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A B S T R A C T   

Impacting the coated plate induces flexural waves on the plate, and such dynamic effect can be considered in the 
Zener model, which couples the vibration of plate with Hertzian contact relationship. However, Zener model is 
not applicable for deep impact (δm > δcr) on a coated plate, because the Hertzian contact law requires an 
assumption that the contact depth cannot be larger than few percent of the film thickness. This assumption 
renders the Zener model invalid for the deep impact (δm > δcr) on plate coated with thin film, where high impact 
velocity may induce deep contact. In this study, we built up a control equation for the deep impact (δm > δcr)

problem of sphere on the plate coated with soft film, where a nonlinear contact relationship different from 
Hertzian should be used. Then, we obtained an analytical solution by solving the control equation with homo-
topy analysis method (HAM). Using the analytical solution, we obtained an explicit expression for the contact 
history of sphere, as well as the vibration history of plate, which enables us to obtain the minimum distance 
between the impact location and the boundary applicable to the present model and Zener model. What is more, 
we proposed a model for a critical impact velocity, below which Zener’s model applies, and above which the 
present model does. By comparing with experiments with coated plate in the literature, we found that most 
experiments should use the present model rather than Zener model.   

1. Introduction 

Protective coatings are widely used for engineering structures, such 
as multi-layered armor (Rahimzadeh et al., 2015), polymer coating on 
vehicle for improved impact resistance of blasting objects, anti-corrosive 
films (González and Saidman, 2011), as well as anti-wear films pre-
venting abrasion, tearing, and scratches (Lan et al., 2016). In these cases, 
the metal or glass plate coated with soft film requires the ability to 
maintain its function after impact loading. Compared to the substrates, 
these coatings are usually made of softer materials with low elastic 
modulus such as rubber, polyurea, and plastic. 

In the test, the properties of the film can be obtained by analyzing how 
the soft coating reacts to a contact force. Deep indentation model of soft 
coating was proposed in a recent study (Argatov et al., 2021), while 
another study (Liu et al., 2018) proposed a model from nonlinear field 
theory to describe the large local deformation around the contact area, so 
that puncture failure of the soft elastomeric membrane can be well pre-
dicted. Also, considering large deformation of soft material during contact, 
study predicted the snap-through instability (excluding plastic instability) 
of elastomeric membranes when indented by rigid objects (Liu et al., 

2022). Considering the coat thickness into effect, Dimitriadis et al. 
(Dimitriadis et al., 2002) proposed a contact model for deep indentation 
on coating to illustrate the thickness effect on force–displacement rela-
tionship, where the Hertzian contact model may lead to significant errors 
when applied to thin samples. The robustness of proposed model in this 
study by Dimitriadis (Dimitriadis et al., 2002) was verified by measuring 
the elastic modulus of fibroblast cells using Atomic Force Microscopy 
(Shariyat et al., 2012). Other studies also try to solve the indentation 
problem on an elastic layer, either theoretically (Argatov, 2011) or 
numerically (Jaffar, 1988); however, these studies did not give an explicit 
relationship between contact force and displacement, as Dimitriadis had 
done in their study (Dimitriadis et al., 2002). 

Different from quasi-static indentation, impacting a coated flexible 
structure exhibits a dynamic effect of two contacted objects. In terms of the 
vibration of spheres, following the Hertzian impact on an infinite half 
space by Hunter (Hunter, 1960; Hunter, 1957), Conway studied the dy-
namic response of a sphere during an elastic impact on a thin film sup-
ported by a rigid substrate (Conway et al., 1972; Conway et al., 1970), the 
obtained impact duration agreed well with the experimental results. 
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Comparisons with the Hertzian impact are shown in the following table.   
Hertz’s model Conway’s model 

Maximum contact depth αmax = 1.0934P− 2
0 αmax = 0.860P− 5/3

0 
Maximum contact force Pmax = α3/2

max Pmax =
3π
4

α2
max 

Time of Pmax τF = 1.607P− 2
0 τF = 1.206P− 2

0  

In addition, Conway pointed out that, as the lay thickness decreases, the 
force–displacement switches from P = α3/2 to P = (3π/4)α2. In these 
studies (Conway et al., 1972; Conway et al., 1970), Conway used a 
Taylor expansion to fit the switch of power from 1.5 to 2, and numeri-
cally solved the control equation of sphere with nonlinear contact law. 
Based on their experiment, they pointed out that the vibration effects by 
plate flexural modes might be important, but did not study this issue. 
Instead, they glued the thin film to a very thick plate to eliminate the 
vibration effect such that a support by infinite half space can be used. 

While for a thin plate under impact, the vibration effect of the plate 
can be distinguishable. The wave effect on the impact between sphere 
and thin plate has been studied by Zener (Zener, 1941), who assumed 
that flexural waves occur after the elastic impact. During the impact 
with thick plates, two types of flexural waves (longitudinal and shear 
waves) considering thickness effect are found by both experimental and 
theoretical investigation (Koller and Kolsky, 1987). By modifying the 
model and developing further experimental techniques, a comprehen-
sive model (Boettcher et al., 2017b) is able to describe the experimental 
data better than model of Koller. Boettcher not only considers the 

influence of the flexural wave, but also discusses the viscous and plastic 
effect. In addition, for thick plate, this group (Boettcher et al., 2017b) 
modified the model of Hunter (Hunter, 1957), using Reed’s approxi-
mation for force–time relation (Reed, 1985), to obtain results with 
higher accuracy (Boettcher et al., 2017a). In another study (Müller et al., 
2016), authors have shown that the contact time during impact is highly 
related with the vibration of the plate, and this study used a free-fall 
apparatus to measure the contact time of a low-velocity impact of 
steel spheres on large thin glass plates; the measured time had been 
compared with the theoretical predictions of Zener model. Result shows 
that Zener’s model, with wave effect taken into account, can predict the 
contact behavior during the impact (Müller et al., 2016). The dynamic 
characteristics of sphere and film, such as Nasrollahi and Rizzo (Nas-
rollahi and Rizzo, 2020), is used to measure intraocular pressure, 
however, the dynamic relations are not clear. 

For plates coated with soft film, the impact dynamics remains un-
known. In this study, we focus on developing an impact model for such 
coated plate. Researchers (Russell, 2020; Stergiou et al., 2021; Xia et al., 
2023) have studied the impact problem of plate with soft coating 
through experiment and numerical simulation. However, to authors’ 
knowledge, there is no theoretical model in literature to consider the 
depth-separable contact relationship and the flexural wave of a coated 
plate during impact. The reasons have two folds. First of all, modeling of 
shallow and deep indentions on the coated plate requires separate 
contact laws, as suggested by Conway (Conway et al., 1972; Conway 
et al., 1970), with power index in the force–displacement relationship 
switching from 1.5 to 2. Second, there is no universal map to show how 

Nomenclature 

αmax,P,Pmax,τF,P0 Conway’s dimensionless maximum contact depth, 
contact force, maximum contact force and its occurrence 
time and related parameter, respectively 

2h1,2h2 Thickness of soft film and thickness of plate, respectively 
R Radius of sphere 
Fc Contact force of Conway’s theory 
δ,δ Contact depth and dimensionless contact depth, 

respectively 
Es,E1,E2 Young’s modulus of sphere, soft film and plate, 

respectively 
νs,ν1,ν2 Poisson’s ratio of sphere, soft film and plate, respectively 
E′

s,E
′

1,E′

2 Equivalent elastic modulus of sphere, soft film and plate, 
respectively 

F,F Contact force and dimensionless contact force, respectively 
γ Correction factor of contact force 
t,t Time and dimensionless time, respectively 
ms Mass of the sphere 
α Coefficient related to material parameters 
ρs,ρ1,ρ2 Density of sphere, soft film and plate, respectively 
D Bending stiffness of coated plate 
V0 Impact velocity 
e coefficient of restitution 
k,kH Conway contact stiffness and Hertzian contact stiffness, 

respectively 
T Time normalization parameter 
λ Dissipation factor 

V′

=

̅̅̅̅̅̅̅̅̅̅̅̅

E′

2/ρ2

√

Equivalent propagation velocity of longitudinal waves 
in the plate 

δm,δm Maximum contact depth and dimensionless maximum 
contact depth, respectively, obtained from Section 2.3 

V,V Sphere velocity and dimensionless sphere velocity, 
respectively 

δ0th,δ1st,δnth The 0th-order, 1st-order solution and nth-order solution 
of dimensionless maximum contact depth, respectively 

β Exponential term coefficient of the 0th-order solution 
ω Circular frequency of the 0th-order solution 
δi,Ci1,Ci2 The ith term of the nth-order solution and its two 

coefficients, respectively 
Fm,Fm Maximum contact force and dimensionless maximum 

contact force, respectively 
I,I Impulse and dimensionless impulse, respectively 
It ,It Total impulse and dimensionless total impulse, 

respectively 
tt ,tt Total contact duration and dimensionless total contact 

duration, respectively 
U,U Deflection of the plate center and its dimensionless 

expression, respectively 
r Horizontal distance from the coated plate center 
ω,ω Plate deflection history and its dimensionless expression, 

respectively 
H(x) Function:H(x) = π/2 − Si(x) + xCi(x) − sin(x)
Si(x),Ci(x) Sine integral and cosine integral, respectively 
VF,VF Final velocity and dimensionless final velocity of sphere, 

respectively 
W Kinetic energy loss of sphere 
ξ Ratio of energy loss of sphere 
δcr Critical depth for the conversion of deep impact (δm > δcr)

and shallow impact (δm ≤ δcr), obtained from Section 3.5 
Vcr Critical velocity for the conversion of deep impact (δm >

δcr) and shallow impact (δm ≤ δcr)

y0,φ,μ Coefficients related to material parameters 
tc,tr,η Dimensionless compression duration, dimensionless 

recovery duration and asymmetry parameter, respectively 
Variables with asterisk (*) mean that they are the results of 
the shallow impact (δm ≤ δcr) model  
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the dynamic behavior of plate is related to the impact velocity. The 
different impact velocity may induce different types of contact force law, 
and thus trigger different levels of flexural waves on the plate. 

In this paper, we built a universal law, unveiling the transition from 
Zener’s to Conway’s impact considering energy dissipation by flexural 
waves. The purpose of this paper is to present a comprehensive model 
for the elastic impact between a sphere and a plate coated with soft 
material as shown in Fig. 1. 

2. Methodology 

2.1. Indentation of a coated plate 

In this section, we studied the force–displacement relationship of a 
rigid sphere against a coated plate. The soft film of thickness 2h1 is 
bonded to the plate of thickness 2h2, and the radius of the rigid sphere is 
R. When the indentation depth is shallow, the stress field of film follows 
the Hertz assumption. On the other hand, when the indentation depth is 
deep, the Hertz relationship will be violated. By using the stress field of 
deep indentation of thin film, Conway et al. (Conway et al., 1970) 
provided the relationship between contact force and depth for deep 

indentation: 

Fc =
πE′

1R
2h1

δ2 (1)  

where δ is the contact depth, E′

i = Ei/
(
1 − ν2

i
)

is the equivalent elastic 
modulus, Ei is the elastic modulus, νi is the Poisson’s ratio, and the 
subscript i is s, 1 and 2, representing the sphere, soft film and plate, 
respectively. 

For a flexible coated plate, due to the bonding constraint of interfaces 
and the deformation of the plate, Eq. (1) must be modified. As in Ap-
pendixes A1 and A2, we parametrically conducted a wide-range of finite 
element method (FEM) simulations covering various cases, showing that 
Eq. (1) can be improved by single correction factor γ: 

F =
γπE′

1R
2h1

δ2 (2) 

F is the contact force, γ is the correction factor: 

γ = γ1γ2 (3)  

γ1 = G1 +G2

(
E2

E1

)G5

+G3

(
R

2h1

)G6

+G4

(
E2

E1

)G5
(

R
2h1

)G6  

γ2 =
g1 + g2ν1 + g3ν2 + g4ν2

2 + g5ν3
2

1 + g6ν1 + g7ν2
1 + g8ν3

1 + g9ν2 + g10ν2
2  

where, Gi(i = 1,2...6) and γi(i = 1, 2...10) are constants: 

G1 = 5.9798 G2 = − 283.54876 G3 = − 4.60697
G4 = 283.17337 G5 = − 0.41051 G6 = − 0.00146  

g1 =0.95458 g2 =− 0.86196 g3 =0.04125 g4 =0.13038 g5 =0.03515
g6 =− 1.00497 g7 =0.02758 g8 =− 2.13816 g9 =0.06728 g10 =0.02767 

Details are provided in Appendixes A2. In most of the situations, the 

Fig. 1. Schematic diagram of impact model of rigid sphere on plate with 
soft film. 

Fig. 2. Comparison of Eq. (2) with FEM results when R/(2h1) and E2/E1 take different values: (a) R/(2h1) = 2, E2/E1 = 6; (b) R/(2h1) = 15, E2/E1 = 30; (c) R/(2h1) =
50, E2/E1 = 6 = 50; (d) R/(2h1) = 100, E2/E1 = 100. 
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conditions of R/2h1⩾2 and E2/E1⩾6 apply, and Eq. (2) can well predict 
the contact behavior, as shown in Fig. 2, while Hertz model un-
derestimates the contact force. 

2.2. Impact model of a rigid sphere on a coated plate 

For a sphere impacting on a plate, under the assumption that the 
flexural wave has not been reflected back from the boundary during 
impact, Zener (Zener, 1941) concluded the control equation as follows. 

d2δ
dt2 + α dF(δ)

dt
+m− 1

s F(δ) = 0 (4)  

where, t is time, ms is the mass of sphere, and α is the coefficient related 
to material parameters and plate thickness. In the case of a coated plate 
as in Fig. 1, α can be expressed by: 

α =
1
8
(2ρ1h1 + 2ρ2h2)

− 1
(

2ρ1h1 + 2ρ2h2

D

)1/2

(5)  

where, ρ1 and ρ2 are the density of soft film and plate, respectively, and 
D is the bending stiffness. 

Given that the bending stiffness of the coating are negligible with 
respect to that of the substrate, we assume that the neutral plane of the 
coated plate is coincident with the mid plane of the substrate. Consid-
ering h1 << h2, and neglecting the higher power term of h1, we obtain 
the expression for bending stiffness by integration: 

D =
2
3
h3

2E′

2

(

1 +
3h1E′

1

h2E′

2

)

(6) 

Verification with exact value shows that the relative error of Eq. (6) 
is less than 2.6%. Substitute Eq. (6) into Eq. (5), we obtain: 

α =

(
3ρ2
/

E′

2

)1/2

16ρ2h2
2

(

1 +
3h1E′

1

h2E′

2

)− 1/2(

1 +
ρ1h1

ρ2h2

)− 1/2

(7)  

With initial conditions: 
⎧
⎪⎨

⎪⎩

δ|t=0 = 0

dδ
dt

⃒
⃒
⃒
⃒

t=0
= V0

(8)  

where V0 is the impact velocity. The whole impact process can be 
divided into two distinct stages: a compression stage where contact 
depth δ increases from 0 to a maximum, and a restitution stage where 
the sphere recovers its velocity by coefficient of restitution e strictly less 
than 1: 

eV0 =
dδ
dt

⃒
⃒
⃒
⃒

δ=0,t∕=0
(9) 

To model the impact, we use separate expressions for the contact 
force for shallow impact (δm ≤ δcr) and deep impact (δm > δcr):  

• Under shallow impact (δm ≤ δcr) with low impact velocity, using 
Hertzian relationship, the control equation writes: 

d2δ
dt2 + αkH

d
dt
(
δ3/2)+m− 1

s kHδ3/2 = 0 (10)  

where, kH = 4E′

1R1/2/3 is the Hertzian contact stiffness.  

• Under deep impact (δm > δcr) with high impact velocity, using 
Conway’s relationship, substituting Eq. (2) into Eq. (4) yields: 

d2δ
dt2 + αk

d
dt
(
δ2)+m− 1

s kδ2 = 0 (11)  

where, k = γπE′

1R/(2h1) is the stiffness of the present corrected rela-

tionship of contact. 
With boundary and initial conditions, Eqs. (10) and (11) form a 

complete description for the impact of a sphere on a coated plate. For Eq. 
(10), our previous study (Peng et al., 2021b) provided an analytical 
solution, as listed in Section 3.4. 

To solve Eq. (11), we non-dimensionalize Eq. (11) by change of 
variables as follows: 

δ = TV0δ (12)  

t = Tt (13)  

with 

T =

(
ms

kV0

)1/3

(14)  

where δ is the dimensionless contact depth and t is the dimensionless 
time. Eq. (10) can be rewritten as: 

d2δ
dt2 + 2λδ

dδ
dt

+ δ2
= 0 (15)  

with initial conditions: 
⎧
⎪⎨

⎪⎩

δ|t=0 = 0

dδ
dt

⃒
⃒
⃒
⃒

t=0
= 1

(16) 

Where 

λ =
αms

T
(17)  

is a parameter relating to the energy dissipation. Under such non- 
dimensionlization, the coefficient of restitution can be calculated by 

e =
dδ
dt

⃒
⃒
⃒
⃒

δ=0,t∕=0
(18) 

Substituting Eq. (7) in to Eq. (17), we obtain the expression for the 
dissipation factor λ: 

λ =
π

8⋅31/6γ
1
3

(
V0

V ′

)1
3
(

ρs

ρ2

)2
3
(

E′

1

E′

2

)1
3
(

R
h2

)2(R
h1

)1
3
(

1 +
3h1E′

1

h2E′

2

)− 1
2
(

1 +
ρ1h1

ρ2h2

)− 1
2

(19)  

where, V′

=

̅̅̅̅̅̅̅̅̅̅̅̅

E′

2/ρ2

√

is the equivalent propagation velocity of longitu-
dinal waves in the plate, ρs is the density of sphere. It is shown that with 
the increase of plate density, thickness and Young’s modulus, the 
dissipation factor λ decreases, suggesting less dissipation by the flexural 
wave. 

2.3. Determine the maximum impact depth 

In this section, we develop an approximated expression for the 
maximal contact depth. Substituting dimensionless velocity V = dδ/dt 
into Eq. (15), we obtain: 

V
dV
dδ

+ 2λδV + δ2
= 0 (20) 

Because Eq. (20) cannot be solved directly. We adopt an approxi-
mation as follows. On the one hand, as λ→∞, Eq. (20) becomes dV/dδ +

2λδ = 0, and the solution is V = 1 − λδ2. δ reaches the maximum δm 

when V = 0. Therefore, we have 

δ− 2
m = λ (21) 

On the other hand, as λ→0, Eq. (20) becomes V(dV/dδ) + δ2
= 0, the 
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solution to which is V =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − 2δ3
/3

√

. Therefore, we have: 

δ− 2
m =

(
3
2

)− 2/3

(22) 

Joining Eqs. (21) and (22), we approximate δm by δ− 2
m = λ+(3/2)− 2/3 

and hence: 

δm =

(

λ +
(

3
2

)− 2/3
)− 1/2

(23) 

Validation of Eq. (23) with numerical result is shown in Fig. 3(a), and 
the result shows good agreement, with the relative error less than 1%, as 
shown in Fig. 3(b). 

2.4. Solution to nonlinear differential Eq. (15) 

Using the HAM, we can obtain the complete solution to any order. 
The detailed solution procedures are provided in Appendix A3, where 
we also show the advantage of HAM to the present problem against 
method of series expansion. Here, we only list the main results, as 
follows. 

The 0th-order solution is: 

δ0th = δ0 =
1
ωe− βtsin(ωt) (24)  

where:  

β =
(λ − 0.125)δm

2
(25)  

ω =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

3.2δm − (λ − 0.125)2δ2
m

√

2
(26) 

The nth-order solution (n⩾1) is: 

δnth =
∑n

i=0
δi (27)  

where 

δi = e− βt[Ci1(t)sin(ωt) + Ci2(t)cos(ωt) ] (28)  

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ci1(t) =
∫ t

0

cos(ωt)
ω eβtfi(t)dt

Ci2(t) =
∫ t

0
−

sin(ωt)
ω eβtfi(t)dt

(29)  

and 

fi(t) = (λ − 0.125)δmδ̇i− 1 + 0.8δmδi− 1 − 2λ
∑i− 1

k=0
δkδ̇i− 1− k −

∑i− 1

k=0
δkδi− 1− k (30) 

The expression of the 1st-order solution is given by: 

Where  

δ1st = e− βt

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin(ωt)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
ω +

(λ − 0.125)δm(0.5t + χ2)

ω +
e− βtχ3

ω3χ1

+
0.8δmχ5

2ω3 −
(λ − 0.125)βδmχ5

2ω3 −
2λβe− βtχ3

χ1ω3

+
2λe− βt

ω2χ1

(
− 3ω3eβt − ωβ2eβt − 2ωβ2cos(ωt) + 2ω2βsin(ωt)

+3ω3χ6 + 3ωβ2χ6 + β3χ7sin(ωt) + ω2βχ7sin(ωt)

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− cos(ωt)

⎡

⎢
⎢
⎢
⎢
⎣

χ4

ω3 +
0.8δm(0.5t − χ2)

ω2 −
2λβχ4

ω3

+
(λ − 0.125)δmχ5

2ω2 −
(λ − 0.125)βδm(0.5t − χ2)

ω2 +
2λe− βtχ3

ω2χ1

⎤

⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(31)   

χ1 = β4 + 10ω2β2 + 9ω4

χ2 =
sin(2ωt)

4ω
χ3 = 2ω2βχ6 − 2ω2βeβt − 3ω3χ8 − β2ωχ8 + β3cos(ωt)χ5 + 3βω2cos(ωt)χ5 + 2β2ωχ7sin(ωt)

χ4 =
3ω
4χ9

−
3ω

4χ10
+

e− βt

4

[
3βsin(ωt) + 3ωcos(ωt)

χ10
−

βsin(3ωt) + 3ωcos(3ωt)
χ9

]

χ5 = sin2(ωt)

χ6 = cos3(ωt)

χ7 = cos2(ωt)

χ8 = sin3(ωt)

χ9 = β2 + 9ω2

χ10 = β2 + ω2

(32)   
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3. Result and discussion 

Using the results in Section 2, we can investigate various variables 
such as contact force, contact duration, and coefficient of restitution. In 
this section, we first compare the present analytical solution with nu-
merical solution (are done by 4-order Runge-Kutta method) and FEM 
results(model details are in Appendix A1), in terms of dynamic contact 
depth history, contact force history, sphere velocity history and coated 
plate deflection history. Then, we study the influence of dissipation 
factor λ on maximum contact force, contact time, total impulse, ratio of 
energy loss of sphere and coefficient of restitution. 

3.1. History of dynamic contact depth 

Fig. 4 plots the present 0th-order, 1st-order, and 2nd-order solutions 
with the numerical and FEM results. It is evident that the 0th-order, 1st- 

order, 2nd-order solutions can well depict the depth history. With the 
increase of the order, the analytical solution quickly converges to the 
exact numerical solution. Compared with the numerical solution, the 
relative error of the maximum contact depth is less than 3.9% for the 
0th-order solution, 3.3% for the 1st-order solution, and 0.9% for the 
2nd-order solution, with λ ranges from 0 to 1.3, as shown in Fig. 5. 
Because the dissipation factor reflects the intrinsic inelasticity (Note that 
the dissipation of external energy by elastic waves, not involving plas-
ticity or viscosity) of the plate (Zener, 1941), with the increase of 
dissipation factor λ, the asymmetry of contact depth history increases, 
the maximum contact depth decreases and the contact recovery time 
increases. 

With Eq.(2), we obtain an expression for the contact force, propor-
tional to the contact depth to the power of 2: 

F = kδ2 = k(TV0δ)2
= k1

3m2
3
sV

4
3
0δ2 (33) 

Fig. 4. Comparisons of analytical, numerical and FEM results for contact depth-time: (a) λ = 0.1; (b) λ = 0.3; (c) λ = 0.6; (d) λ = 1.2.  

Fig. 3. (a) Comparison between Eq. (23) and Numerical Solution; (b) Relative error of Eq. (23).  
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with its dimensionless counterpart: 

F =
F

k1
3m

2
3
sV

4
3
0

= δ2 (34) 

From Eq. (34), we conclude that the dimensionless maximum contact 
force by Fm = δ2

m, and Fm can be expressed in terms of λ. In addition, we 
also extracted the dimensionless total contact duration tt and dimen-
sionless compression duration tc. They are discussed in Appendix A4.The 
main results are as follows: 

Fm =

(

λ +
(

3
2

)− 2/3
)− 1

(35)  

tt = 3.210exp
(
0.476λ1.182) (36)  

tc = 1.605exp
(
− 0.158λ0.697) (37) 

Dimensionless duration multiplied by T gives the true duration. 
The impact problem is under the assumption that “the reaction of 

plates to forces of such short duration that the waves reflected from the 
boundary may be neglected”(Zener, 1941). This means that the resti-
tution of the spherical impactor should occur before the waves reflected 
from the plate’s contour come to the center of impact. Thus the mini-
mum radius of the plate is equal to half the waves propagation distance 
over the contact duration. 

There are three types of wave:  

• If the longitudinal wave is just reflected to the impact center, the 
radius of the plate r0 should be equal to rP = 0.5ttTcP;  

• if the shear wave is just reflected to the impact center, the radius of 
the plate r0 should be equal to rS = 0.5ttTcS;  

• if the Rayleigh wave is just reflected to the impact center, the radius 
of the plate r0 should be equal to rR = 0.5ttTcR. 

Where cP, cS and cR are the velocities of longitudinal wave, shear 
wave and Rayleigh wave of the plate(Achenbach, 1975): 

cP =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
E2
ρ2

1− ν2
(1+ν2)(1− 2ν2)

√
, cS =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
E2
ρ2

1
2(1+ν2)

√
and cR = 0.862+1.14ν2

1+ν2
cS. 

rR < rS < rP because cR < cS < cP. 
In the finite element impact models, we took the radius of the plate as 

r0 < rR, rR⩽r0 < rS, rS⩽r0 < rP and rP⩽r0, and fixed the edge of the 
plates. The FEM results of the contact depth-time are compared with the 
present theoretical solution, as shown in Fig. 6 (a). The contact history is 
almost the same as long as the radius of the plate r0 is larger than rR. 
When radius of the plate r0 is less than the critical size rR, however, the 
contact history will change as shown in Fig. 6 (a). This means that the 
Rayleigh wave reflection has a significant influence on the impact pro-
cess, whereas the effects of longitudinal and shear waves are negligible. 

Similar FEM simulations were performed on the bare plate (see Peng 
et al., 2021b for the contact duration), and the contact depth-time curves 
were compared with the Zener solution. The results are the same as 
those of the coated plate, as shown in Fig. 6 (b). Therefore, we can 

Fig. 6. Contact depth-time relationship under different plate radii (λ = 0.6).  

Fig. 7. Relationship between total impulse and dissipation factor λ.  

Fig. 5. Relative error of the analytical solutions of dimensionless maximum 
contact depth relative to the numerical solutions. 
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conclude that the Zener model and the present model are valid when the 
restitution of sphere occurs before the reflection of Rayleigh wave from 
boundary. The minimum distance between the boundary of the plate 
and the impact center is: 

rR =
ttTcR

2
(38)  

3.2. Displacement history of sphere and plate 

The impulse on the sphere can be obtained by the integral of contact 
force over time: 

I(t) =
∫ t

0
F(t)dt (39) 

Substituting Eqs. (13) and (34) yields: 

I(t) =
∫ t

0
k1

3m2
3
sV

4
3
0Fd(Tt) = msV0

∫ t

0
Fdt (40) 

The dimensionless impulse can be defined as: 

I(t) =
I(t)

msV0
=

∫ t

0
Fdt (41)  

and hence the dimensionless total impulse It reads: 

It = I(tt) =

∫ tt

0
Fdt (42) 

The relationship between It and λ is shown in Fig. 7. For a conser-
vative system, λ = 0, It reaches a maximum of 2. As λ increases, It de-
creases to 1. The 0th-order solution has relatively large error, but the 
1st-order solution and the 2nd-order solution agree well with the FEM 
results. By fitting with least squares, we obtain an explicit expression: 

It = 1+ exp( − 1.730λ) (43) 

The velocity of the sphere V(t) can be obtained by the following 
equation: 

msV(t) = msV0 − msV0I(t) (44) 

We can define the dimensionless velocity as 

V(t) =
V(t)
V0

= 1 − I(t) (45) 

Similarly, the deflection of the plate center can be obtained (Zener, 
1941): 

U(t) = αI(t) (46)  

and the dimensionless deflection is 

U(t) =
U(t)

αmsV0
= I(t) (47) 

When the impact is completed, the deflection of the plate center can 
be given according to the total impulse Eq. (43). 

With the present solution, we can plot the velocity history of sphere, 
as shown Fig. 8(a). When in the case of Conway solution (λ = 0), the 
coefficient of restitution is 1. As λ increases, the rebounding velocity of 
sphere becomes smaller. When λ is larger than 1.2, the rebounding ve-
locity is less than V0/10, more than 99% of the kinetic energy is dissi-
pated by the flexural waves of the plate. 

The history of center deflection of plate can be also well predicted by 
the proposed solution, as shown in Fig. 8(b). It is shown that the 1st- 
order solution can provide high accuracy, with relative error to FEM 
results less than 3%. It should be noted that, when λ = 0, the figure 
shows that the dimensionless deflection changes the most; however, 
when λ = 0, the bending rigidity of the plate tends to be infinite, and the 
true deflection is 0. As a result, Fig. 8(b) cannot directly reflect the real 
deflection of the plate. However, We can easily calculate the true 
deflection at the impact position of the coated plate using Eq. (47). 

Using the force history, we can also calculate the deflection history of 
any location on the plate. The history of plate deflection at the hori-
zontal distance r from the center due to a concentrated force at the 
center is provided by Sneddon (Sneddon, 1951), article 20.3: 

Fig. 8. History of (a) velocity of the sphere and (b) deflection of the center plate.  

Fig. 9. Deflection response of the plate at the horizontal distance r from the 
force center (V0=54.398m/s, h1=0.05mm, h2=0.3mm). 
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ω(r, t) =
2α
π

∫ t

0

[ ∫ u

0
F(τ)dτ

]

sin
[

r2/32
αD(t − u)

]
du

t − u
(48) 

Medick found that the plate deflection is insensitive to the detailed 
force history, but highly correlated with the total impulse (Medick, 
1961). Assuming that the force during contact is constant and equal to 
the total impulse divided by the contact time, we can get the expression 
of plate deflection with respect to total impulse It and total contact 
duration tt: 

ω(r, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2αIt

πtt

[

tH
(

r2/32
αDt

)]

t⩽tt

2αIt

πtt

[

tH
(

r2/32
αDt

)

− (t − tt)H
(

r2/32
αD(t − tt)

)]

t > tt

(49)  

where: 
H(x) = π/2 − Si(x) + xCi(x) − sin(x), Si(x) =

∫ x
0

sint
t dt, and Ci(x) =

∫ x
+∞

cost
t dt. 

The dimensionless plate deflection can be defined as 

Fig. 10. (a) Relationship between ratio of energy loss of sphere and dissipation factor; (b) Relationship between coefficient of restitution and dissipation factor.  

Table 1 
General solution for impact of coated plate.  

Deep impact (δm > δcr) Shallow impact (δm ≤ δcr)

λ =
π

8 • 31/6γ
1
3
(

V0

V′

)1
3
(

ρs
ρ2

)2
3
(

E′

1

E′

2

)1
3
(

R
h2

)2(R
h1

)1
3
(

1 +
3h1E′

1

h2E′

2

)−
1
2
(

1 +
ρ1h1

ρ2h2

)−
1
2 λ* =

π3/5

31/2

(
V0

V′

)1
5
(

ρs
ρ2

)3
5
(

E′

1

E′

2

)2
5
(

R
2h2

)2(

1 +
3h1E′

1

h2E′

2

)−
1
2
(

1 +
ρ1h1

ρ2h2

)−
1
2 

T =
( 2h1ms

πγRV0E′

1

)1/3 
T* =

(3ms

4E′

1

)2/5

(RV0)
− 1/5 

δm = TV0⋅
(
λ + 1.5− 2/3)− 1/2 

δ*
m = T*V0⋅

(
λ* + 1.25− 3/5

)− 2/3 

Fm =
γπE′

1R
2h1

δ2
m 

F*
m =

4
3
R1/2E′

1δ*3/2
m 

tt = T⋅3.210exp
(
0.476λ1.182) t*t = T*⋅3.214exp

(
0.23λ*1.80)

It = msV0[1 + exp( − 1.730λ) ] I*t = msV0[1 + exp( − 1.378λ*) ]

ξ = 1 − exp( − 3.460λ) ξ* = 1 − exp( − 2.755λ*)

e = exp( − 1.730λ) e* = exp( − 1.378λ*)

ω(r, t) =

⎧
⎪⎪⎨

⎪⎪⎩

2αIt
πtt

[

tH
(

r2/32
αDt

)]

t ≤ tt

2αIt
πtt

[

tH
(

r2/32
αDt

)

− (t − tt)H
(

r2/32
αD(t − tt)

)]

t > tt 
ω*(r, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2αI*t
πt*t

[

tH
(

r2/32
αDt

)]

t ≤ t*t

2αI*t
πt*t

[

tH
(

r2/32
αDt

)

−
(
t − t*t

)
H

(
r2/32

αD
(
t − t*t

)

)]

t > t*t 

Where, D =
2
3
h3

2E′

2

(

1 +
3h1E′

1
h2E′

2

)

and α =

(
3ρ2/E′

2
)1/2

16ρ2h2
2

(

1 +
3h1E′

1
h2E′

2

)− 1/2(

1 +
ρ1h1

ρ2h2

)− 1/2   

Fig. 11. Deflection response of the plate at the horizontal distance r from the 
force center (V0=0.2m/s, h1=0.05mm, h2=0.3mm). 
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ω(r, t) =
ω(r, t)
αmsV0

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2It

πtt

[

tH
(

r2/32
αDTt

)]

t⩽tt

2It

πtt

[

tH
(

r2/32
αDTt

)

− (t − tt)H
(

r2/32
αDT(t − tt)

)]

t > tt

(50)  

where tt and It are given by Eqs. (36) and (43) respectively. 
The comparison with FEM results is shown in Fig. 9, and validates Eq. 

(50) has a high accuracy. It is shown that the bending wave generates 
from the center of impact. When t > tt, the deflections at different lo-
cations response in a similar way, and the characteristic wavelength is 
proportional to r2. With enough long time, the deflections at different 
locations of the plate approach the same maximum It. 

3.3. Energy dissipation and coefficient of restitution 

With the final velocity of VF, the sphere ends the impact when t = tt . 
The kinetic energy loss of sphere can be calculated by W =

ms
(
V2

0 − V2
F
)/

2. The ratio of energy loss of sphere is: 

ξ =
W

1
2msV2

0
= 1 −

(
VF

V0

)2

= 1 − V2
F (51) 

With VF = 1 − It from Eq. (45), we can obtain the ratio of energy loss 
of sphere: 

ξ = 2It − I2
t (52) 

Next, we will solve the coefficient of restitution e, as in Eq. (9). Eq. 
(46) shows that the displacement of the plate center is proportional to 

the impulse of the contact force. With the fact that the velocity at the 
center of the plate is 0 before and after impact, we can calculate e by: 

e = −
VF

V0
= − VF = It − 1 (53) 

Substituting Eq. (43) into Eqs. (52) and (53) yields the following 
explicit expressions for ξ and e: 

ξ = 1 − exp( − 3.460λ) (54)  

e = exp( − 1.730λ) (55) 

As shown in Fig. 10, the semi-analytical solution agrees well with the 
FEM results, with relative error less than 5% when λ > 0.2. For a case 
with small λ, the bending stiffness of plate is so high that the dissipation 
rate is close to 0. By Taylor series, Eq. (54) can be expanded at λ = 0 as 

ξ = 3.460λ (56) 

which shows how fast the energy dissipation grows with λ.
Fig. 10 also confirms that the ratio of energy loss of sphere near the 

origin is proportional to λ. When λ⩽0.028, the relative error between Eq. 
(56) and Eq. (54) is less than 5%. In this case, the relationship between 
ratio of energy loss of sphere and physical parameters is obtained by 
substituting Eq. (19) into Eq. (56): 

ξ = 1.131γ1
3

(
V0

V ′

)1
3
(

ρs

ρ2

)2
3
(

E′

1

E′

2

)1
3
(

R
h2

)2(R
h1

)1
3
(

1 +
3h1E′

1

h2E′

2

)− 1
2
(

1 +
ρ1h1

ρ2h2

)− 1
2

(57) 

Therefore, when a sphere impacts a plate coated soft film, the ratio of 
energy loss of sphere ξ is proportional to V0 to the power of 1/3, different 
from Peng et al.’s result (Peng et al., 2021b) where the ratio of energy 

Fig. 12. (a)Maximum contact depth of deep impact (δm > δcr) and shallow impact (δm ≤ δcr); (b) Relative error at small speed (E1=6GPa,E2=72GPa,h1=0.05mm, 
h2=0.3mm,R=0.9mm). 

Fig. 13. Application range of our impact model (V0 denotes the initial velocity).  
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loss of a sphere impacting on a plate without coatings is proportional to 
V0 to the power of 1/5. 

Both results are obtained when the dissipation factor λ is close to 0, 
which corresponds to the case that thickness or rigidity of the plate is 
relatively large. Compared with the impact of the sphere on the bare 
plate, the change of kinetic energy loss caused by the change of impact 
speed is more obvious when the sphere impacts on the plate with soft 
coating. The reason is that in Hertz contact relationship and Conway 
contact relationship, the sensitivity of contact force change caused by 
the change of contact depth is different, which makes the relationship 
between the dimensionless dissipation factor λ and impact velocity 
different when we non-dimensionalize the control equations. 

In fact, the two theories should be changed gradually rather than 
suddenly. Dimitriadis et al. (2002) tried to solve this problem, they only 
got the solution of Hertz’s model to a relatively shallow contact 
(δ < (2h1)

2
/R), but could not switch to Conway’s model. 

3.4. General solution for impact of coated plate 

In the above section, we have studied the deep impact (δm > δcr) of a 
sphere on a coated plate, and have obtained expressions for dissipation 
factor, depth history, contact force history and etc. With our previous 
study on sphere/plate impact (Peng et al., 2021b), we can draw a 
complete picture for the impact of coated plate, shallow or deep. The 
results are gathered in Table 1. 

The results of the shallow impact (δm ≤ δcr) theory using Hertz 
contact theory have been discussed in our previous work (Peng et al., 

2021b), but not the deflection response of plates. In this study, we 
further provided the theoretical deflection of plate under shallow impact 
(δm ≤ δcr), as shown in Fig. 11, where ω* = ω*/(αmsV0) and t* = t/T* are 
dimensionless plate deflection and dimensionless time under shallow 
impact (δm ≤ δcr), respectively. The prediction of shallow impact (δm ≤

δcr) theory agrees well. Moreover, the closer to the impact center, the 
valley of the deflection curve will be shallower. We can know from Fig. 8 
(b) that when r = 0, the deflection curve will degenerate into a mono-
tonically increasing shape, that is, the valley of the deflection curve 
disappears. Since the closer to the impact center, the more obvious the 
constraint of contact on deflection. 

3.5. Velocity dependent impact model 

For the indentation of a sphere onto a plate with soft coatings, on the 
one hand, if the contact depth is shallow, the influence of the plate on 
the stress field in the soft coating can be ignored. The stress distribution 
is the same as that of the half-space contact, and the Hertzian contact 
theory F = 4E′

1R1/2δ3/2/3 is applicable. In such case, the corrected 
Conway’s contact theory F = γπE′

1Rδ2/(2h1) with quadratic force-depth 
relationship underestimates the contact force. On the other hand, if the 
contact depth exceeds a certain value (the critical contact depth in the 
present study), the influence of the plate with higher modulus on the 
stress field of the soft coating cannot be ignored. The stress gradually 
distributed uniformly along the thickness of coating, where Conway’s 
contact theory is applicable and Hertz theory underestimates the contact 
force. In sum, with the increase of contact depth, the relationship be-
tween contact force and contact depth changes from Hertz’s theory to 
Conway’s theory, which, in turn, dictates different amount of energy 
dissipated by the flexural wave. 

For the dynamic impact problem in the present study, the deforma-
tion of plate, as the result of the contact force on plate, accompanies the 

Fig. A1. Axisymmetric FEM model of static contact between sphere and the 
plate coated with soft film. 

Table A1 
Material parameters of the model.   

Sphere Film Plate 

Young’s Modules (GPa) ∞ E1 = 4 E2 = 72 
Poisson Ratio / ν1 = 0.21 ν2 = 0.21 
Density (kg/m3) ρs = 2500 ρ1 = 1200 ρ2 = 2500  

Table A2 
Plate thickness and initial velocity corresponding to different dissipation factors 
λ.  

λ h2 (mm) V0 (m/s)  

0.05  0.8  10.277  
0.10  0.6  14.923  
0.15  0.4  4.597  
0.20  0.4  10.896  
0.25  0.4  21.281  
0.30  0.3  36.773  
0.35  0.3  10.798  
0.40  0.3  16.118  
0.45  0.3  22.949  
0.50  0.3  31.480  
0.55  0.3  41.900  
0.60  0.3  54.398  
0.65  0.25  23.871  
0.70  0.25  29.814  
0.75  0.25  36.670  
0.80  0.25  44.504  
0.85  0.25  53.381  
0.90  0.25  63.367  
0.95  0.22  35.464  
1.00  0.22  41.364  
1.05  0.22  47.884  
1.10  0.22  55.056  
1.15  0.22  62.909  
1.20  0.22  71.477  

Fig. A2. Axisymmetric FEM model of impact of sphere on the plate coated with 
soft film. 
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impinging process. The way the contact force builds up is associated 
with the critical contact depth. As we show in the manuscript, when the 
sphere is pressed to this critical depth, the work of the contact force 
calculated by Hertz model and Conway model are equal. If the actual 
contact depth does not reach the critical depth, Hertz contact theory is 
more accurate, otherwise, Conway contact theory. 

The impact depth depends on the initial velocity, thus it remains a 
question: how does the initial velocity dictates the choice of impact 
models? In this section, we discuss such critical velocity in aspect of 
energy balance. 

When a rigid sphere impacts a plate coated with soft film, the critical 
depth for the transition of the two models is obtained when the work 
done by the contact forces of the two theories is equal. Equating 

∫ δcr
0 

γπE′

1Rδ2/(2h1)dδ to 
∫ δcr

0 4E′

1R1/2δ3/2/3dδ, the critical depth δcr for the 
choice of two models for deep and shallow impacts is obtained as fol-
lows: 

δcr =
64

25π2γ2
(2h1)

2

R
(58)  

Zener used Hertz contact model to solve the dynamic impact problem of 
the sphere plate system. For the dynamic impact of sphere on a coated 
plate, Zener’s theory can only be applied in cases where the maximum 
impact depth is less than or equal to δcr. 

According to Table 1, the maximum impact depth depends on the 
impact velocity of the sphere, and comparison with the FEM results (see 
Appendix A1 for details) is shown in Fig. 12(a). Conway contact theory 
is used under deep contact and Hertz contact theory is used under 
shallow contact. Fig. 12(b) shows the relative error of the two impact 
models at low speed. The error of the deep impact model at low speed 
exceeds 20%, which decreases with the increase of speed. When the 
maximum impact depth is greater than δcr, the deep impact model has 
smaller error. In another words, when δm > δcr, we have to use the deep 
impact (δm > δcr) model; while when δm⩽δcr, we have to use the shallow 
impact (δm ≤ δcr) model. In this sense, we can obtain the critical velocity 
by equating δm to δcr: 

δm = δcr (59) 

Substituting Eqs. (12), (23) and (58) into Eq. (59), we have: 

TV0Rγ2

(2h1)
2 ⋅

(

λ +
(

3
2

)− 2/3
)− 1/2

=
64

25π2 (60) 

Solving Eq. (60), we obtain an expression for the critical impact 
velocity Vcr: 

Vcr =

(
̅̅̅̅̅̅̅
2y0

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− 2y0 − 2φ
/ ̅̅̅̅̅̅̅

2y0
√

√ )3
/

8 (61)  

where, y0 and φ are material-dependent coefficients: 

y0 =

⎛

⎝φ2

16
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

φ2

16

)2

−
(μ

3

)3
√ ⎞

⎠

1/3

+

⎛

⎝φ2

16
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

φ2

16

)2

−
(μ

3

)3
√ ⎞

⎠

1/3  

φ = −

(
8

5π

)4αk(2h1)
4

γ4R2  

and 

μ = −

(
8

5π

)4
(2h1)

4

γ4R2

(
2k

3ms

)2/3 

When the geometrical and material parameters of the sphere and 
coated plate are known a priori, the critical velocity can be calculated by 
using Eq. (61). For an impact velocity greater than Vcr, the theory of 
deep impact (δm > δcr) applies, and otherwise applies the theory of 
shallow impact (δm ≤ δcr). 

In Fig. 13, we put the previous experiments of sphere impact on 

Fig. A3. (a) The relationship between the correction coefficient γ1 about E2/E1 and R/(2h1); (b) The relationship between the correction coefficient γ2 about Poisson’s 
ratios. (the dots represent FEM results and the surfaces are fitted). 

Fig. A4. Solutions of Power Series Expansion Method, Small Parameter 
Expansion Method and Homotopy Analysis Method. 
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coated plates in the phase diagram, where the abscissa shows the 
applicable ranges of models. It is shown that most of these experiments 
are within the range of deep impact (δm > δcr) model. Chiu and Liou’s 
experiments (Chiu and Liou, 1995) explored the initial fracture of the 
brittle coating itself, and the impact velocity was small enough to apply 
to the theory of shallow impact (δm ≤ δcr). However, most of the ex-
periments are interested in the deep impact (δm > δcr) response of the 
coated plate, such as Choi et al. (Choi et al., 2010), Xiao et al. (Xiao et al., 
2021), Li et al. (Li et al., 2022), Harikumar and Devaraju (Harikumar 
and Devaraju, 2020). Therefore, the deep impact (δm > δcr) model is 
applicable in a more general scope. It is worth mentioning that the 

impact velocities of Conway et al.’s experiments are just around the 
critical value, and the experimental results (Fig. 5 of (Conway et al., 
1972)) prove the correctness of our phase diagrams. 

3.6. Limitation of present model 

For the prediction of the deflection history at any position on the 
plate, Eq. (50) can only describe the deflection history far away from the 
impact center. The reason is that the contact force is can no longer 
viewed as a concentration force in the vicinity of impact center. In 
addition, for the indention of thin films, the strain gradient effect (Nix 
and Gao, 1998; Saha et al., 2001), indentation size effect (Huang et al., 
2006) might be significant, which will be investigated in our future 
study. In addition, the contact of sphere may introduce some other 
factors, such as contact plasticity (Peng et al., 2021a; Wang et al., 2017), 
viscosity (Carretero-González et al., 2009; Vergara, 2010), these factors 
are not studied in present work. Also, the interface adhesion has not 
been considered in this work, while a recent study (Peng et al., 2020) has 
shown that the pull-off force of a rigid punch from an elastic film has a 
strong thickness dependence. Similar to previous studies that solitary 
wave on chain can be used to evaluate the plate thickness (Job et al., 
2005; Peng et al., 2022), the present model can also pave the way for 
non-destructive evaluation of coating thickness. 

4. Conclusion 

For the impact problem of coated plate, we proposed a modified 
Conway’s model for force–displacement relationship, and further a 
dynamical equation for the impact process. Using homotopy analysis 
method, we proposed an analytical solution to such equation to predict 
the elastic impact between a rigid sphere and a coated plate. Using the 
obtained contact force history, we studied the energy loss due to the 
flexural wave, as well as the motion of the sphere and plate during the 

Fig. A5. Analytical solution and FEM results of contact force–time: (a)λ=0; (b)λ=0.3; (c)λ=0.6; (d)λ=1.2.  

Fig. A6. Relationship between maximum contact force and dissipation factor.  
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impact. The conclusions are as follows:  

(1) We obtained an explicit expression for the history of contact force 
up to any order of the homotopy embedding parameter. By 
comparing with numerical solution and FEM, we concluded that 
present zeroth-order and first-order solutions can provide enough 
accuracy, with the relative error less than 3.3% and 3.9%, 
respectively.  

(2) Using the present solution, we derived an expression for energy 
dissipation and coefficient of restitution, revealing that the en-
ergy loss is proportional to the impact velocity to the power of 1/ 
3 for coated plate, instead of to the power of 1/5 for bare plate. 

(3) Joining with our preview study on bare plate impact, we pro-
vided a complete set of models for impact of coated plate, and 
further, a criterion for the selection of models. We derived a 
critical velocity, above which the model for deep impact (δm >

δcr) applies, and below which the model for shallow impact (δm ≤

δcr) applies. 
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Appendix 

A1. FEM model 

For static contact, we use the Abaqus/Standard analysis module. The axisymmetric model is established as shown in Fig. A1. The sphere is rigid, 
hence it is only necessary to model the sphere crown in the contact area (as shown in gray in Fig. A1). Define tie constraint between film and plate. 
Limit all displacements at the bottom of the plate. Keep the thickness and Young’s modulus of the soft film unchanged: 2h1 = 0.1mm, E1 = 4Gpa; 
Change the radius of the sphere and Young’s modulus of the plate: R/(2h1) ∈ [2, 100], E2/E1 ∈ [6,100]; Set the plate thickness greater than twice the 
maximum contact radius; Poisson’s ratio ν1 = ν2 = 0.21; The radius of the coated plate is set to 6 mm. The analysis step is Static/General. The normal 
behavior between the rigid sphere and the film is set as hard contact, the tangential behavior is set as penalty, and the friction coefficient is 0.01. The 
approximate size of the grid in the contact area is 0.01 and the grid type is CAX4R. The contact depth δ and contact force F during static indentation of 

Fig. A7. Relationship between contact duration and dissipation factor: (a) tt ; (b) tc; (c) tr ; (d) η.  
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a rigid sphere into the film are obtained by applying displacement load to the rigid sphere. 
For dynamic impact, we still use the Abaqus/Standard analysis module. Fig. A2 plots the axisymmetric model. The inertia force of the sphere is 

considered in the dynamic collision process, so the whole sphere is modeled as shown in Fig. A2 grey, the radius R of the sphere is 0.9 mm; The film 
thickness 2h1 is 0.1 mm and is bound to the plate. The radius of the coated plate is large enough (150 mm) to prevent the flexural waves from reflecting 
back. The analysis step is dynamic implicit. The normal phase behavior between the rigid sphere and the film is set as hard contact, the tangential 
behavior is set as penalty, and the friction coefficient is 0.01. The approximate size of the grid in the contact area is 0.01 and the grid type is CAX4R. 
Initial velocity load V0 is applied to the rigid sphere and dissipation factor λ is changed by changing plate thickness 2h2 and initial velocity V0. The 
relevant physical parameters are listed in Table A1 and Table A2. 

A2. Correction coefficient to Conway’s static indentation model 

We conduct simulation simulations on static contact according to Appendix A1. The FEM results of contact force and the results of Eq. (2) are 
obtained when the indentation depth meets δ/(2h1) = 0.4. The ratio of the two is the correction coefficient γ. The coupling effect between Poisson’s 
ratios and other parameters is small. Considering the operability of fitting, we decouple Poisson’s ratios and other parameters. Therefore, the 
correction factor can be expressed as: 

γ = γ1γ2 (62)  

γ1 is a function of E2/E1 and R/(2h1), γ2 is a function of ν1 and ν2. Keep the values of ν1 and ν2 equal to 0.21, and then the value of γ2 is taken as 1. The 
relationship between the correction coefficient and E2/E1 and R/(2h1) is shown in Fig. A3(a). γ1 tends to 1 with the increase of E2/E1 and R/(2h1). By 
fitting: 

γ1 = G1 +G2

(
E2

E1

)G5

+G3

(
R

2h1

)G6

+G4

(
E2

E1

)G5
(

R
2h1

)G6

(63) 

Where 

G1 = 5.9798 G2 = − 283.54876 G3 = − 4.60697
G4 = 283.17337 G5 = − 0.41051 G6 = − 0.00146 

The fitting has high accuracy, the coefficient of determination: COD = 0.9965. 
When both of the ratios R/(2h1) and E2/E1 are greater than 100, we will take γ1 = 1; 
When one of the ratios R/(2h1) or E2/E1 is greater than 100, we will take this ratio as 100. 
We have tested this treatment, and result shows well agreement with FEM. 
Keep E2/E1 = 18 and R/(2h1) = 9, then γ2 = 0.996 from Eq. (63). The relationship between γ1 and Poisson’s ratios is shown in Fig. A3(b). The 

influence of the Poisson’s ratio of the plate is very small, and the influence of the Poisson’s ratio of the coating mainly occurs in the range of close to 
0.5. By fitting: 

γ2 =
g1 + g2ν1 + g3ν2 + g4ν2

2 + g5ν3
2

1 + g6ν1 + g7ν2
1 + g8ν3

1 + g9ν2 + g10ν2
2

(64)  

where 

g1 = 0.95458 g2 = − 0.86196 g3 = 0.04125 g4 = 0.13038 g5 = 0.03515
g6 = − 1.00497 g7 = 0.02758 g8 = − 2.13816 g9 = 0.06728 g10 = 0.02767 

The fitting also has high accuracy, the coefficient of determination: COD = 0.9999. 

A3. Homotopy analysis method for Eq. (15) 

Define nonlinear operators: 

N (δ) =
d2δ
dt2 + 2λδ

dδ
dt

+ δ2 (65) 

Define linear operators: 

L (δ) =
d2δ
dt2 +Aδm

dδ
dt

+Bδmδ (66) 

Where A and B are the coefficients to be selected. In order to make the shape of the solution of the linear equation L (δ) = 0 and the solution of the 
nonlinear equation N (δ) = 0 as similar as possible, after numerical calculation, we get the better choice of A and B: 

A = λ − 0.125 (67)  

B = 0.8 (68) 

The 0th-order deformation equation is constructed as follows: 

(1 − p)L (δ) + pN (δ) = 0 (69) 

Equivalent to: 
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(1 − p)(δ̈ + Aδmδ̇ + Bδmδ)+ p
(
δ̈ + 2λδ⋅δ̇ + δ2)

= 0 (70) 

Where, p ∈ [0,1] is the embedded homotopy parameter, δ̇ and ̈δ are the first derivative and the second derivative of δ versus t, respectively. It can be 
seen that when p continuously changes from 0 to 1, Eq. (70) continuously changes from the linear equation L (δ) = 0 to the nonlinear equation N (δ) =
0 that we need to solve, that is, Eq. (15). 

Write the nth-order solution of Eq. (70) into the power series form of p: 

δnth =
∑n

i=0
δipi (71) 

Substitute the series solution(71) into (70) and sort out according to the power of p: 
∑n

i=0
Δipi = 0 (72) 

Where Δi is expressed as follows: 
⎧
⎪⎪⎨

⎪⎪⎩

Δ0 = δ̈0 + Aδmδ̇0 + Bδmδ0i = 0

Δi = δ̈i + Aδmδ̇i + Bδmδi − Aδmδ̇i− 1 − Bδmδi− 1 + 2λ
∑i− 1

k=0
δkδ̇i− 1− k +

∑i− 1

k=0
δkδi− 1− ki⩾1

(73) 

Let p = 1, and the nth-order solution of N (δ) = 0 is: 

δnth =
∑n

i=0
δi (74) 

To make Eq. (72) hold when p = 1, each Δn should be equal to 0, so δi should satisfy the nth-order linear constraint equation: 
⎧
⎨

⎩

δ̈0 + Aδmδ̇0 + Bδmδ0 = 0 i = 0

δ̈i + Aδmδ̇i + Bδmδi = Aδmδ̇i− 1 + Bδmδi− 1 − 2λ
∑i− 1

k=0
δkδ̇i− 1− k −

∑i− 1

k=0
δkδi− 1− k≜fi(t) i⩾1

(75)  

δi in Eq. (75) can be solved sequentially from order 0 with the following initial conditions: 
⎧
⎪⎨

⎪⎩

δ0|t=0 = 0, δ̇0

⃒
⃒
⃒

t=0
= 1 when i = 0

δi|t=0 = 0, δ̇i

⃒
⃒
⃒

t=0
= 0 when i⩾0

(76) 

First, find the 0th-order solution. When n = 0, it can be obtained from Eq. (74): δ0th = δ0. The 0th-order linear constraint equation is the damped 

free vibration equation, and its characteristic equation is x2 +Aδmx + Bδm = 0, and its characteristic root is x1,2 = − 0.5Aδm ± 0.5
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4Bδm − A2δ2
m

√ ̅̅̅̅̅̅̅
− 1

√
. 

The situation when the recovery rate e > 0 is our concern. At this time, corresponding to the under damping state, 4Bδm − A2δ2
m > 0 is required. It can 

be verified that even when this requirement is not met, the analytical solution obtained below is effective through complex operation. At the same 
time, using the initial conditions (76), we can obtain the 0th-order solution is: 

δ0th = δ0 =
1
ωe− βtsin(ωt) (77) 

Where: 

β =
Aδm

2
(78)  

ω =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4Bδm − A2δ2
m

√

2
(79) 

Then we solve the 1st-order solution. When n = 1, obtained from Eq. (74): 

δ1st = δ0 + δ1 (80)  

δ0 is known in Eq.(77), only δ1 needs to be solved. By substituting i = 1 into Eqs. (75) and (76), we can get the first order linear constraint equation and 
its initial conditions: 

δ̈1 +Aδmδ̇1 +Bδmδ1 = Aδmδ̇0 +Bδmδ0 − 2λδ0δ̇0 − δ0δ0≜f1(t) (81)  

δ1|t=0 = δ̇1

⃒
⃒
⃒

t=0
= 0 (82) 

Use the constant variation method to solve, let: 

δ1 = e− βt[C11(t)sin(ωt) + C12(t)cos(ωt) ] (83) 

Substituting it into (81) yields: 
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⎧
⎨

⎩

C′

11(t)sin(ωt) + C′

12(t)cos(ωt) = 0

C′

11(t)cos(ωt) + C′

12(t)sin(ωt) =
1
ωeβtf1(t)

(84) 

The solution is: 
⎧
⎪⎪⎨

⎪⎪⎩

C′

11(t) =
cos(ωt)

ω eβtf1(t)

C′

12(t) = −
sin(ωt)

ω eβtf1(t)
(85)  

C11(0) = C12(0) = 0 can be obtained from the initial condition (82), so C11(t) and C12(t) are expressed in the form of definite integral: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C11(t) =
∫ t

0

cos(ωt)
ω eβtf1(t)dt

C12(t) =
∫ t

0
−

sin(ωt)
ω eβtf1(t)dt

(86) 

Each item in the integral symbol is the product of the trigonometric function and the exponential function of the natural constant. It is easy to get 
the analytical expression for their integration. Moreover, the results of C11(t) and C12(t) are still composed of the product of the trigonometric function 
and the exponential function of the natural constant, hence δ1 is obtained. 

Similarly, δi can be obtained: 

δi = e− βt[Ci1(t)sin(ωt) + Ci2(t)cos(ωt) ] (87)  

Where: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ci1(t) =
∫ t

0

cos(ωt)
ω eβtfi(t)dt

Ci2(t) =
∫ t

0
−

sin(ωt)
ω eβtfi(t)dt

(88) 

Finally, the nth-order solution of the nonlinear differential equation is obtained by using Eq. (74). 
Why we use HAM? As shown by Fernández, the HAM is merely another presentation of Taylor series for many differential equations (Fernández 

and Francisco, 2010; Fernández and Francisco, 2020; Fernández, 2020). However, for the present case, the power series expansion method and the 
small parameter expansion method are not so efficient to solve Eq. (15); the solution converges too slowly to be recognized as an usable solution for the 
entire history of contact depth, as shown in Fig. A4. The polynomial result with 50th-order obtained by the small parameter expansion method and the 
polynomial result with 100th-order obtained by the power series expansion method both diverge rapidly near the maximum contact depth. However, 
HAM shows much better convergence from 0th-order solution. 

A4. Force and duration of contact 

Fig. A5(a) shows the contact force history when the dissipation factor λ = 0. The energy dissipation due to the flexural waves of the plate is 
neglected. Current theory degrades to the Conway impact model and the whole system is conservative. The contact force history is symmetrical. When 
the dissipation factor λ > 0, the symmetry of contact force profile is destroyed, as shown in Fig. A5(b), (c) and (d), the stronger the asymmetry as the λ 
increases. It can also be found that the 1st-order solution is effective in predicting contact force history. 

From Eq. (34), the maximum contact force is obtained at the maximum contact depth, and the maximum dimensionless contact force is: 

Fm = δ2
m (89) 

Substituting Eq. (23) into Eq. (89) yields: 

Fm =

(

λ +
(

3
2

)− 2/3
)− 1

(90) 

The maximum contact depth at different λ values can be obtained by using the analytical solution and FEM, hence the maximum contact force can 
also be obtained. As shown in Fig. A6, the Eq. (90) coincides with the 2nd-order solution and is in agreement with the FEM results. The results of the 
0th-order solution and the 1st-order solution are also accurate. The results of the 0th-order solution are slightly larger when λ is small, while the results 
of the 1st-order solution are slightly larger when λ is large. When λ = 0, the maximum dimensionless contact force reaches the maximum value of 
1.310; With the increase of λ, the maximum dimensionless contact force decreases and the rebound velocity decreases. When λ approaches infinity, the 
maximum contact force tends to zero as indicated by Eq. (90). 

Moreover, the dimensionless total contact duration tt , dimensionless compression duration tc and dimensionless recovery duration tr can be ob-
tained by analytical solution and plotted on Fig. A7(a), (b) and (c). By fitting the total duration obtained by the numerical method, we get a semi- 
analytical expression of the total contact duration: 

tt = 3.210exp
(
0.476λ1.182) (91) 

Material failure is most likely to occur when the contact depth and contact force reach maximum at tc. The semi-analytical expression of tc is also 
given: 
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tc = 1.605exp
(
− 0.158λ0.697) (92) 

Eqs. (91) and (92) are plotted in Fig. A7(a) and (b), respectively, and they agree well with the FEM results. With the increase of λ, the total contact 
duration and recovery duration both increase, while the compression duration decreases, resulting in an increase in the asymmetry of contact history. 
Let the asymmetry parameter be: 

η =
tr

tc
(93) 

As shown in Fig. A7 (d), η increases rapidly from 1 as λ increases. 
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Carretero-González, R., Khatri, D., Porter, M.A., Kevrekidis, P., Daraio, C., 2009. 
Dissipative solitary waves in granular crystals. Phys. Rev. Lett. 102 (2), 024102. 

Chiu, C.-C., Liou, Y., 1995. Low-velocity impact damage in brittle coatings. J. Mater. Sci. 
30 (4), 1018–1024. 

Choi, N.-S., Chang, J.-Y., Kwak, S.-B., Gu, J.-U., 2010. Impact surface fractures of glass- 
fiber/epoxy lamina-coated glass plates by small steel-ball. Compos. Sci. Technol. 70 
(14), 2056–2062. 

Conway, H., Engel, P., Lee, H., 1972. Force-time investigations for the elastic impact 
between a rigid sphere and a thin layer. Int. J. Mech. Sci. 14 (8), 523–529. 

Conway, H.D., Lee, H.C., Bayer, R.G., 1970. The impact between a rigid sphere and a thin 
layer. J. Appl. Mech. 37 (1), 159–162. 

Dimitriadis, E.K., Horkay, F., Maresca, J., Kachar, B., Chadwick, R.S., 2002. 
Determination of elastic moduli of thin layers of soft material using the atomic force 
microscope. Biophys. J . 82 (5), 2798–2810. 

Fernández and Francisco, M., 2020. Comment on ‘Analytical approach for solving 
population balances: a homotopy perturbation method’(2019) J. Phys. A: Math. 
Theor. 52385201. Journal of Physics A: Mathematical and Theoretical, 53(38): 
388001. 

Fernández and Francisco, M. On two new applications of the homotopy analysis method 
and the homotopy perturbation method Physica Scripta 81 3 2010 037002. 

M, F. and Fernández, 2020. Comment on: “Neutron star under homotopy perturbation 
method” Ann. Phys. 409, 167918 Annals of Physics 412 2019 168039. 
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