17]. Consequently, the training process may not be sufficiently 
stable and PINN is not robust to deal with some complex problems, such as sharp local gradient [18] and high-frequency 
problems [19] in broad computational domains, etc.

Transfer learning is motivated by the fact that human beings can intelligently apply knowledge learned previously to 
solve a new problem with a better solution [20,21]. It has been used to avoid this non-convex property to obtain an 
accurate and fast optimization for PINN [22–27]. The transfer learning of PINN aims to transfer the learned weights from 
the PINN described by the source parameters (source task) to another PINN described by the target parameters (target task). 
Several works have applied transfer learning for PINN to reduce computational cost and enhance accuracy, such as the 
incompressible flow modeling [22], the regimes flow modeling [23], the thermochemical curing process modeling [24], the 
phase-field modeling of fracture [25], linear and non-linear elasticity problems [26], multi-fidelity physical modeling [27], 
etc. Nevertheless, existing works only focus on transfer learning cases with a small range of parameter variation between 
the source and target tasks, which means that the two tasks are strongly related or similar. When the range of parameter 
variation becomes large, it remains an issue whether it is possible to transfer the source task to the target task, which 
depends on the similarity of the PDE solutions under two parameters. In most cases, the large range of parameter variation 
means that the target task is so different from the source task that transfer learning is hard to implement. In such cases, 
transfer learning can be considered as a re-training process that mainly focuses on knowledge transfer at the feature level. 
Therefore, it may suffer from the same drawbacks as PINN.

Although the mean squared error (MSE) defines a convex form of the loss function, over-parameterized neural networks 
still face the problem of non-convex optimization [28]. Some studies analyzed the energy landscape of the loss function 
and tried to design an optimization path in parameter space to avoid this non-convex property [29,30]. The study of [31]
and [32] empirically concluded that loss minima are not isolated points but essentially form a connected manifold and 
there exists a continuous minimum energy path to connect two minima. Sagun et al. [33]. constructed flat linear paths 
between close minima. Draxler et al. [31]. developed an automated nudged elastic band (AutoNEB) method to construct 
a flat path between arbitrary minima. However, it remains challenging to comprehensively understand the loss landscape 
and efficiently design the optimization path due to the huge parameter space [34]. Note that the transfer learning tasks of 
PINN are described by the PDEs’ parameters with an explicit physical definition. The PDEs’ parameters can be treated as 
the trainable weights of PINN, making it easier to construct such an optimization path to guide the training of PINN by 
fine-tuning PDEs’ parameters [35,36].

Inspired by this idea, we develop a feasible minimum energy path for PINN and propose an adaptive transfer learning 
for PINN (AtPINN). The PDEs’ parameters are adaptively updated from the source to the target parameters, which is utilized 
to construct a low-loss path in the parameter space to guide the optimization of PINN from the source to the target 
task. During this process, the loss is always kept at a low level, and correspondingly, the solution is very close to the 
physical solution, which guarantees the stability of the training process. Besides, the gradient behaviors of different loss 
terms are analyzed to determine the principle of the weight assignment, and the normalization is utilized to extend AtPINN 
to accommodate cases with multiple parameters. To illustrate the potential of the proposed method, AtPINN is exploited to 
achieve the transfer learning cases with a large range of parameter variation for solving five complex problems. Furthermore, 
the transfer learning cases with three ranges of parameter variation are discussed and the optimization process of AtPINN 
is also analyzed through visualization.

The present study is arranged as follows: Section 2 introduces the background and the transfer learning applications 
for PINN. Section 3 describes details about the proposed method. Five problems are studied in Section 4 and the results 
demonstrate the performance of the proposed method. Finally, the conclusion and remarks are presented in Section 5.

2. Background

2.1. Physics-informed neural networks

Raissi et al. [7] proposed the PINN concept for solving the forward and inverse problem of the partial differential equa-
tions (PDEs) by embedding the PDEs’ residual, initial condition, and boundary condition into the loss function of neural 
networks. In this set, the problem of solving PDEs is converted into the optimization problem of neural networks. In this 
section, the classical PINN concept will be reviewed.

Consider a scalar function u (x, t) on the domain � × [0, ∞) with the boundary ∂�, where � ⊂Rd . u (x, t) satisfies the 
following PDEs:

F (x, t; u, ∂xu, ∂t u, · · · ,λ) = 0, ∀ (x, t) ∈ U (1a)
2
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I (x, t0,h; u, ∂t u, · · · ,λ) = 0, ∀ (x, t) ∈ � (1b)

B (x, t, g; u, ∂xu, · · · ,λ) = 0, ∀ (x, t) ∈ ∂U (1c)

where F contains a series of the differential operators (i.e., [∂t , ∂x, ...]), which can represent the residual of the PDEs, λ is 
the PDEs’ parameter vector, I is the residual form of the initial condition containing a function h (x, t) and B is the residual 
form of the boundary condition containing a function g (x, t). U = {(x, t) |x ∈ �, t = [0, T ]}, ∂U = {(x, t) |x ∈ ∂�, t = [0, T ]}, 
and � = {(x, t) |x ∈ ∂�, t = 0}.

In the classic PINN concept, fully-connected feed-forward neural networks are employed. The space coordinate x and 
time t are usually taken as the inputs, and the outputs û(x, t) are used to approximate the true solution u(x, t) of the PDEs. 
The differential operators are calculated by AD, and then the PDEs’ residual, initial condition, and boundary condition are 
embedding into the loss function of neural networks:

L(θ) = wFLF (θ) + wILI(θ) + wBLB(θ) (2)

where θ denotes the trainable weights of neural networks, wF , wI , and wB are the weights for different loss terms, and 
LF , LI , and LB are the loss functions corresponding to PDEs, initial condition, and boundary condition, respectively:

LF = 1

NF

NF∑
i=1

‖F(x(i), t(i); û)‖2 (3a)

LI = 1

NI

NI∑
i=1

‖I(x(i), t(i),h(i); û)‖2 (3b)

LB = 1

NB

NB∑
i=1

‖B(x(i), t(i), g(i); û)‖2 (3c)

where {x(i), t(i)}NF
i=1, {x(i), t(i), h(i)}NI

i=1, and {x(i), t(i), g(i)}NB
i=1 are the set of PDEs’ residual points in U , �, and ∂U , and NF , 

NI , and NB donate the number of sampling points. In this manuscript, the loss function of PINN is denoted as LP I N N(θ). 
PINN can be trained by gradient descent algorithms (such as: Adam [37], SGD [38], and LBGFS [39] algorithms) to minimize 
the loss function.

PINN is a mesh-free simulation algorithm and shows promising potential in solving many computational physics prob-
lems and multi-fidelity data fusion. However, it is still a challenge to train PINN with fast convergence and high accuracy. 
This challenge is associated with loss functions that contain multiple loss terms and are high-dimensional non-convex func-
tions. The complex loss functions lead to a difficult training process that is too much costly and time-consuming. In addition, 
PINN models often involve training large-scale neural networks in an over-parameterized regime, for example, by specifying 
a DNN that has more complexity than the problem requires. If the problems are too complex or the sampling points are not 
dense enough, convergence to the global minimum cannot be guaranteed and PINN is susceptible to obtaining an inaccurate 
or even unphysical solution.

2.2. Transfer learning for PINN

In the context of transfer learning, knowledge acquired by the source task that has been trained is transferred to a 
related, but not identical target task. Transfer learning aims to apply knowledge learned previously to help the solving of a 
new problem, which is usually performed for a target task with less data in the field of computer vision (CV) and natural 
language processing (NLP).

Transfer learning techniques have been used to reduce computational costs and enhance accuracy for PINN. In this 
manuscript, we name the transfer learning method for PINN as tPINN. Fig. 1 presents the basic idea of tPINN. The source 
task is the PINN (described by λs) that has been trained and knowledge is a set of weights θ s . If a target task described 
by the λt is determined to be related to the source task by human beings, the stored weights θ s are provided as a smart 
initialization for the new task. With this strategy, PINN is trained again to obtain the weights θ t and converge much faster 
on each new problem, resulting in a significant reduction in overall training time. This process may also be interpreted as a 
two-stage training process. The first stage is preparing a source PINN and the second stage is solving target PINN with the 
intelligent initialization. The loss function of tPINN is same as PINN, namely Lt P I N N(θ) =LP I N N (θ).

Transfer learning is a feasible solution to alleviate the costly and time-consuming training of PINN. Yet, current studies 
only focus on problems where the PDEs’ parameters of the source task are very close to the parameters of the target task, 
implying a small range of parameter variation. In such cases, the target task is strongly correlated with the source task, and 
transfer learning techniques are very well suited to solving these problems. For the transfer learning case with a large range 
of parameter variation, whether it is possible to transfer the source to the target task remains an issue, which depends 
on the similarity of their solutions. In many cases, the differences between the solutions of source and target parameters 
are significant enough that implementing transfer learning can be challenging. For example, the Reynolds number exists in 
3
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Fig. 1. The basic idea of tPINN. The source PINN (top left) described by λs that has been trained, and knowledge θ s is stored. A target PINN (top right) 
described by λt is initialized by a reference weights θ s , and is trained to get the weights θt .

the high-order terms of the Navier-Stocks equations, and a large range of parameter variation often implies a significant 
change in the solution. Thus, it is less effective or even impractical to directly transfer a PINN describing the low Reynolds 
number flow to another PINN describing the high Reynolds number flow. Such an example widely exists in most problems 
of practical interest. Moreover, transfer learning is motivated by human learners, who only focus on knowledge transfer at 
the feature level and unconsciously recognize two similar tasks to apply experience from previous problems to new ones. 
There is no clear threshold to tell human learners whether the source task can be successfully transferred to the target task 
or not, although the parameter variation between the two tasks has been known.

3. Proposed method: adaptive transfer learning for PINN

3.1. Overview of the proposed method

In this manuscript, we propose an adaptive transfer learning method with low loss for PINN inspired by the concept of 
the minimum energy path. The PDEs’ parameters are adaptively updated from the source to the target parameters to guide 
the optimization of PINN from the source to the target task. During the training process, the loss is kept at a low level so 
that a low-loss path is constructed in the parameter space. Along the constructed path, the PINN solution is very close to 
the physical solution, which ensures the stability of the training process.

First, the concept of the loss landscape of neural networks and the minimum energy path for neural networks is reviewed 
and a feasible minimum energy path for PINN is proposed. In the parameter space, the path is described by the PDEs’ 
parameters that can be treated as the trainable weights with an explicit physical definition. Second, the loss function of 
transfer learning is redesigned according to the minimum energy path. Based on intelligent initialization, the weights in 
PINN are fine-tuned parameters to gradually transfer the source to the target task, which essentially proceeds along the 
designed path. Unlike previous transfer learning studies focusing on knowledge transfer at the feature level, this manuscript 
is concerned with the fact that the PINN loss is always kept at a low level, which can effectively ensure the stability of PINN. 
Finally, to enable the proposed method applicable to different scenarios, the principle of weight assignment is determined 
by analyzing the gradient behaviors of different loss terms. In addition, normalization is leveraged to extend the proposed 
method to accommodate the scenarios with multiple parameters.

3.2. The loss landscape of neural networks

The loss landscape of neural networks refers to the graphical representation of the loss function over its high-dimensional 
parameter space. The loss function measures the discrepancy between the predicted output and the actual output, and the 
parameter space includes all possible values for the weights and biases of the network.

In over-parameterized networks, the number of trainable parameters (weights and biases) exceeds the number of train-
ing samples, thus enabling the network to effectively fit the training data. However, non-convexity associated with such 
over-parameterization networks may lead to complicated and strange optimization landscapes, making it challenging for 
optimization algorithms to find the global minimum. Research [40] has demonstrated that the loss landscape of over-
parameterized neural networks is typically characterized by numerous wide valleys or flat regions. Recent studies [31,33]
have revealed that deep neural networks possess a large number of global minima, all of which achieve comparable levels 
of training error. These can facilitate efficient training and optimization for neural networks. Therefore, it is of great interest 
to understand the loss landscape of neural networks for developing more efficient optimization strategies.
4
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Fig. 2. A schematic of a slice through the high dimensional parameter space of neural networks.

3.3. The minimum energy path

According to literature [31], neural network loss minima are not isolated points in parameter space, but essentially form 
a connected manifold. Draxler et al. [31] and Garipov et al. [33] empirically found that two minima can be connected by 
the minimum energy path (or equal-value path), along which the losses are very close to minima. Here, the concept of the 
minimum energy path will be reviewed.

The loss of neural networks depends on the architecture, the training data set, and the network weights. Keeping the 
architecture and the training set fixed, the PINN loss function L(θ ) obtains the minima on two weights θ1 and θ2. There 
exists a continuous equal-value path p∗ in the parameter space that connects θ1 and θ2 with the lowest maximum loss:

p∗(θ) = arg min
p f rom θ1 to θ2

{
max
θ∈p

L(θ)

}
(4)

Such a lowest path p∗ is called the minimum energy path. Fig. 2 exhibits a schematic of a slice through the high 
dimensional parameter space of neural networks. The plane is spanned by the two minima θ 1 and θ2 and two different 
paths are defined from the θ1 to θ2. Although the linear path is the shortest path connecting two minima, it must pass 
through the region with high loss/energy, just like a barrier between two minima. Losses along the minimum energy path 
can be viewed as the minima, and the loss/energy is essentially flat.

The solution of the minimum energy path can be transformed into an optimization problem. To make this problem 
tractable, the loss function must be sufficiently smooth, e.g., containing no jumps along the path. For most deep neural 
networks with ReLU or Leaky ReLU activation function, the derivative is discontinuous, which usually requires sampling 
densely to overcome this problem. To find such the path p∗ , a chain of N + 2 pivots pi (a series of weight sets θ i ) for 
i = 0, . . . , N +1 is connected via the coefficient k. The initial and final pivots are fixed to the minima p0 = θ1 and pN+1 = θ2, 
respectively. Using the gradient descent to minimize the following energy function:

E(p) =
N∑

i=1

L(pi) +
N∑

i=1

1

2
k‖pi+1 − pi‖2 (5)

where k is the connection coefficient.
The solution of this energy formulation relies on the number of pivots and the coefficient k [41]. If the number is too 

small or if k is samll, the distances between two adjacent pivots become large, and there is often a high-energy region 
between them where the sampling should be dense enough. Conversely, if the number is too large or if k is large, the 
energy grows quadratically with the total length of the path, and solving this problem becomes costly and time-consuming. 
Note that in practice, it is hard to find the exact minimum around each pivot, and thus the loss L(p i) often only needs to 
be very close to the minima along the path.

3.4. A minimum energy path for PINN

The PDEs’ parameters, such as Reynolds number and Mach number, are embedded into the loss function of neural 
networks as well as the PDE residual, initial condition, and boundary condition. In previous investigations, these parameters 
were usually considered as constants for solving a specific problem. In this manuscript, the PDEs’ parameters are treated as 
a series of trainable weights rather than constants to obtain PINN solutions under different parameters. This change does not 
affect the smoothness of the loss function because the solution varies continuously with the PDEs’ parameters for problems 
we are investigating in this study. Moreover, the losses and derivatives of PINN are sufficiently smooth because of the Tanh 
5
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activation function. These properties make it easier to construct such a minimum energy path compared with the previous 
studies.

Suppose the neural network weights θ ∈ V 1 and the PDEs’ parameters λ ∈ V 2, where V 1 and V 2 are two different 
parameter space and V 1 ∩ V 2 = {0}. We write the direct sum of V 1 and V 2:

V = V 1 ⊕ V 2 (6)

where V is a new parameter space consisting of V 1 and V 2, and dim (V ) = dim (V 1) + dim (V 2). For every � ∈ V , there 
exist unique θ ∈ V 1 and λ ∈ V 2, such that � = θ + λ.

Similar to section 3.3, θ1 and θ2 are two minima of the PINN loss function, and the corresponding PDEs’ parameters 
are λ1 and λ2, respectively. For �1 = θ1 + λ1 and �2 = θ2 + λ2, the minimum energy path and the energy function in the 
parameter space of V can be defined:

p∗(�) = arg min
p f rom �1 to �2

{
max
�∈p

L(�)

}
(7a)

E(p) =
N∑

i=1

L(�i) +
N∑

i=1

1

2
k‖�i+1 − �i‖2 (7b)

the goal is to find a continuous path p∗ from �1 to �2 with a lowest maximum loss in the new parameter space.
It remains challenging to efficiently solve equation (7b) from �1 to �2 due to the huge parameter space of V . In the 

context of tPINN, the transfer learning process can be described by the PDEs’ parameters that are the trainable weights 
in the parameter space of V 2. Based on this understanding, we define a feasible minimum energy path for PINN that is 
guided by the PDEs’ parameters. Different from equations (7a) and (7b), this involves the inverse problem of solving the 
minimum energy path, i.e., knowing the weights of source task �1 = θ1 + λ1 and the minimum energy path p∗ described 
by λ (λ1 → λ2), solving θ2. Thus, the inverse problem of the minimum energy path for PINN is defined:

p∗(θ ,λ) = arg min
p f rom λ1 to λ2

{
max
λ∈p

L(θ ,λ)

}
(8)

where λ1 and λ2 are the known PDEs’ parameters. λ is initialized with λ1 and gradually fine-tuned towards λ2, while 
leaving the weights θ free to adapt to this fine-tuning to still minimize the PINN loss L(θ ).

Note that, the previous studies [29,33] tried to find the minimum energy path in huge parameter space of V , such as 
neural networks with dozens or hundreds of neurons/channels per layer, which is costly and time-consuming. Compared 
with the previous studies, the advantage of equation (8) is that the PDEs’ parameters with clear physical meaning, describe 
the minimum energy path within low dimensional parameter space of V 2, which defines the minimum energy path that is 
easy to solve for PINN.

The solution of equation (8) can be transformed into an optimization process. Along the minimum energy path, N + 2
pivots pi (i = 0, . . . , N + 1, p0 = λ1 and pN = λ2) on the path can be found. For two adjacent pivots i and i + 1, the energy 
function is expressed:

E(pi) = L(θ i,λi) + 1

2
k‖λi+1 − λi‖2 (9)

To understand this path intuitively, assume PINN has been trained, and a weight set with global minimum loss has been 
identified. Now if the PDEs’ parameters are perturbed by a small constant, but leave the PINN’s weights free to adapt to this 
change to still minimize the PINN loss. It can be argued that the PINN’s weights can “make up” the perturbation by adjusting 
somewhat. This concept is very similar to transfer learning cases in that they both start from intelligence initialization and 
optimize the network weights to obtain a target model. However, previous transfer learning cases for PINN only focus on 
knowledge transfer at the feature level and cannot achieve transfer learning cases with a large range of parameter variations. 
The minimum energy path for PINN is to find an optimization path with low loss, thus ensuring the stability of the training 
process.

3.5. Adaptive transfer learning for PINN

Previous transfer learning studies for PINN only focus on knowledge transfer at the feature level and are limited to cases 
with a small range of parameter variation. Once the range of parameter variation becomes large, it also suffers from the 
drawbacks of the difficult optimization because of the high-dimensional non-convex loss function. Equations (8) and (9)
introduce the minimum energy path for PINN that is utilized to overcome the above limitations.

Based on the concept of the minimum energy path, this manuscript proposes an adaptive transfer learning for PINN 
(AtPINN). As shown in Fig. 3, a series of pivots λ1, λ2, ..., λN between λs and λt are chosen (λs = λ0, λt = λN+1). Due to 
the small parameter distance between adjacent pivots λi and λi+1, it is easy to transfer the PINN described by λi to the 
6
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Fig. 3. The basic idea of AtPINN, PINN starts from the source task described by λs , is sequentially trained to the PINN described by λ1, λ2, ..., λN , and finally 
reaches the target task described by λt .

next PINN described by λi+1. Thus, initialized by the source task, PINN is sequentially trained to the PINN described by 
λ1, λ2, ..., λN , and finally reaches the target PINN.

To implement the process, a new loss function is designed in the new parameter space V for AtPINN according to the 
equation (9):

LAt P I N N(θ ,λ) = wFLF (θ ,λ) + wILI(θ ,λ) + wBLB(θ ,λ) + wPLP (λ)

= LP I N N(θ ,λ) + wPLP (λ)
(10)

where wP is the weight of LP (λ) with wP = 1
2 k, and LP (λ) is expressed as:

LP (λ) = ‖λ − λt‖2 (11)

where λ is initialized by λs and the optimization target is λt , and LF (θ , λ), LI(θ, λ), and LB(θ , λ) can be redefined:

LF (θ ,λ) = 1

NF

NF∑
i=1

‖F(x(i), t(i); û,λ)‖2 (12a)

LI(θ ,λ) = 1

NI

NI∑
i=1

‖I(x(i), t(i),h(i); û,λ)‖2 (12b)

LB(θ ,λ) = 1

NB

NB∑
i=1

‖B(x(i), t(i), g(i); û,λ)‖2 (12c)

λ can be updated by the gradient descent procedure:

λi+1 = λi − η∇λLAt P I N N(θ ,λ) (13)

where η is the learning rate. At the ith epoch, PINN is trained to approximate the solution described by λi . At the next epoch 
of i + 1, λi is updated to λi+1 by equation (13), and then PINN is optimized to approximate the next solution described by 
λi+1

According to equations (8) and (10), the loss function of AtPINN is defined in the new parameter space of V and guides 
the PINN to adaptively transfer from the source to the target task. λ is utilized to control the direction of this path, and θ
is free to adapt the change imposed by λ. Three points need to be noted:

(I) If the loss is required to converge to a global minimum value for each update of λ, it will consume a lot of compu-
tational time and resources. Thus, this manuscript only needs the loss to converge to a low level, which, on the one 
hand, can ensure the stability of the optimization, and on the other hand, can effectively reduce the computational 
time.

(II) Not the AtPINN loss LAt P I N N(θ , λ), but the PINN loss LP I N N (θ, λ) in equation (10) needs to be always kept at the low 
level in the parameter space of V 1 during the training process.
7
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Fig. 4. (a) The minimum energy path on the two dimensional loss surface, the black solid line represents the minimum energy path, the red dashed line 
represents the linear path, and the blue dash dot line represents a path between the minimum energy path and linear path. (b) The gradient behaviors of 
different loss terms.

(III) λ guides the direction of transfer learning, and the parameter loss LP (λ) remains a certain value until the optimization 
goal is reached.

3.5.1. Determine the weight assignment of each loss term
The loss function of PINN contains multiple terms that compete with each other during the training process. AtPINN 

has one more loss term than PINN, and in addition, λ can exist in different loss terms with various forms, which implies 
more complicated competition and may lead to an unstable optimization process. For example, when λ exists in the PDEs, 
there are usually a large number of sampling points distributed in the computational domain that vigorously dominate the 
update of neural networks. When λ exists in initial or boundary conditions, only a small amount of points are sampled 
and powerlessly update neural networks. To ensure AtPINN has good robustness in different applications, it is necessary to 
assign suitable weight to each loss term.

Now, we determine the weights (wF , wI , wB , and wP ) by analyzing the gradient behaviors of each loss term during 
the training process. First, consider the gradient of LAt P I N N(θ , λ) with respect to θ :

∇θLAt P I N N = wF
∂LF
∂θ

+ wI
∂LI
∂θ

+ wB
∂LB
∂θ

(14)

Since the parameters λ exist only in the PDEs, the gradient of LAt P I N N(θ , λ) with respect to λ:

∇λLAt P I N N = wF
∂LF
∂λ

+ wP
∂LP
∂λ

(15)

Suppose F⊥ = ∇θLAt P I N N , F −
�

= wF
∂LF
∂λ , and F +

�
= wP

∂LP
∂λ . Fig. 4(a) exhibits the minimum energy path on the two 

dimensional loss surface and gradient behaviors on a point pi are visualized in Fig. 4(b). They can be divided into two 
directions: (1) F⊥ is perpendicular to the minima energy path, and (2) F −

�
and F +

�
are parallel to the path. Let us focus on 

their behaviors:

(I) F +
�

is derived from LP (λ) and guides the direction of transfer learning. Thus, the direction of the minimum energy 
path is determined by the local tangent F +

�
to the path and the sign of F +

�
is defined as positive.

(II) θ is free to adapt to the change imposed on λ, but this adaptability is limited due to the properties of neural networks, 
which increases the PINN loss LP I N N(θ , λ) at each epoch. In other words, the update of θ is slower than the update 
of λ, causing the large LP I N N(θ , λ). Thus, F −

�
is generated by LP I N N(θ , λ) and thus its sign is negative, which holds 

back the transfer of λ.
(III) The addition of F +

�
and F −

�
determines the change imposed on λ. As a result, F⊥ drives θ to be gradually updated 

from the linear path to the minimum energy path.
(IV) In addition, ∇LP I N N(θ , λ) = F −

�
+ F⊥ suggests the gradient behavior originating from the PINN loss LP I N N(θ , λ) that 

also is presented in Fig. 4(b).

In fact, we can imagine a force analysis of a spring to understand the gradient behaviors. The function of F +
�

can be 
analogized to a driving force applied to a spring, F −

�
is a restoring force originating from the spring, and F⊥ is the result of 

F +
�

and F −
�

acting on the spring.
Neural networks have a limited capacity to adapt to a change or perturbation imposed on the PDEs’ parameters. On the 

one hand, if λ changes too much, F +
�

becomes large, and consequently, λ is optimized to the target value at a rapid speed, 
but θ is updated too slowly to accommodate this change, resulting in a large LF (θ, λ). It means that the optimization 
8
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process deviates from the expected path. On the other hand, if the change of λ is too small, a considerable number of 
epochs are required to reach the target parameters and the optimization process becomes expensive and time-consuming. 
Moreover, it should be noted that λ needs to be updated appropriately to ensure a low loss of LF (θ , λ). According to these 
analyses, the weights wF , wI , wB , and wP can be determined and the loss function is:

LAt P I N N(θ ,λ) = |LF (θ ,λ)|
c

LF (θ ,λ) +LI(θ) +LB(θ) +LP (λ) (16)

where weight coefficients wI and wB are set as 1 because λ exists only in the PDEs, wP is also set as 1 to ensure the 
speed of the transfer learning. wF is determined by the magnitude of LF (θ, λ) together with a small constant c (such 
as 0.001). During the training process, LF (θ , λ) needs to remain at the same order of magnitude as c, that is utilized 
to approach the minimum energy path. If |LF (θ , λ)| > c, the larger LF (θ, λ), the larger wF imposed on it. AtPINN will 
focuses on reducing LF (θ, λ) to get close to the expected path. If |LF (θ, λ)| < c, a penalty is imposed on LF (θ , λ), and 
AtPINN pays more attention to the transfer process of the PDEs’ parameters.

Based on the above analysis, the principle of weight assignment can be determined: keep the loss terms with the 
PDEs’ parameters (such as LF (θ , λ)) at a low level. Starting with intelligent initialization, the other loss terms can also be 
maintained at a low loss where there is little competition between multiple loss terms. Similarly, if the PDEs’ parameters 
only exist in the initial or boundary conditions, the loss function of AtPINN can also be obtained:

LAt P I N N(θ ,λ) = LF (θ) + |LI(θ ,λ)|
c

LI(θ ,λ) +LB(θ) +LP (λ) (17a)

LAt P I N N(θ ,λ) = LF (θ) +LI(θ) + |LB(θ ,λ)|
c

LB(θ ,λ) +LP (λ) (17b)

3.5.2. Normalization for multiple PDEs’ parameters
The PDEs’ parameters λ often include multiple parameters [λ1, λ2, ..., λM ]. AtPINN is initialized with λs = [

λ1
s , λ

2
s , · · · , λM

s

]
and the optimization goal is λt = [

λ1
t , λ2

t , · · · , λM
t

]
. It takes a considerable long training process to transfer each parameter 

from the source task to the target task one by one. This manuscript takes the normalization technique to transfer mul-
tiple parameters simultaneously to reduce training time as well as to avoid over-complicating this problem. For arbitrary 
parameter λm:

λ = λm − λm
s

λm
t − λm

s
(18)

where λ is the normalized parameter that is initialized with 0 for the source task and set to 1 for the target task, λi
s and λi

t
are the ith parameter of source and target parameter, respectively.

Each parameter is embedded into loss function of AtPINN by:

λm = λ
(
λm

t − λm
s

) + λm
s (19)

To implement the adaptive update of λ from 0 to 1, the loss terms LP (λ) is written as

LP (λ) = ‖λ − 1‖2 (20)

and λ can be updated by:

λi+1 = λi − η

(
M∑

m=1

∂LP I N N(θ ,λ)

∂λm

∂λm

∂λ
+ ∂LP (λ)

∂λ

)
(21)

where λ = [λ1, λ2, ..., λM ].
The process of normalization introduces multiple Jacobian factors J (λ) = [λ1

t − λ1
s , λ2

t − λ2
s , ..., λM

t − λM
s ] that impact the 

weights in equation (16) and (17) when calculating the gradient. To address this effect, the strategy of using the maximum 
value of the multiple Jacobian factors max( J (λ)) is adopted to adjust the weights.

For multiple parameters [λ1, λ2, ..., λM ], equation (16) becomes

LAt P I N N(θ ,λ) = |LF (θ ,λ)|
c · max( J (λ))

LF (θ ,λ) +LI(θ) +LB(θ) +LP (λ) (22)

where J (λ) = [λ1
t − λ1

s , λ2
t − λ2

s , ..., λM
t − λM

s ], and equation (17) becomes

LAt P I N N(θ ,λ) = LF (θ) + |LI(θ ,λ)|
c · max( J (λ))

LI(θ ,λ) +LB(θ) +LP (λ) (23a)

LAt P I N N(θ ,λ) = LF (θ) +LI(θ) + |LB(θ ,λ)|
LB(θ ,λ) +LP (λ) (23b)
c · max( J (λ))

9
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3.6. Discussion

This manuscript introduces a novel method AtPINN by leveraging the concept of the MEP. AtPINN implements transfer 
learning along the expected low-loss path, ensuring the stability of the optimization. During the process, The PDEs’ param-
eters are adaptively updated from the source to the target parameters to guide the optimization of PINN from the source 
to the target task. It is important to highlight that unlike the MEP, which requires the loss function to reach its minimum 
value, AtPINN only requires the loss function to reach a relatively small order of magnitude (e.g., 0.01 or 0.001).

4. Results and discussion

In this section, AtPINN is employed to achieve transfer learning cases with a large range of parameter variation for 
solving a series of complex problems (such as the sharp local gradient and high-frequency problems), and the classical PINN 
and tPINN are also executed for comparison. All cases are performed by Pytorch 1.2 with a GPU of NVIDIA GeForce RTX 
2060. More details are available on GitHub at https://github .com /liuyangair /AtPINN.

4.1. Boundary layer simulation of ordinary differential equation

4.1.1. Problem setup
The first case is to use AtPINN to simulate the boundary layer, which exists widely in computational mechanics. For 

example, the boundary layer in fluid mechanics is the thin region of flow adjacent to a solid surface due to the influence of 
viscosity. In addition, the edge layer in solid mechanics, the interface layer between the atmosphere and the ocean or land, 
etc., are the same phenomenon. In the inner region of the boundary layer, the velocity gradient is very large. However, PINN 
is not robust in representing this sharp local gradient in a broad computational domain. In this case, based on a smooth 
initial solution, we try to use AtPINN to implement a transfer learning case with a large range of parameter variation to 
model boundary layer phenomena.

To simplify the simulation, consider a second-order ordinary differential equation (ODE):

εy′′ + y′ + y = 0, 0 < x < 1 (24a)

y(0) = a, y(1) = b (24b)

where ε is a small parameter (ε � 1), a, b is the boundary conditions (a, b ≥ 0 and a �= be), y(x) is the solution of the ODE. 
The solution of this ODE appears as a thin boundary layer at x = 0 as the parameter tends to 0 (ε → 0).

The ODE will be solved with the classic PINN, tPINN, and AtPINN in a 1-D computational domain of x = [0, 1] with 500 
points uniformly distributed. The boundary conditions are set as a = 0 and b = 1. PINN is initialized with random weights, 
and tPINN is initialized with reference weights that have been learned previously. Their loss functions are the same:

LP I N N(θ) = LF (θ) +LB(θ) (25)

AtPINN is also initialized with reference weights and its loss function is:

LAt P I N N(θ , ε) = |LF (θ , ε)|
c

LF (θ , ε) +LB(θ) +LP (ε) (26a)

LP (ε) = ‖ε − εt‖2 (26b)

where c is set to be 0.001, ε is initialized by εs (source task), and εt is the ODE parameter of the target task.

4.1.2. Results for the ODE boundary layer
The results are divided into two parts. The first part is to generate a source PINN. The fully-connected neural networks 

with 3 hidden layers and 30 neurons per layer are employed. The Adam optimizer with the initial learning rate of 0.0001 
is employed and the maximum optimization epoch is set as 10,000. PINN is used to solve the ODE with ε = 0.2. Fig. 5
plots the results. The solution is smooth and gentle in the whole computational domain, and the boundary layer has not 
yet appeared.

To demonstrate the advantages of AtPINN, the second part is to use PINN, tPINN, and AtPINN to solve the ODE with 
ε = 0.02 and 0.002, respectively. The network structure of all cases is the same as the source PINN. PINN is set with 
the same optimizer as the source PINN. The LBFGS algorithm runs with low time memory requirement but provides faster 
convergence than first-order methods. It is worth mentioning that the LBFGS algorithm is based on Newton’s method, hence 
the computational accuracy strongly depends on the initial guess. Transfer learning strategy enhances the convergence of 
training based on a smart initialization, so tPINN and AtPINN are set with the LBFGS optimizer. In addition, the results of 
the PINN optimized by the LBFGS algorithm with random initialization are also presented for comparison. Note that the 
optimization algorithm for all the transfer learning cases is the LBFGS algorithm to minimize the loss function.

Fig. 6 gives the comparison of all cases. First, for the results of PINN, both Adam and LGFBS optimizers achieve the 
same results, which indicates that the results are independent of the optimization algorithm. Good predictions are given 
10

https://github.com/liuyangair/AtPINN


Y. Liu, W. Liu, X. Yan et al. Journal of Computational Physics 490 (2023) 112291
Fig. 5. Comparison of the exact solution and PINN solution with ε = 0.2 (source task).

when ε = 0.02, corresponding to a boundary layer thickness of 0.08. However, PINN fails to solve the case with ε = 0.002, 
because the boundary layer (the thickness of 0.01) becomes much thinner than the case with ε = 0.02. Second, tPINN shows 
good results in the case of ε = 0.02. However, tPINN is not effective in the case of ε = 0.002, which may be due to that 
the distance between εtarget and εsource is too large and the target task is too different from the source task. Finally, the 
proposed method, AtPINN not only exhibits good results in the case of ε = 0.02 but also in the case of ε = 0.02, which 
proves the ability and potential for simulating the sharp local gradient problems.

4.1.3. Analysis
A. Comparison of losses for different PINN cases Fig. 7 plots the loss of the PINN with different parameters and optimizers. For 
the Adam optimizer, PINN solves the case of ε = 0.2 with fast convergence (no more than 2000 epochs). In the case of ε =
0.02, although good results are obtained, the optimization processing becomes difficult with the same settings (more than 
8000 epochs). In the case of ε = 0.002, the loss does not decrease and remains on the order of 10e-1, which indicates that 
PINN cannot address this case. For the LGFBS optimizer, PINN solves the case of ε = 0.02 with less than 1000 epochs, and 
it can not deal with the case of ε = 0.002 either.

B. Comparison of losses between PINN and tPINN Fig. 8 shows the comparison of losses between PINN and tPINN when ε =
0.02. Two differences deserve special attention. First, tPINN has a high loss at the beginning of training, which is caused 
by the large range of the sudden variation in the parameter. A more detailed explanation of this phenomenon will be 
discussed through the visualization of tPINN. Second, tPINN exhibits fast convergence, twice as fast as the PINN, indicating 
the advantage of transfer learning techniques.

C. Comparison of three tPINN cases with different ranges of parameter variation To further explain the large loss at the beginning 
of the ε = 0.02 case, another tPINN case with ε = 0.15, which is much closer to the source task, is implemented. Fig. 9
plots the results, and it can be seen that a high-precision solution is obtained. Now, we will compare three tPINN cases with 
different ranges of parameter variation. Fig. 10 gives the loss comparison of tPINN cases with ε = 0.15, 0.02, and 0.002. At 
the beginning of training, the losses of ε = 0.02 case and ε = 0.002 case are comparable, and they are both higher than 
the loss of ε = 0.15 case. As ε decreases, the range of parameter variation from the source task becomes large and the 
transfer process from the source to the target task becomes difficult. The loss of ε = 0.15 case converges to the order of 
10e-4 within 200 epochs, and the loss of ε = 0.02 case converges within 500 epochs. However, since tPINN can not address 
the case of ε = 0.002, the corresponding loss stays above 10e-1.

D. Visualization of optimization process for tPINN The differences among three tPINN cases with different ranges of param-
eter variation will be further discussed by visualization analysis. Fig. 11 gives the two-dimensional and three-dimensional 
visualization, exhibiting the solution of some epochs in the optimization process of tPINN. tPINN is initialized by the source 
task which is presented as a blue solid line in Fig. 11(a) and 11(b). In the tPINN case of ε = 0.15 showed in Fig. 11(a) and 
11(c), the solution features of the source task are preserved because of the small variation between the source and target 
parameter. After a few epochs, the optimization direction is determined so that the solution can be quickly transferred to 
the target task. In the tPINN case with ε = 0.02 presented in Fig. 11(b) and 11(d), the tPINN solution starts with the source 
task, and drops suddenly to a non-physical solution, which can explain the reason why tPINN has a large loss at the begin-
ning. The features of the source task are not fully utilized and only the feature representing the local gradient near x = 0 is 
retained. First, tPINN takes a long time of training to find the optimization direction that lies in the sharp gradient near x =
0. Then, tPINN gradually optimizes the weights, preferentially satisfying the local gradients near x = 0, until the target task 
is reached. Through the visualization analysis, it can be seen that the advantage of transfer learning is not fully exploited in 
the tPINN case with a large range of parameter variation. In some sense, tPINN is equivalent to the re-optimization process, 
which does not apply to many problems.
11
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Fig. 6. Results of different methods for the ODE boundary layer (blue dashed line represents the exact solution, and red dotted line represents the solution 
of the neural networks).

E. Comparison of various losses for AtPINN To describe the optimization process of AtPINN in detail, three various losses are 
defined: LAt P I N N = LF + LB + LP , LAt P I N N O D E = LF + LB , and LAt P I N Nε = LP . In addition, the loss of tPINN defined 
as Lt P I N N is also used for comparison. Fig. 12 gives the results. We first analyze the variation of ε and various losses of 
AtPINN, which can be divided into four stages (also see in Table 1):

(I) The first stage is the few epochs at the beginning of training, where ε decreases rapidly from the initial value. Since 
neural networks are initialized by the source PINN and the weights satisfy the equations with the initial parameter, 
12
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Fig. 7. Loss comparison of the PINN with different parameters and optimizers.

Fig. 8. Comparison of losses between PINN and tPINN when ε = 0.02 (LBFGS optimizer).

Fig. 9. Comparison of exact and tPINN solution (LGFBS, ε: 0.2→0.15).

LAt P I N N O D E is very small in the order of 10e-6. The loss is mainly contributed by LAt P I N Nε at this time, which is used 
to update ε, resulting in the rapid decrease of ε.

(II) In the second stage, the update of ε leads to an update of the neural network weights, which is also fed back to 
LAt P I N Nε and thus ε returns to the position near the initial value. In this stage, the optimization algorithm balances 
the loss terms LAt P I N N O D E and LAt P I N Nε , which can be considered as the preparing for parameter adaptive learning.

(III) In the third stage, ε is updated by the LAt P I N Nε term from εs to εt , correspondingly, neural networks are trained from 
the source task to the target task. As seen in Fig. 12(c) and 12(d), the loss is mainly contributed by LAt P I N Nε that is 
an order of magnitude higher than LAt P I N N O D E . More importantly, LAt P I N N O D E is in the order of 10e-2 to 10e-3, which 
means that the solution at each epoch during the AtPINN optimization process is close to the exact solution of the 
13
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Fig. 10. Comparison of three tPINN case with different range of parameter variation.

Fig. 11. 2-D and 3-D visualization during the optimization process of tPINN.

corresponding parameter. Fig. 13 presents the solution at epoch = 100 with the corresponding parameter of 0.11965. 
At this epoch, the solution is close to the current exact solution, demonstrating the above analysis.

(IV) The fourth stage is the end of optimization. ε reaches the target parameter and LAt P I N Nε rapidly reduces to near 0. 
Contrary to the third stage, the loss mainly comes from the LAt P I N N O D E . The purpose of optimization in this stage is 
to obtain a high-precision solution.

Second, we compare the differences between tPINN and AtPINN. Although Lt P I N N and LAt P I N N O D E have the same loss 
definition, Lt P I N N is two orders of magnitude larger than LAt P I N N O D E (see the second and third stages in Fig. 12(c) and 
12(d)). The tPINN falls the local optimal solution (see Fig. 11(d) and Fig. 6(f)) and therefore leads to a high loss. For AtPINN, 
LAt P I N N O D E is the loss defined in section 3.5.1 that needs to be always kept at the low level, and the optimization process is 
performed along the designed low-loss path. Hence, the AtPINN solution at each epoch is very close to the physical solution, 
which will be illustrated in the next analysis.

F. Visualization of optimization process for AtPINN The 2-D and 3-D visualization of the optimization process for AtPINN is 
presented in Fig. 14. Unlike tPINN, AtPINN maintains the characteristics of the source task solution. Based on a smooth 
initial solution, AtPINN is gradually optimized from the source task to the target task. Besides, the solution at each epoch 
during the AtPINN optimization process conforms to the basic form of the physical solution. In the 3-D visualization, the 
14
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Fig. 12. The variation of ε and the comparison of various losses during the AtPINN optimization process.

Fig. 13. Comparison of exact and AtPINN solution with the epoch = 100 (the corresponding ε = 0.11965).

Table 1
Four Stages during the AtPINN optimization process.

Stage Epoch Evaluation

I At the beginning
Start training AtPINN
Loss is mainly contributed by LAt P I N Nε

II
A few epochs
after the start

Balance LAt P I N N O D E and LAt P I N Nε

They have the same order of magnitude

III Main training
Parameter adaptive learning
LAt P I N Nε is much larger than LAt P I N N O D E

IV At the end
Leading to an accurate solution
Loss is mainly contributed by LAt P I N N O D E

optimization can be considered to proceed along a smooth surface, which fully demonstrates the advantages of AtPINN. 
As shown in Fig. 14(b) and 14(d), AtPINN perfectly solves the task of ε = 0.002 that tPINN cannot solve, transferring the 
solution from ε = 0.2 to ε = 0.002.

G. The visualization of MEP for AtPINN The adaptive transfer process is implemented along a designed or expected low-loss 
path, which can ensure the stability of the training process. To demonstrate this process in AtPINN, the MEP is visualized 
through the following steps: (1) Extract the weights of each step in the optimization process of AtPINN [�0, �1, . . . , �N+1]. 
(2) Apply principal component analysis (PCA) based on the literature [40] to select the two most explanatory directions v1
and v2 (basis vectors for PCA). (3) Calculate the coordinates of the starting point �0 and ending point �N+1 of the MEP 
15



Y. Liu, W. Liu, X. Yan et al. Journal of Computational Physics 490 (2023) 112291
Fig. 14. 2-D and 3-D visualization during the optimization process of AtPINN.

Fig. 15. 2-D and 3-D visualization of MEP for AtPINN.

based on v1 and v2, which are (3.39, 0.48) and (-3.28, 0.33), respectively. (4) Select a reference point �r with coordinates 
(0, 0). (5) Plot a loss function of the form LAt P I N N(�r +αv1 +βv2) for α ∈ [−4, 4] and β ∈ [−0.4, 0.6], as shown in Fig. 15. 
It can be observed that along the MEP, the loss function is in a valley with low loss, while in other areas, the loss function 
has larger values, which is consistent with Fig. 2.

H. The influence of c The selection of c can have a significant impact on the process of adaptive transfer learning. Here we 
aim to investigate and analyze the effects of this choice in detail. To this end, different values of c, namely 1, 0.1, 0.01, 
0.001, and 0.0001, are considered, and AtPINN is employed to solve the ODE case with ε = 0.02 based on the source task 
(ε = 0.2). Fig. 16 presents the variation of ε and LAt P I N N O D E during the optimization process of AtPINN for different values 
of c. When c is set to 1, the weight wF is small and the optimization mainly focuses on updating ε at the beginning. This 
enables ε to rapidly reach the target value. However, due to slow updates of θ that cannot adapt to such quick changes of ε, 
LAt P I N N O D E remains at the order of 1. These findings suggest that the optimization process of AtPINN has deviated from the 
16
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Fig. 16. The variation of ε and LAt P I N N O D E during the optimization process of AtPINN for different values of c.

Fig. 17. 3-D visualization during the optimization process of AtPINN (c = 1).

expected path, as demonstrated by a three-dimensional visualization (shown in Fig. 17). AtPINN can carry out the adaptive 
transfer learning from the source task to the target task for c values ranging from 0.1 to 0.0001. As the value of c decreases, 
the order of magnitude of LAt P I N N O D E will gradually decrease, which in turn requires more epochs for the transfer process. 
This suggests that the transfer process can be controlled by adjusting the weight of loss terms containing parameters. If the 
value of c is too large, AtPINN may deviate from the expected path, while if c is too small, the transfer process may become 
exceedingly slow. To ensure a stable and efficient transfer process, this manuscript recommends setting c to either 0.01 or 
0.001.

I. Performance of AtPINN with different network configurations We investigate the adaptive transfer performance of AtPINN 
across different scales of neural networks. Specifically, consider five neural networks with parameter counts of 1021, 766, 
2881, 11161, and 6601, respectively, each with different numbers of hidden layers and nodes. The number of hidden layers 
ranges from 2 to 8, and the number of nodes per hidden layer ranges from 15 to 60. These networks can be divided into 
two categories: (1) the first category has a fixed number of hidden layers (4 layers) but varying numbers of nodes (15, 
30, and 60); (2) the second category has a fixed number of nodes per layer (30 nodes) but varying numbers of hidden 
layers (2, 4, and 8). For the source task, these networks are trained to solve the ODE case with ε = 0.2 using the Adam 
optimizer with an initial learning rate of 0.0001 and a maximum epoch of 10,000. For the target task, the networks are 
trained to solve the case with ε = 0.002 using the L-BFGS optimizer with an initial learning rate of 0.1, a maximum epoch 
of 3000, and a c set to 0.01. Besides, PINN and tPINN with the same optimizer are also used to solve the same target 
task. Table 2 gives the average absolute error of PINN, tPINN, and AtPINN for the case with ε = 0.002. For all five neural 
networks, AtPINN achieves high accuracy in solving the ODE case with ε = 0.2, whereas PINN and tPINN failed to solve 
the problem. These results demonstrate the excellent performance of AtPINN across different network sizes. Fig. 18 gives 
adaptive transfer process of ε for different network configurations. Besides, the adaptive transfer process of AtPINN exhibits 
faster convergence when the number of neurons in the hidden layer increases, given that the number of hidden layers is 
fixed. Similarly, when the number of neurons in the hidden layers is held constant, the adaptive transfer process of AtPINN 
displays quicker convergence as the number of hidden layers increases. Moreover, the acceleration effect of increasing the 
network depth is superior to that of increasing the number of nodes, which is in line with the conventional understanding 
that deeper neural networks have greater expressive power. These findings suggest that increasing the number of trainable 
parameters in neural networks can accelerate the adaptive transfer process of AtPINN.
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Table 2
The average absolute error of PINN, tPINN, and AtPINN for the case with ε = 0.002.

Hyperparameters PINN tPINN AtPINN

Layers=2, Nodes=30 1.4689 1.4688 0.0017
Layers=4, Nodes=15 1.4688 1.4687 0.0020
Layers=4, Nodes=30 1.4688 1.4688 0.0009
Layers=4, Nodes=60 1.4688 1.4688 0.0027
Layers=8, Nodes=30 1.4688 1.4688 0.0028

Fig. 18. Adaptive transfer process of ε for different network configurations.

Fig. 19. Comparison of the exact solution and PINN solution with ε = 0.2 (source task, shock layer).

4.2. Shock layer simulation of ordinary differential equation

4.2.1. Problem setup
In this section, AtPINN is exploited to deal with another problem in fluid mechanics, the shock wave problem. Consider 

such an equation:

εy′′ + yy′ + e1−x y = 0, 0 < x < 1 (27a)

y(0) = a, y(1) = b (27b)

where ε is a small parameter (ε � 1).
In the boundary condition set with a = −1, b = 1, the solution of equation (27) exhibits interior layer behavior, which 

is also used to simulate the shock wave in aerodynamics. The computational domain and the sampling data are similar to 
section 4.1.1. The loss functions of PINN and tPINN are defined as equation (25), and AtPINN as equation (26a) and (26b).

4.2.2. Results for the ODE shock layer
First, the source PINN with ε = 0.2 is generated. The hyperparameters of the neural networks and settings of the opti-

mizer are the same as those in Section 4.1.1. Fig. 19 gives the results. The solution varies gently at the boundary and slowly 
increases from -1 to 1 throughout the interval. Due to the large value of ε, the solution presents a smooth curve, and the 
shock wave layer is not obvious. The PINN solution is very close to the exact solution, and the loss is reduced to below 
10e-5, which illustrates the effectiveness of PINN under the current parameter.
18



Fig. 20. Results of different methods for the ODE shock layer (blue dashed line represents the exact solution, and red dotted line represents the solution of 
neural networks).

Then, the three methods are used to solve the ODE with ε = 0.02 and 0.002, respectively. All the cases are optimized by 
the LBFGS algorithm. Fig. 20 gives the comparison results. The results of PINN fall into local optimal solutions and cannot 
accurately simulate the shock layer. Due to the large range of parameter variation, tPINN shows the same results as PINN. 
Only AtPINN achieves satisfactory results, which indicates the ability to capture the shock layer.

Fig. 21 gives the variation of ε and the comparison of four losses. The variations of ε and various losses are the same 
as the analysis in section 4.1.3. Note that the losses of two tPINN cases are larger than 10e-1, because the corresponding 
solutions converge to non-physical solutions. Fig. 22 gives the visualization analysis of the AtPINN training process. During 
the optimization process, the smooth and gentle solution is gradually optimized to the solution with sharp inner layer under 
the guidance of the parameter, and finally reaches the target solution.

4.3. Boundary layer simulation of partial differential equation

4.3.1. Problem setup
In this case, a parabolic equation problem with the boundary layer will be illustrated. Consider the problem of solving:

ε
∂u

∂t
− ε2 ∂2u

∂x2
+ ∂u

∂x
− 2t = 0 (28a)

u (x,0) = 0 (28b)

u (0, t) = u (1, t) = 0 (28c)
Y. Liu, W. Liu, X. Yan et al. Journal of Computational Physics 490 (2023) 112291
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Fig. 21. The variation of ε and the comparison of various losses during the AtPINN optimization process (shock layer).

Fig. 22. 2-D and 3-D visualization during the optimization process of AtPINN (shock layer).
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Fig. 23. Comparison of the numerical reference solution and PINN solution with ε = 0.8.

where ε is a small parameter (ε � 1), u (x, t) is the solution to this equation, and the computational domain is 0 < x <
1, 0 < t ≤ 1. u (x, t) has a boundary layer at x = 1 and the gradient within the boundary layer becomes large as t increases.

The loss function of PINN and tPINN is defined as:

LP I N N(θ) = LF (θ) +LI(θ) +LB(θ) (29)

and the loss function of AtPINN is:

LAt P I N N(θ , ε) = |LF (θ , ε)|
c

LF (θ , ε) +LI(θ) +LB(θ) +LP (ε) (30a)

LP (ε) = ‖ε − εt‖2 (30b)

where c is set as 0.001.

4.3.2. Results for the PDE boundary layer
Firstly, the source PINN with ε = 0.8 is prepared. Fully-connected neural networks with 4 hidden layers and 50 neurons 

per layer are employed. The Adam optimizer with the same settings in section 4.1 is employed. The numerical reference 
solution and the PINN solution the are given in Fig. 23(a) and 23(b), respectively. The solution appears as a smooth surface 
in the entire computational domain, and the shape of their solutions is similar. Fig. 23(c) shows the comparison at t = 1, 
where the solution of PINN is very close to the reference solution. The loss in Fig. 23(c) reduces to below 10e-3. These 
illustrate the effectiveness of PINN in solving the case with ε = 0.8.

Then, PINN, tPINN, and AtPINN are utilized to solve the equation with ε = 0.08. The optimizers for the three cases are 
LBFGS algorithm. The results and numerical reference solution are plotted in Fig. 24. Besides, the solutions of t = 1 for all 
cases are compared in Fig. 24(e). As we can see, the solution of ε = 0.08 appears as a boundary layer at x = 1, and the 
gradient in the boundary layer becomes progressively larger as time increases. The PINN and tPINN cases fall into the local 
optimal solution, which is far from the numerical solution. Only AtPINN achieves good result, which is quite identical to 
numerical solution in Fig. 24(e).

In this case, define LAt P I N N = LF + LI + LB + Lε , LAt P I N N P D E = LF + LI + LB , and LAt P I N Nε = LP . Together with 
Lt P I N N , the variation of the parameter and various losses are presented in Fig. 25. The variations can be divided into four 
stages as analyzed in section 4.1.3. The difference is that AtPINN takes a long time to lead to a high accuracy solution in the 
fourth stage, in that the two dimensional solution requires a more refined optimization. Since tPINN fails to solve the current 
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Fig. 24. Results of different methods for the PDE boundary layer.

problem, the loss Lt P I N N is consistently not reduced. The visualization of the solution of t = 1 during the optimization is 
given in Fig. 26. It can be seen that the solution, the two dimensional surface, is also transferred gradually from the source 
task to the target task in a smooth form.

4.4. Boundary layer simulation of steady incompressible Navier-Stokes equations

4.4.1. Problem setup
In this case, AtPINN is implemented to model boundary layer phenomena when flowing through the NACA0012 airfoil. 

Consider the steady incompressible Navier-Stokes equations:

∂u + ∂v = 0 (31a)

∂x ∂ y
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Fig. 25. The variation of ε and the comparison of various losses during the AtPINN optimization process.

Fig. 26. 2-D and 3-D visualization during the optimization process of AtPINN (t = 1).

u
∂u

∂x
+ v

∂u

∂ y
= − 1

ρ

∂ p

∂x
+ μ

ρ

(
∂2u

∂x2
+ ∂2u

∂ y2

)
(31b)

u
∂v

∂x
+ v

∂v

∂ y
= − 1

ρ

∂ p

∂ y
+ μ

ρ

(
∂2 v

∂x2
+ ∂2 v

∂ y2

)
(31c)

where ρ is the density, p is the pressure, [u; v] are the velocity components, and μ is dynamic viscosity.
As shown in Fig. 27, the length l of the airfoil is 1 m, and the computational domain is −0.5 < x < 1.5 and −0.5 <

y < 0.5. The input data consists of 12000 points in the flow field, 240 points on the airfoil, and 600 points on rectangular 
boundaries (x = −0.5, x = 1.5, and y = ±0.5). The pressure data of the airfoil is provided for solving this case. Besides, the 
pressure and velocity information of the rectangular boundaries are also provided. When the Reynolds number (Re = ρUl

μ , 
U = √

u2 + v2) becomes large, the thin boundary layer occurs at the region around the airfoil, where a large number of 
points are sampled.

The loss function of PINN and tPINN is:

LP I N N(θ) = LF (θ) +LB(θ) +LD(θ) (32)
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Fig. 27. The computational domain of flowing through NACA0012 airfoil.

Fig. 28. The velocity magnitude and absolute error for PINN under Re = 50, μ = 0.02 (unit: m/s).

where the LD represents the loss term of observation data and its weight is set as 1. And the loss function of AtPINN is:

LAt P I N N(θ ,μ) = |LF (θ ,μ)|
c

LF (θ , ε) +LB(θ) +LD(θ) +LP (μ) (33a)

LP (μ) = ‖μ − μt‖2 (33b)

where c is set as 0.001, μ is used to indirectly represent the Reynolds number, and its initialization is μs .

4.4.2. Results
Neural networks of 4 layers with 100 nodes are employed and the LBFGS optimizer is chosen. The freestream velocity is 

1 m/s with the angle of attack of 0◦ , and the density is 1 kg/m3. First, the source PINN with Re = 50, μ = 0.02 is prepared. 
Fig. 28 gives the velocity magnitude U = √

u2 + v2 contour and its absolute error (refer to the CFD solution). The variation 
of velocity magnitude is gentle in the entire flow field. The source task shows an accurate result and the maximum error is 
no more than 0.03 m/s which is three percent of the freestream velocity.

Then, the source PINN is leveraged as initialization for solving the case with Re = 1000, μ = 0.001 through tPINN and 
AtPINN. When Re increases to 1000, a thin boundary layer appears at the region near the airfoil. Fig. 29 visually compares 
the velocity magnitudes and errors contour. Both two methods basically exhibit the accurate flowfield of flowing through 
the airfoil. However, when focusing on the boundary layer region around the airfoil, AtPINN achieves a smaller error than 
tPINN in simulating the sharp local gradient (see in Fig. 29(b) and Fig. 29(d)). The maximum absolute error of tPINN exceeds 
0.03 m/s, and the error of AtPINN is within 0.02 m/s. Define LAt P I N N =LF +LB +LD +Lμ , LAt P I N N P D E =LF +LB , and 
LAt P I N Nμ = LP in this case. Fig. 30 presents the variation of the three losses and Lt P I N N . LAt P I N N shows an evidently 
higher loss at the beginning, because μ is suddenly changed but the weights θ have hot been updated. LAt P I N N P D E is less 
than 0.01 throughout the whole training process and is always lower than Lt P I N N . These further demonstrate the advantage 
of AtPINN in solving problems with the sharp gradient in broad computational domains.

4.5. Laplace equation with high frequency

4.5.1. Problem setup
In this case, AtPINN is employed to directly solve the Laplace equation to model the transfer learning case under multiple 

parameters. In the spatial domain 0 < x < 1, 0 < t ≤ 1, the Laplace equation is considered:

∂2u

∂x2
+ ∂2u

∂ y2
= 0 ∀(x, y) ∈ U (34a)

u = g(x, y) ∀(x, y) ∈ ∂U (34b)

where g(x, y) = sin(−ω1π y)e−ω2πx , ωi ∈ R that corresponds to the eigenfunctions of the Laplace equation to keep the 
arithmetic simple. High frequencies are expected to be challenging to learn compared to lower frequencies, and thus we set 
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Fig. 29. Comparison of the tPINN and AtPINN results with Re = 1000, μ = 0.001 (unit: m/s).

Fig. 30. The comparison of various losses for the case with Re = 1000, μ = 0.001.

ω1 = 6, ω2 = 3 to lead to complex solutions. Besides, two parameters ω1, ω2 exist in the boundary condition, which also 
results in the complexity of solving this problem.

Another difference is that AtPINN is leveraged to directly address the above problem without intelligent initialization. 
Random initialization as the direct training is executed, which is different from the setup of transfer learning. In this set, 
AtPINN is expected to first learn the low-frequency solution and then be gradually guided by two parameters to obtain the 
high-frequency solution. Thus ω1 and ω2 are set to 0 as the initial value, and the target values are 6 and 3, respectively. 
According to section 3.5.2, ω1 and ω2 can be transformed to the interval of [0, 1] using normalization:

ω = ω1 − 0

6 − 0
= ω2 − 0

3 − 0
(35)

The loss function of AtPINN is:

LAt P I N N(θ ,ω) = LF (θ) + LB
c

LB(θ ,ω) +LP (ω) (36a)

LP (ω) = ‖ω − 1‖2 (36b)

where c is set as 0.00017, and ω is initialized to 0.
As a comparison, PINN is also used to solve this problem, and the loss function is:

LAt P I N N(θ) = LF (θ) +LB(θ) (37)

4.5.2. Results
Fully-connected neural networks with 6 hidden layers and 75 neurons per layer are employed. 22500 points are randomly 

sampled in the computational domain and 1200 points are uniformly distributed on the boundary. The LBFGS optimizer with 
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Fig. 31. Comparison of the PINN solution and AtPINN solution with ω1 = 6,ω2 = 3.

Fig. 32. The PDE and boundary losses of the two methods.

a learning rate of 0.5 is employed and the maximum iteration is 20000. Fig. 31 illustrates this difference in accuracy for 
the case of ω1 = 6π and ω2 = 3π . The traditional PINN shows a large error that is several orders of magnitude larger than 
the theoretical optimum. Obviously, the PINN solution falls into the local optimal solution and is not consistent with the 
physical law. With the same settings, the AtPINN result is consistent with the boundary condition accurately, as one would 
expect to exhibit a low error.

Fig. 31(a) presents various losses in different methods. For PINN, the PDE loss is an order of magnitude larger than the 
loss of the boundary condition, illustrates that PINN focuses excessively on satisfying the PDE rather than the boundary 
condition. For AtPINN, the losses of PDE and the boundary condition are basically in the same order of magnitude (see 
Fig. 32). Define LAt P I N N = LF + LB + Lω , LAt P I N N P D E = LF + LB , and LAt P I N Nω = LP . Together with LP I N N , these loss 
terms are displayed in Fig. 33. With the random initialization, LAt P I N N P D E is at the order of 1 that dividing a small constant 
c, causing a high loss of LAt P I N N . At the same time, neural networks are trained to find a solution to satisfy the Laplace 
equation. After a few epochs, LAt P I N N P D E is at a low level of 0.01 meaning that the physical solutions are obtained. Since 
then, LAt P I N N P D E is much smaller than LP I N N and the training process of AtPINN is carried out along the designed path 
to reach the final model. Moreover, as is exhibited in Fig. 34, AtPINN first learns the solution of ω1 = 1, ω2 = 0.5 at the 
epoch of 160 without the intelligent initialization, and then learns the complex solutions as ω1 and ω2 increase. This means 
that the adaptive transfer learning can be a particular optimization strategy where AtPINN learns the simple solution at the 
beginning of the training process and then is gradually transferred to solve the complex task. These further demonstrate the 
potential of AtPINN and extend the application scenarios of PINN.

5. Conclusions

This manuscript proposes an AtPINN based on the concept of the minimum energy path. The transfer learning process 
is implemented along the designed or expected low-loss path, ensuring the training process’s stability. AtPINN is employed 
to achieve transfer learning cases with a large range of parameter variation to simulate five complex problems. The results 
show that AtPINN shows promising potential to solve these problems and effectively extend the application of PINN. Here, 
we summarize the main properties of this new transfer learning framework as follows:
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Fig. 33. The PINN loss and various losses of AtPINN.

Fig. 34. The solutions during the optimization process of AtPINN. (a): epoch=160, (b): epoch=600, (c): epoch=1400, (d): epoch=3000, (e): epoch=9000, and 
(f): epoch=18000.

(I) The PDEs’ parameters are treated as the optimizable variables, together with the neural network weights forming a 
new weight set. We develop a feasible minimum energy path for PINN in the new parameter space by fine-tuning the 
PDEs’ parameters.

(II) The minimum energy path for PINN is utilized to redesign the loss function of PINN and develop an adaptive transfer 
learning method. During the transfer learning process, the PDEs’ parameters are updated adaptively from the source 
to the target parameter, which can guide the transfer of PINN from the source task to the target task. Different from 
the previous transfer learning studies focusing on knowledge transfer at the feature level, AtPINN emphasizes the fact 
that the loss is always kept at a low level near the minima, which can effectively ensure the stability of the training 
process.

(III) The gradient behaviors of different loss terms are analyzed to determine the principle of weight assignment: keep 
the loss terms with the PDEs’ parameters at a low level. Besides, the normalization is leveraged to extend AtPINN to 
accommodate the transfer learning cases with multiple parameters.

(IV) AtPINN can achieve transfer learning cases with a large range of parameter variation to simulate five complex prob-
lems: the boundary layer of ODE, the shock layer of ODE, the boundary layer of PDE, the steady incompressible flowing 
through NACA0012 airfoil, and the Laplace equation with high frequency. Through the visualization, the training pro-
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cess of AtPINN is divided into four stages and the AtPINN solution is always close to the physical solution during the 
adaptive transfer learning process.

(V) Three transfer learning cases with different range of parameter variations are analyzed through visualization: (1) When 
the range is small, the source task is strongly correlated with the target task, and the transfer learning can lead to a 
fast and accurate convergence. (2) When the range becomes large, the source task and the target task are different, 
and only a few features of the source task are retained. The transfer learning task is equivalent to a retraining process 
in some sense, but the speed of residual convergence is improved compared with direct learning. (3) When the range 
is too large and the source task is far from the target task, transfer learning is no longer applicable in such cases.

(VI) In section 4.5, AtPINN can be used to directly solve the Laplace equation with high frequency without intelligent 
initialization and obtain accurate results. This means that adaptive transfer learning can be regarded as a particular 
optimization method for PINN where AtPINN learns the simple tasks at the beginning of the training process and then 
gradually transfer the complex task.

Transfer learning techniques are expected to deal with more complex computational problems, and the proposed method 
is dedicated to transfer learning with a large range of parameter variation along the optimization path with low loss. The 
application scenarios can further be expanded, such as parameterized geometry. Besides, it can also be combined with other 
techniques, such as adaptive sampling, domain decomposition, etc, to solve more complex computational problems. In the 
future, we will explore the implementations of the proposed ideas on these problems. Furthermore, it is also of interest to 
explore how this idea can be applied to traditional transfer learning, such as the field of CV and NLP.
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