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A B S T R A C T

A full self-consistent model (FSCM) for the adhesive contact between an axisymmetric rigid punch and a Gibson
solid (an incompressible, linear graded elastic material) is established, which gives a self-consistent relation
between the surface gap and interaction. Power-law shaped indenters and the Lennard–Jones interaction law
are studied as representative cases, and the self-consistent equation is expressed in a dimensionless form with
two independent parameters, namely the shape index and the Tabor number. The self-consistent equation for
Gibson solid is a higher order polynomial equation with respect to the surface gap, which differs from the
nonlinear integral equation for power-law graded elastic material. By taking the surface gap as the independent
variable instead of the radius, the self-consistent equation is solved explicitly, which gives the first explicit
form of the solution to an FSCM. When the Tabor number exceeds a critical value, jump-in instability and
adhesion hysteresis occur, and the folding phenomenon that the Gibson solid surface is flipped and folded
along the radial direction is observed. The critical Tabor number is determined in an explicit form and it is
found to be independent of the surface index. The extended Maugis–Dugdale (M–D) model for Gibson solid is
invalid when the Tabor number is large enough and the extended Johnson–Kendall–Roberts (JKR) model does
not present the soft limit, due to their assumption of simple contact. An asymptotic solution is derived for the
soft limit of the FSCM, which gives a power-law asymptotic relation between the dimensionless pull-off force
and the Tabor number. This study provides a self-consistent toy model for the adhesive contact of Gibson solid
and may deepen the understanding on the adhesion of graded materials.
1. Introduction

Graded materials and structures exist widely in the natural biolog-
ical adhesion systems, which may achieve strong, stable, and robust
adhesion [1–3]. It is a great challenge to consider the effect of gradient
in adhesive contact theory, and some progress has only been made
in the recent decade [4–12]. Among various graded materials, the
most typical one is the incompressible material with Young’s modu-
lus increasing linearly with depth, which is well known as a Gibson
solid [13]. The study on the adhesion behavior of Gibson solid is fun-
damental and important, and may offer some basic understanding and
new insights of general graded materials. Recently, Zhu et al. [14] de-
veloped a self-consistent adhesive contact model for power-law graded
materials, which provides an alternative analytical framework for the
adhesion of graded materials, but its form is implicit and the numerical
calculation method may fail for Gibson solid. Therefore, this study
makes a further attempt on understanding the adhesion of Gibson solid.

Gibson solid first attracted interest in the field of geology and
was introduced to study the settlement of foundations on soils [13].

∗ Corresponding author.
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Although it may be too ideal to simplify actual solid material to be
an incompressible and linearly graded elastic material, some basic
understanding on the mechanical properties of graded materials can
be obtained by using Gibson solid as a toy model. An interesting
property of Gibson solid is that the surface local deformation is directly
proportional to the local pressure [13]. This property is also valid for
anisotropic incompressible linearly graded materials [15,16], but does
not hold when considering the effect of finite depth [17] and Poisson’s
ratio [18]. A comprehensive analysis on the mechanical response of
Gibson solid under line/point loading was presented by Calladine
and Greenwood [19]. The study on Gibson solid opens the prelude
to the contact problems of general graded materials. For example,
Booker et al. [20,21] derived the displacement solutions of power-
law graded material under various loadings, and Giannakopoulos and
Suresh [22,23] presented the Hertz solutions to the contact problems
of power-/exponential-law graded materials.

The above research laid a solid foundation for developing the
adhesion models of graded materials. Yao and Gao [24,25] conducted
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studies on the adhesion of Gibson solid through an interfacial crack
model and found that this material can achieve flaw-tolerant adhesion,
i.e., the adhesion stress uniformly reaches the theoretical strength
at the pull-off point and is independent of the crack size. Several
adhesive contact models of Gibson solid were established by deriv-
ing the limit solutions of power-law graded material [5,9,10]. For
example, Chen et al. [5] extended the Johnson–Kendall–Roberts (JKR)
model [26] to power-law graded material, and found that the pull-off
force for the contact between a sphere and Gibson solid is 2𝜋𝑅𝛥𝛾 (𝑅
the sphere radius and 𝛥𝛾 the interface energy). Jin et al. [9] obtained
the JKR–DMT transition of power-law graded material by extending
the double-Hertz model [27], and concluded that the pull-off force
−𝑃c between a sphere and Gibson solid is identical to 2𝜋𝑅𝛥𝛾 and
its dimentionless form −𝑃c∕(𝜋𝑅𝛥𝛾) is independent of the transition
parameter, i.e., the Tabor number. It was found that this understanding
is valid only for the paraboloidal-shaped punch by using a generalized
Maugis–Dugdale (M–D) model [10]. In the extended double-Hertz and
M–D models of Gibson solid, the Tabor number is limited from 0 to
1 [9,10]. For small Tabor numbers, the double-Hertz-type and M–
D-type models both reduce to the Derjaguin–Muller–Toporov (DMT)
model [9,10,27,28], and the DMT pull-off force is independent of the
gradient parameter [10,14]. However, it is expected that the Tabor
number can be very large for strong adhesion (e.g., large interface
energy) and soft materials (small Young’s modulus). This indicates that
the previous solution on the adhesion of Gibson solid is incomplete,
and a full understanding may need more accurate models.

In the framework of continuum mechanics, the full self-consistent
model (FSCM) [29–31] is the most accurate adhesion model and it may
provide an opportunity to overcome the above limitation. The FSCM
adopts a self-consistent relation between the surface interaction and the
surface deformation through a specific force law, and does not impose
any additional restrictions on the surface deformation. In comparison,
the JKR-type and M–D-type models adopt the simple contact assump-
tion (the surface gap within a central zone is single-valued and equals to
zero), and the DMT-type model adopts the Hertzian shape assumption
(the surface contour remains Hertzian and is not affected by adhesion).
The FSCM has successfully characterized adhesion properties between
homogeneous solids from rigid to soft contact [32–34]. Previous studies
on the FSCM mainly focused on different surface shapes [35–38].
Zhu et al. [14] made the first attempt to establish an FSCM for the
adhesive contact of nonhomogeneous materials, and successfully used
it to validate and improve the corresponding M–D model. However, the
numerical calculation of the self-consistent nonlinear integral equation
becomes intractable when it approaches the Gibson limit, where a step
function is involved. In addition, the FSCMs for homogeneous and
power-law graded material in all previous studies have no explicit solu-
tion and requires a complex control method and a numerical iterative
method to solve the self-consistent relation [14,32,33,35–38], which
greatly limits the application of FSCM and is the main reason why FSCM
has not received enough attention, compared with the JKR-type and the
M–D-type models.

This study aims to develop an FSCM for the adhesive contact
between a rigid punch and a Gibson solid, and to make the first
attempt to derive an analytical solution of FSCM. The present work is
a necessary supplement to the recent study on the adhesion of power-
law graded material [14], and may be regarded as a fundamental
toy model for the adhesive contact of graded materials. Theoretical
modeling and solving strategies are presented in Section 2. In Section 3,
the adhesion behavior between a power-law-shaped punch and Gibson
solid is analyzed, and the extended JKR and M–D models are verified
by the present model. Conclusions are given in Section 4.

2. Theory

In this section, an FSCM for the adhesive contact of Gibson solid
is established. The self-consistent equation is expressed in an explicit
form by exchanging variables, and a solution strategy is presented.
2

Fig. 1. Schematic of the adhesive contact between an axisymmetric rigid punch and
an incompressible, linear graded half-space (Gibson solid). During contact, adhesion
necking may occur. In an adhesion neck, 𝑟a represents the neck outer radius and 𝑟b
represents the neck inner radius.

2.1. A full self-consistent model for the adhesion of gibson solid

The adhesive contact problem between an axisymmetric rigid punch
and a Gibson-type half-space is studied, as shown in Fig. 1. For the
Gibson solid, the Poisson’s ratio 𝜈 is 1∕2 (incompressible material) and
its Young’s modulus 𝐸 increases linearly with depth 𝑧 according to [13]

𝐸(𝑧) = 𝐸0
𝑧
𝑐0

, (1)

where 𝐸0 is a reference modulus and 𝑐0 is the characteristic depth. The
surface shape of the rigid punch is described by 𝑓 (𝑟), and the surface
gap between the two objects is given by

𝐻(𝑟) = −𝛿 + 𝑓 (𝑟) +𝑤(𝑟), (2)

where 𝛿 is the relative displacement of distant points in the two solids
and 𝑤(𝑟) is the surface deformation of Gibson solid. For a given surface
interaction 𝑝(𝑟), the surface deformation 𝑤(𝑟) can be calculated by using
the fundamental solution of contact mechanics.

Here, we adopted the Derjaguin approximation [14,32,38–41] to
describe the surface interaction. In this approximation, the force be-
tween curved and inclined surfaces is assumed to be identical to that
between plane and parallel surfaces, which is a function with respect
to the local surface gap, i.e.,

𝑝(𝑟) = 𝑝s(𝐻(𝑟)). (3)

The total force is given by

𝑃 = ∫

∞

0
𝑝s(𝐻(𝑟))2𝜋𝑟 d 𝑟. (4)

For an FSCM, the relation between the surface interaction and the
surface deformation is self-consistent [29–31]. The surface interaction
𝑝(𝑟) is determined by the local surface gap 𝐻(𝑟) through Eq. (3).
Correspondingly, the surface deformation 𝑤(𝑟) is determined by 𝑝(𝑟),
and then affects 𝐻(𝑟) through Eq. (2). We propose two approaches to
establish the self-consistent relation for the adhesive contact of Gibson
solid.

Recently, Zhu et al. [14] have studied the adhesion of power-law
graded elastic materials with a constant Poisson’s ratio 𝜈 and a Young’s
modulus 𝐸, described by

𝐸 = 𝐸0(𝑧∕𝑐0)𝑘, 0 ≤ 𝑘 < 1, (5)

where 𝑘 is the gradient exponent. It is noted that the region of 𝑘 in
contact problems can be −1 < 𝑘 < 1 [42–46], and the absolute value
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of 𝑘 can be larger than 1 for the Poisson’s ratio 𝜈 = 1/2 [46,47]. In
his study, we focus on the adhesion of incompressible, linear graded
lastic material, i.e., 𝑘 = 1 and 𝜈 = 1/2.

Using the Derjaguin approximation and an analytical surface dis-
placement solution of a half-space under a ring loading [21], Zhu
et al. [14] obtained the full self-consistent equation for power-law
graded materials. By applying the Riemann–Stieltjes integral method
and the properties of Gauss’s hypergeometric function, the full self-
consistent equation is rewritten in a form without integral singular-
ity [14], i.e.,

𝐻(𝑟) = −𝛿 + 𝑓 (𝑟) +
2𝑏𝑐𝑘0 𝑟

1−𝑘

𝐸∗(1 − 𝑘) ∫

𝑡=∞

𝑡=0
𝑝s(𝐻(𝑡))d𝛹𝑘(𝑡∕𝑟)

+
2𝑏𝑐𝑘0

𝐸∗(1 − 𝑘) ∫

𝑡=∞

𝑡=0
𝑝s(𝐻(𝑡))d𝑡1−𝑘, (6)

here 𝐸∗ = 𝐸0∕(1 − 𝜈2) and parameter 𝑏 is given by

𝑏 =
2𝑘+1 (𝑘 + 2) 𝑞 sin(𝑞𝜋∕2)
𝑘 (𝑘 + 1)B(𝑘∕2, 1∕2) B( 3 + 𝑘 + 𝑞

2
,
3 + 𝑘 − 𝑞

2
),

𝑞 =
√

(1 + 𝑘)
(

1 − 𝑘𝜈
1 − 𝜈

)

, (7)

with B(⋅) denoting the Euler’s beta function. The function 𝛹𝑘(𝑠) is
efined as [14]

𝑘(𝑠) =
1

2(1 + 𝑠)𝑘

[

(𝑠 − 1) 2F1(
𝑘 + 1
2

, 1
2
; 1; 4𝑠

(1 + 𝑠)2
)

+ (1 + 𝑠) 2F1(
𝑘 − 1
2

, 1
2
; 1; 4𝑠

(1 + 𝑠)2
)
]

− 𝑠1−𝑘, (8)

where 2F1(⋅) is the Gauss’s hypergeometric function. When 𝑘 → 1, we
have 𝑏∕(1 − 𝑘) → 1 for 𝜈 = 1/2, and 𝑏∕(1 − 𝑘) → ∞ for 𝜈 ≠ 1∕2. Thus,
for 𝑘 = 1, the value of Poisson’s ratio must be 1/2 (Gibson solid), and
the function 𝛹𝑘(𝑠) approaches a step function, written as

lim
𝑘→1

𝛹𝑘(𝑠) = 𝜃(𝑠) =

{

0, 𝑠 > 1,

−1, 𝑠 < 1.
(9)

Hence, Eq. (6) can be reduced to

𝐻(𝑟) = −𝛿 + 𝑓 (𝑟) +
3𝑐0
2𝐸0 ∫

𝑡=∞

𝑡=0
𝑝s(𝐻(𝑡))d𝜃(𝑡∕𝑟). (10)

The step function 𝜃(𝑠) is discontinuous at 𝑠 = 1 and it brings difficulties
o the numerical integration of Eq. (10). Fortunately, it is known that
he derivative of the step function 𝜃(𝑠) is the Dirac delta function
D(𝑠 − 1), which is defined by 𝛿D(𝑥) = 0 for 𝑥 ≠ 0 and ∫ ∞

−∞ 𝛿D(𝑥)d𝑥 = 1.
Consequently, Eq. (10) can be rewritten as

𝐻(𝑟) = −𝛿 + 𝑓 (𝑟) +
3𝑐0
2𝐸0 ∫

∞

0
𝑝s(𝐻(𝑠𝑟))𝛿D(𝑠 − 1)d𝑠. (11)

By applying the sifting property of the delta function, the full self-
consistent equation for Gibson solid can be derived as

𝐻(𝑟) = −𝛿 + 𝑓 (𝑟) +
3𝑐0
2𝐸0

𝑝s(𝐻(𝑟)). (12)

In fact, by using a special property of Gibson solid, the full self-
consistent equation can be derived in an alternative approach. The
normal deformation behavior of the Gibson-type half-space acts as a
Winkler foundation, i.e., the normal surface deformation 𝑤(𝑟) is directly
proportional to the local pressure 𝑝(𝑟) [13,19]

𝑤(𝑟) =
𝑝(𝑟)
𝑘s

, (13)

where 𝑘s is the parameter of substrate reaction. This parameter is
independent of the shape and size of the loading zone, and equal to
twice the increase rate of shear modulus 𝐺 with depth, i.e., 𝑘s =
2𝐺∕𝑧 [13]. For elastic materials, the relation between the Young’s
modulus and the shear modulus is 𝐸 = 2𝐺 1 + 𝜈 , and then for Gibson
3

( )
solid (𝜈 = 1∕2), we have 𝐸 = 3𝐺. By combining these relations with
Eq. (1), the parameter 𝑘𝑠 can be given by

𝑘s =
2𝐸0
3𝑐0

. (14)

Substituting Eqs. (3), (13) and (14) into Eq. (2) also leads to Eq. (12).
This confirms that the FSCM for the adhesion of Gibson solid is a
limit case of that for the adhesion of power-law graded elastic materi-
als [14]. It is common to consider the surface modulus to be zero in the
adhesion of graded materials for analytical tractability [4–12,14,48],
and this limitation may be overcome through numerical or asymptotic
methods [49,50].

It should be noted that the full self-consistent equations for homo-
geneous material [32] and power-law graded material [14] are both
nonlinear integral equations. The surface gap at each radius is coupled
with the surface gaps at other positions in these integral equations,
which need numerical iterative methods to solve [14,32]. However,
for Gibson solid, the full self-consistent equation, Eq. (12), shows that
the surface gaps are decoupled from each other and any surface gap
depends only on a local radius. Therefore, the solving method of
Eq. (12) can be much simpler, as presented in Section 2.3.

2.2. Nondimensionalization

The full self-consistent equation can be solved for given surface
shape 𝑓 (𝑟) and surface interaction 𝑝s(𝐻). Here, we considered the
power-law surface shapes described by [11,51]

𝑓 (𝑟) = 𝑟𝑛

𝑛𝑄
, (15)

where 𝑛 is the shape index and 𝑄 is the shape parameter. For 𝑛 = 1,
𝑄 = tan𝜙, and for 𝑛 ≠ 1, 𝑄 = 𝑅𝑛−1. In particular, 𝑛 = 1 represents a
cone with 𝜙 being the semiangle, and 𝑛 = 2 represents a sphere with
𝑅 being the radius. The 9–3 Lennard–Jones (L–J) force law is taken as
an example to describe the surface interaction [9,10,14,32], i.e.,

𝑝s(𝐻) =
8𝛥𝛾
3𝑧0

[

(

𝐻
𝑧0

+ 1
)−9

−
(

𝐻
𝑧0

+ 1
)−3

]

, (16)

where 𝛥𝛾 is the interface energy per unit area and 𝑧0 is the character-
stic distance of the surface interaction range. The interval of 𝐻∕𝑧0 is
−1,∞). When 𝐻∕𝑧0 < 0, the surface pressure is positive (corresponding
o compressive stress), and two surfaces are in contact.

By introducing the following dimensionless parameters

̄ = 𝐻
𝑧0

, 𝛿 = 𝛿
𝑧0

, 𝑟̄ = 𝑟
(

𝑄𝑧0
)1∕𝑛

, (17)

the surface shape and interaction can be rewritten in a dimensionless
form as

𝑓 (𝑟̄) ≡ 𝑓 (𝑟)
𝑧0

= 𝑟̄𝑛

𝑛
, (18)

𝑝̄s(𝐻̄) ≡
𝑝s(𝐻)
𝛥𝛾∕𝑧0

= 8
3

[

(

𝐻̄ + 1
)−9 −

(

𝐻̄ + 1
)−3

]

, (19)

respectively. Then, the full self-consistent equation (Eq. (12)) can be
rewritten as

𝐻̄ − 16
3
𝜇2

[

(

𝐻̄ + 1
)−9 −

(

𝐻̄ + 1
)−3

]

+ 𝛿 = 𝑓 (𝑟̄), (20)

where 𝜇 is the generalized Tabor number for Gibson solid, defined as

𝜇 =

√

3𝑐0𝛥𝛾
4𝐸0𝑧20

. (21)

The definition of the Tabor number for Gibson solid coincides with that
for power-law graded materials in the limit of 𝑘 = 1 and 𝜈 = 1∕2 [9,
10,14]. The Tabor number for Gibson solid is independent of shape
parameters, and the full self-consistent equation (Eq. (20)) is controlled
by two independent dimensionless parameters, i.e., 𝑛 and 𝜇. The self-

consistent equation (Eq. (20)) for the present problem is a higher order
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Fig. 2. The relation between the dimensionless surface gap 𝐻̄ and the dimensionless
surface shape function 𝑓 for three special values of Tabor numbers 𝜇 with 𝛿 = −1. 𝐻̄
is single-valued with respect to 𝑓 for a small Tabor number and may be multivalued
for a large Tabor number. The critical Tabor number is about 0.63.

polynomial equation with respect to 𝐻̄ , which is quite different from
the nonlinear integral equations of homogeneous material [32] and
power-law graded material [14]. The dimensionless total force is given
by

𝑃 ≡ 𝑃
𝜋𝑄2∕𝑛𝛥𝛾𝑧2∕𝑛−10

= 2∫

∞

0
𝑝̄s(𝐻̄(𝑟̄))𝑟̄d𝑟̄. (22)

.3. Solution strategies

In a usual solution strategy, the radius 𝑟̄ is chosen as the indepen-
ent variable for the self-consistent equation. For given 𝑟̄, 𝑛, 𝜇, and 𝛿,
he surface gap 𝐻̄ can be calculated numerically from Eq. (20) through
ome standard methods, such as the dichotomy method and the secant
ethod. After 𝐻̄(𝑟̄) is determined, the dimensionless total load 𝑃 can

e obtained from Eqs. (19) and (22). By changing 𝛿 from a large value
say 10) to a small value (say −10), all the equilibrium states (𝑃 vs.
̄) can be obtained from Eqs. (20) and (22). However, Eq. (20) is a
igher order polynomial equation of 𝐻̄ and it has multiple roots when
he Tabor number is large, which makes it difficult to select proper
olutions during the calculation procedure.

Taking 𝑟̄ as the independent variable is inappropriate when the
abor number is large. Note that 𝑓 (𝑟̄) of the power-law surface shapes

ncreases monotonously for 𝑟̄ > 0, and choosing 𝑟̄ as the independent
ariable is equivalent to making 𝑓 as the independent variable. The
ariation of 𝐻̄ with 𝑓 is plotted for three representative values of 𝜇
nd 𝛿 = −1, as shown in Fig. 2. The value of 𝛿 does not affect the trend

of the curve, and only makes the curves shift in the horizontal direction.
When the Tabor number is small (say 𝜇 = 0.2), 𝐻̄ is single-valued with
respect to 𝑓 (or 𝑟̄). But, when the Tabor number is large (say 𝜇 = 1),
𝐻̄ may have multiple values with respect to 𝑓 (or 𝑟̄), which causes
difficulties in the root selection. The critical Tabor number 𝜇c for this
transition is about 0.63, which is analyzed below.

The necessary mathematical condition for 𝐻̄ to appear multivalued
is
d𝐻̄
d𝑟̄

→ ∞ or d𝑟̄
d𝐻̄

= 0 (23)

at some radii. Differentiating both sides of Eq. (20) with respect to 𝐻̄
yields

1 − 16𝜇2
[

(

𝐻̄ + 1
)−4 − 3

(

𝐻̄ + 1
)−10

]

=
d𝑓 (𝑟̄)
d𝑟̄

d𝑟̄
d𝐻̄

. (24)

otice that the value of d𝑓 (𝑟̄)∕d𝑟̄ is finite, and then Eqs. (23) and (24)
eads to

− 16𝜇2
[

(

𝐻̄ + 1
)−4 − 3

(

𝐻̄ + 1
)−10

]

= 0, (25)

r

= 1 [(𝐻̄ + 1
)−4 − 3

(

𝐻̄ + 1
)−10

]−1∕2
, (26)
4

4

hich has a minimum 𝜇c at 𝐻̄ = (15∕2)1∕6 − 1 ≈ 0.40, i.e.,

𝜇c =
5

4 6
√

60
≈ 0.63. (27)

It is very interesting to find that the inverse relation (𝑓 vs. 𝐻̄ , or
̄ vs. 𝐻̄) is always single-valued for all the cases studied, as shown in
Fig. 2. Therefore, we can choose 𝐻̄ instead of 𝑟̄ to be the independent
variable in the numerical calculation. For power-law surface shapes,
Eq. (20) can be rewritten as

𝑟̄(𝐻̄) = 𝑛1∕𝑛
{

𝛿 + 𝐻̄ − 16
3
𝜇2

[

(

𝐻̄ + 1
)−9 −

(

𝐻̄ + 1
)−3

]}1∕𝑛
. (28)

It can be found from Eq. (28) that the full self-consistent equation is in
an explicit form if 𝐻̄ is taken as the independent variable. The surface
central gap control method [14] is adopted in this study to obtain all
equilibrium states. At the position 𝑟̄ = 0, Eq. (28) gives

𝛿 = −𝐻̄0 +
16
3
𝜇2

[

(

𝐻̄0 + 1
)−9 −

(

𝐻̄0 + 1
)−3

]

, (29)

where 𝐻̄0 is the surface gap at 𝑟̄ = 0. Then, Eq. (22) can be rewritten
as

𝑃 = 2∫

𝐻̄=∞

𝐻̄=𝐻̄0

𝑝̄s(𝐻̄) 𝑟̄(𝐻̄) d 𝑟̄(𝐻̄), (30)

which can be calculated through numerical integration. The preset
interval of 𝐻̄ is (𝐻̄0,∞), but it is noted that if 𝑓 < 0, the value of 𝑟̄ is
unreasonable. Hence, the independent variable 𝐻̄ should be restricted
to a reasonable interval, as discussed below.

In the surface central gap control method, 𝐻̄0 varies from a large
value (say 10) to a small value (say −0.1). From Eqs. (20) and (29), we
have

𝑓 (𝑟̄(𝐻̄)) = 𝐻̄ − 𝐻̄0 −
16
3
𝜇2

[

(

𝐻̄ + 1
)−9 −

(

𝐻̄ + 1
)−3

−
(

𝐻̄0 + 1
)−9 +

(

𝐻̄0 + 1
)−3

]

, 𝐻̄ ≥ 𝐻̄0. (31)

For 𝜇 ≤ 0.63, 𝑓 increases monotonously with the increase of 𝐻̄ , so 𝑓 ≥ 0
and 𝑟̄ ≥ 0 for any value of 𝐻̄ ≥ 𝐻̄0. But for 𝜇 > 0.63, 𝑓 is nonmonotonic
with respect to 𝐻̄ and there are some local extreme points in an 𝑓 vs.
𝐻̄ curve. As an example of 𝜇 = 1, a local maximum (denoted as point
A) and a local minimum (denoted as point B) can be observed in Fig. 3.
The points with the same 𝑓 values of A and B are denoted as A′ and B′,
respectively. For different values of 𝐻̄0, the effective integral interval of
𝐻̄ is analyzed here. When 𝐻̄0 ≥ 𝐻̄B or 𝐻̄0 ≤ 𝐻̄B′ , we always have 𝑓 ≥ 0
for 𝐻̄ ≥ 𝐻̄0, as illustrated in Figs. 3(a) and 3(d). When 𝐻̄A ≤ 𝐻̄0 < 𝐻̄B,
it is found that the condition 𝑓 > 0 satisfies only for 𝐻̄ > 𝐻̄1 with 𝐻̄1
being the corresponding largest root to 𝑓 = 0, as shown in Fig. 3(b).
When 𝐻̄B′ < 𝐻̄0 < 𝐻̄A, the condition 𝑓 > 0 is hold for 𝐻̄0 < 𝐻̄ < 𝐻̄1
and 𝐻̄ > 𝐻̄2, with 𝐻̄1 and 𝐻̄2 being the two larger roots corresponding
to 𝑓 = 0, as shown in Fig. 3(c). Therefore, the attainable interval of 𝐻̄
can be determined for any case. Actually, in the numerical integral of
Eq. (30), the surface gap 𝐻̄ can take a continuous change from 𝐻̄0 to
a large enough value, with a careful treatment of 𝑓 < 0, i.e., if 𝑓 < 0,
one can take 𝑓 = 0 and 𝑟̄ = 0, which does not contribute to the integral
in Eq. (30).

3. Results and discussion

In this section, the effect of the Tabor number and the shape index
on the adhesive contact behavior of Gibson solid is analyzed. The
adhesion hysteresis and the surface deformation mode are discussed
and a related critical condition is derived. The FSCM is used to validate
the M–D-𝑛-G and JKR-𝑛-G models, and an asymptotic solution for the

soft limit of Gibson solid adhesion is obtained based on our FSCM.
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3.1. Adhesion features at small/large Tabor numbers

The force–displacement curves for 𝑛 = 2 and 𝜇 = 0.2 and 2 are
tudied as representative cases, as shown in Fig. 4. According to the
agnitude of the force or the characteristics of the displacement, some

epresentative points are marked on the curves. The force–displacement
urve is single-valued at small Tabor numbers, as shown in Fig. 4(a)
or a case of 𝑛 = 2 and 𝜇 = 0.2. If the displacement control method
s adopted, the loading path is A–B–C–D and the unloading path is
he opposite one D–C–B–A. But, the full force–displacement curve is
ifurcated at large Tabor numbers, thus the adhesion hysteresis phe-
omenon appears if the displacement control method is adopted, as
laborated in Fig. 4(b) for a case of 𝑛 = 2 and 𝜇 = 2. In this case,
he loading path is A–B–B′–C–D and there is an unstable jumping-in
rocess (B → B′). The unloading path is D–C–B′–M–A and there is
o jumping instability during detachment. This interesting adhesion
ehavior of Gibson solid has also been observed for materials with 𝜈 =
/2 and 𝑘 > 1 [47]. During a complete loading–unloading cycle, some
echanical energy is dissipated due to the unstable jumping process

namely the hysteresis energy loss), which is represented by the shadow
rea (ABB′A) in Fig. 4(b).

The surface deformation and pressure distribution along the radius
irection for some representative points (marked in Fig. 4) on the force–
isplacement curves are plotted in Fig. 5. For the cases considered, the
urface deformation at point A is almost zero, because the distance be-
ween the punch and the half-space is large and the surface interaction
s very weak. The surface of the half-space is piled up during loading
rom point A to point B, corresponding to tensile deformation. In the
oading path, the maximum value of tensile deformation increases until

critical value is reached, as shown in Figs. 5(a) and 5(b). This is
ecause the deformation of the Gibson solid is proportional to the local
ressure and the surface tensile pressure has a maximum (namely the
heoretical strength), as presented in Figs. 5(c) and 5(d). The theoretical
trength can be obtained by calculating the extremum of Eq. (16) as
th ≈ 1.026𝛥𝛾∕𝑧0. By using Eqs. (13), (14) and (21), the dimensionless
aximum tensile deformation is given by −𝑤̄ ≈ 2.052𝜇2. For the
5

max a
mall Tabor number, the surface deformation and pressure are single-
alued and change continuously during the loading/unloading process,
s illustrated in Figs. 5(a) and 5(c). For a large Tabor number (say
= 2), the surface deformation and pressure change suddenly at the

umping-in position (B → B′), as shown in Figs. 5(b) and 5(d). It
s interesting to find that the surface of Gibson solid is flipped and
olded along the radial direction (corresponding to an adhesion neck),
nd the surface deformation and pressure are multivalued for some
ntervals of radius, which is named as a folding deformation mode.
his folding phenomenon appears at point B′ with 𝑟̄ = 0 being the fold
osition. From point B′ to point D, the fold position moves outward.
xperimental tests on the adhesive contact of Gibson solid have not
een reported in the literature, but the folding deformation has been
bserved in some experiments on the adhesion of homogeneous soft
aterials [52–54].

The folding deformation mode has not been predicted by the JKR-
M–D-type models for the adhesion of Gibson solid [5,9,10], see Sec-
ion 3.4 for further discussion. In the FSCM for the adhesion of power-
aw graded materials (0 < 𝑘 < 1) [14] and homogeneous materials [32,
5], the folding deformation mode is not observed either. This is
ecause, for a general material, the self-consistent relation in the FSCM
sually contains a nonlinear integral, which characterizes the mutual
nhibition of deformation by surface interactions at different radii. In
ddition, the full self-consistent equation for a general material is in
n implicit form, and the surface gap 𝐻 cannot be separated as an
ndependent variable like the Gibson toy model in this study. Thus, we
an only choose the radius 𝑟 as the independent variable and 𝐻 as the
ependent variable, i.e., 𝐻 is single-valued with respect to 𝑟 and it is
mpossible to predict the folding deformation.

Two parameters are introduced to characterize the shape of the
dhesion neck, i.e., the neck outer radius 𝑟a and the neck inner radius
b, as illustrated in Fig. 1. The surface gaps corresponding to 𝑟a and
b are denoted as 𝐻a and 𝐻b, respectively. Their dimensionless forms
re 𝑟̄a = 𝑟a∕(𝑅𝑧0)1∕2, 𝑟̄b = 𝑟b∕(𝑅𝑧0)1∕2, 𝐻̄a = 𝐻a∕𝑧0 and, 𝐻̄b = 𝐻b∕𝑧0.
rom the definition of the neck radius, Eq. (23) is valid for 𝑟̄ = 𝑟̄a and

𝑟̄ = 𝑟̄b. Thus, 𝐻̄a and 𝐻̄b can be determined by solving Eq. (25) for

given Tabor number, and are independent of the shape index 𝑛 and
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e

Fig. 4. The force–displacement curves for (a) 𝑛 = 2, 𝜇 = 0.2 and (b) 𝑛 = 2, 𝜇 = 2. For 𝜇 = 0.2, the loading path is A–B–C–D and the unloading path is the opposite one D–C–B–A.
For 𝜇 = 2, the loading path is A–B–B′–C–D and the unloading path is D–C–B′–M–A. Adhesion hysteresis is observed in (b) and the shadow area (ABB′A) represents the hysteresis
nergy.
Fig. 5. The surface deformation of some representative points on the force–displacement curves for (a) 𝜇 = 0.2 and (b) 𝜇 = 2, and the corresponding pressure distribution for
(c) 𝜇 = 0.2 and (d) 𝜇 = 2. Points A, B, B′, C, D, and M are marked in Fig. 4. A folding deformation mode appears for 𝜇 = 2, and the surface deformation in (b) and pressure
distribution in (d) are both multivalued.
m
m

the displacement 𝛿. After 𝐻̄a and 𝐻̄b are determined, 𝑟̄a and 𝑟̄b can be
obtained by using Eq. (20) for given values of 𝜇, 𝑛, and 𝛿. The effect of
the Tabor number 𝜇 on 𝐻̄a and 𝐻̄b is studied in Fig. 6(a). For 𝜇 < 0.63,
𝐻̄a and 𝐻̄b do not have corresponding values, because the adhesion
neck does not appear. As the Tabor number increases, 𝐻̄a decreases
monotonously and approaches to a constant value, and 𝐻̄b increases
monotonously. The asymptotic behavior of 𝐻̄a and 𝐻̄b can be studied
by using a principal balance method. It can be seen from the exact
results in Fig. 6(a) that 𝐻̄a + 1 has the order of 1 and 𝐻̄b + 1 → ∞
as 𝜇 → ∞. Thus, the two dominant terms in Eq. (25) when 𝐻̄ is around
𝐻̄a are −16𝜇2(𝐻̄ +1)−4 and 48𝜇2(𝐻̄ +1)−10. By balancing the dominant
terms of Eq. (25), the asymptotic solution of 𝐻̄a as 𝜇 → ∞ is derived
as

𝐻̄a ∼ 31∕6 − 1 ≈ 0.201, 𝜇 → ∞. (32)

When 𝐻̄ is around 𝐻̄b, the two dominant terms in Eq. (25) are 1 and
−16𝜇2(𝐻̄ + 1)−4 as 𝜇 → ∞. The asymptotic solution of 𝐻̄b is given by

̄ √

𝜇 − 1, 𝜇 → ∞. (33)
6

𝐻b ∼ 2 t
The asymptotic solutions of 𝐻̄a and 𝐻̄b almost coincide with the exact
results for 𝜇 > 1.5, as shown in Fig. 6(a). The dependency of 𝑟̄a and 𝑟̄b
on the displacement 𝛿 during the loading/unloading process is analyzed
for 𝑛 = 2 and 𝜇 = 2, as shown in Fig. 6(b). The points A, M, B′, C,
and D are corresponding to those marked in Fig. 4(b). In the loading
process, 𝑟̄a and 𝑟̄b increase monotonously from point B′(the appearance
point of the folding deformation), which corresponds to an outward-
moving adhesion neck. In the unloading process, 𝑟̄a and 𝑟̄b decrease

onotonously along the path D–C–B′–M–A, and the adhesion neck
oves inward. During detachment, 𝑟̄b vanishes at the parts B′–M–A,

and then 𝑟̄a vanishes if the displacement continues to decrease after
point A.

3.2. Effect of the shape index and the Tabor number

The effect of the Tabor number on the full force–displacement
curves is studied for some special values of shape index 𝑛, as shown in
Fig. 7. A bifurcated curve is observed for 𝜇 = 1 and 2 in all the studied
cases for the shape index. For 𝑛 < 2, the displacement corresponding

o the pull-off point i.e., the point associated with the pull-off force on
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Fig. 6. (a) Effect of the Tabor number 𝜇 on the surface gaps 𝐻̄a and 𝐻̄b corresponding to the adhesion neck outer radius 𝑟̄a and inner radius 𝑟̄b, respectively. The critical Tabor
umber for 𝐻̄a and 𝐻̄b to have values is 𝜇c = 0.63. Asymmetric solutions of 𝐻̄a and 𝐻̄b are plotted in dashed lines. (b) Dependency of 𝑟̄a and 𝑟̄b on the displacement 𝛿 during the
oading/unloading process for 𝑛 = 2 and 𝜇 = 2. The loading path is B′–C–D and the unloading path is D–C–B′–M–A, where points A, B, B′, C, D, and M are marked in Fig. 4(b).
Fig. 7. Effect of the Tabor number 𝜇 on the force–displacement curves with some specific values of the shape index: (a) 𝑛 = 1, (b) 𝑛 = 1.5, (c) 𝑛 = 2, and (d) 𝑛 = 5. The
epresentative values of 𝜇 are 0, 0.3, 0.5, 1, and 2.
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he force–displacement curve is positive and increases with the increase
f the Tabor number, as shown in Figs. 7(a) and 7(b). For 𝑛 > 2,
he displacement corresponding to the pull-off point is negative and
ecreases with the increase of the Tabor number, as shown in Fig. 7(d).
or 𝑛 = 2, the pull-off point occurs at 𝛿 = 0 and the corresponding
imensionless pull-off force (i.e., the maximum value of −𝑃 ) is 2, as
hown in Fig. 7(c).

It is interesting to find that the dimensionless pull-off displacement
nd pull-off force do not change with the Tabor number for 𝑛 = 2.
ctually, the total force for 𝑛 = 2 can be derived explicitly. Substituting
q. (28) with 𝑛 = 2 into Eq. (30) leads to

̄ = − 8

3
(

𝐻̄0 + 1
)2

+ 2

3
(

𝐻̄0 + 1
)8

+
128𝜇2

9
(

𝐻̄0 + 1
)6

−
256𝜇2

9
(

𝐻̄0 + 1
)12

+
128𝜇2

9
(

𝐻̄0 + 1
)18

. (34)

he relation between 𝛿 and 𝐻̄0 is given by Eq. (29). It is easy to find
hat 𝐻̄0 = 0 gives

d𝑃
̄ = 0, d2𝑃

̄ 2 > 0. (35)
7

d𝐻0 d𝐻0
onsequently, the pull-off point emerges at 𝐻̄0 = 0. Substituting 𝐻̄0 = 0
nto Eqs. (29) and (34) yields the displacement and force at the pull-off
oint, i.e.,

̄c = 0, −𝑃c = 2, (36)

hich are indeed independent of the Tabor number. This finding is
onsistent with that predicted by the generalized double-Hertz and M–D
odels for Gibson solid [9,10].

The effect of the Tabor number on the pull-off force is analyzed for
ome cases of the shape index 𝑛, as shown in Fig. 8(a). As the Tabor
umber increases, the dimensionless pull-off force increases monoton-
cally for the cases of 𝑛 = 1 and 1.5, and decreases monotonically for
he case of 𝑛 = 5. The dimensionless pull-off forces of the Bradley-𝑛

model [51] and the JKR model for Gibson solid (denoted as the JKR-𝑛-G
model) [5,10] are also plotted for comparison, which are given by

− 𝑃 Bradley-𝑛
c ≡

−𝑃 Bradley-𝑛
c

𝜋𝑄2∕𝑛𝛥𝛾𝑧2∕𝑛−10

= 32𝑛2∕𝑛
9𝑛 − 2

B
(

3 − 2
𝑛
, 2
𝑛

) [

168B
(

4 − 2
𝑛
, 6
)](3𝑛−2)∕(6𝑛)

(37)
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nd

− 𝑃 JKR-𝑛-G
c ≡

−𝑃 JKR-𝑛-G
c

𝜋𝑄2∕𝑛𝛥𝛾𝑧2∕𝑛−10

= 24∕𝑛𝑛
𝑛 + 2

𝜇(2−𝑛)∕𝑛, (38)

espectively. The FSCM pull-off force approaches the corresponding
radley limit at small Tabor numbers for each 𝑛. As the Tabor number

ncreases, the FSCM pull-off force first approaches and then moves
way from the JKR limit (except for the case of 𝑛 = 2), which indicates
hat the JKR theory is no longer the soft limit for Gibson solid. This
henomenon is essentially different from the homogeneous and the
ower-law graded cases, which will be further discussed in Section 3.4.

.3. Adhesion hysteresis and surface deformation mode

Following previous studies on adhesion between solids [32,55–57],
his study does not consider the detailed dynamic process of jumping
nd the possible stored energy in this process, and thus the energy
ifference during a complete loading/unloading circle can be only
egarded as the adhesion hysteresis in a quasi-static process, resulting
n an apparent energy loss. The dependency of the apparent hysteresis
nergy loss 𝛥𝐸 on the Tabor number is studied for the cases of 𝑛 =
1, 1.5, 2, and 5, as illustrated in Fig. 8(b). The apparent hysteresis
energy is zero for small Tabor numbers. Only when the Tabor number
is larger than the critical value 𝜇c, adhesion hysteresis occurs, and
hen the apparent hysteresis energy increases monotonously with the
abor number. It is interesting to find that the critical value of the
abor number is independent of the shape index. This indicates that the
ccurrence of the adhesion hysteresis (or jumping instability) of Gibson
olid originates from its specific nature. The jumping-in condition is
iven by

d𝛿
d𝑃

)

B
=
(

d𝛿∕d𝐻̄0

d𝑃∕d𝐻̄0

)

B
= 0, (39)

here subscript B represents the jumping-in point. The value of d𝑃∕d𝐻̄0
t the jumping-in point is finite, and Eq. (39) is equivalent to
d𝛿∕d𝐻̄0

)

B = 0. At the jumping point, the repulsive force is much
maller than the attractive force, and in Eq. (29), the ninth power
erm can safely be neglected by comparison with the third power
erm [14,55,56]. Consequently, Eq. (29) simplifies to

̄ ∼ −𝐻̄0 −
16
3
𝜇2(𝐻̄0 + 1

)−3. (40)

y using the jumping-in condition
(

d𝛿∕d𝐻̄0
)

B = 0, the surface central
ap at the jumping-in point B is

̄ 0B ∼ 2
√

𝜇 − 1. (41)

ubstituting Eq. (41) into Eq. (40) yields the displacement at point B

̄ ∼ −8√𝜇 + 1. (42)
8

B 3
This gives the asymptotic solution to the jumping-in position, which
also indicates that the occurrence of the adhesion hysteresis (or jump-
ing instability) of Gibson solid is independent of the surface shape and
only depends on the Tabor number.

The effect of the Tabor number on the surface deformation is
analyzed. The deformation corresponding to the pull-off point and zero-
load point are given as representative cases in Fig. 9 for 𝑛 = 2. For small
Tabor numbers (e.g., 𝜇 = 0, 0.3, and 0.5), the surface deformation
s single-valued and the folding deformation mode does not appear.

ith the increase of the Tabor number, the folding deformation starts
o emerge and becomes apparent. The critical Tabor number for the
ppearance of folding deformation mode is identical to that for the
ppearance of adhesion hysteresis, i.e., 𝜇c ≈ 0.63.

.4. Verification of the M–D-𝑛-G and JKR-𝑛-G models

The full self-consistent model can be applied to verify the existing
dhesive contact models for Gibson solids. The JKR model on the
dhesive contact between a sphere and a Gibson solid, namely the JKR-
model, was presented by Chen et al. [5]. The displacement and force

redicted by the JKR-G model are given by

𝛿 = 𝑎2

2𝑅
−

√

3𝛥𝛾𝑐0
𝐸0

, (43)

𝑃 =
𝜋𝐸0𝑎4

6𝑅𝑐0
− 2𝜋𝑎2

√

𝛥𝛾𝐸0
3𝑐0

, (44)

respectively, where 𝑎 is the contact radius. The M–D model on the
dhesion between a power-law shaped intender and a Gibson solid,
enoted as the M–D-𝑛-G model, was developed by Jin et al. [10]. The
isplacement and force predicted by the M–D-𝑛-G model are written as

𝛿 = 𝑎𝑛

𝑛𝑄
−

3𝜎0𝑐0
2𝐸0

, (45)

𝑃 =
2𝜋𝐸0𝑎𝑛+2

3𝑄𝑐0 (𝑛 + 2)
− 𝜋𝜎0𝑐

2, (46)

espectively, where 𝜎0 is the cohesive stress in the cohesive zone (𝑎 <
< 𝑐). Parameter 𝑐 is determined from the Griffith relation

𝜎0
𝑛𝑄

(𝑐𝑛 − 𝑎𝑛) +
3𝑐0𝜎20
4𝐸0

= 𝛥𝛾. (47)

By introducing the following dimensionless parameters

𝛿 = 𝛿
[

3𝛥𝛾𝑐0∕
(

4𝐸0
)]1∕2

, 𝑃 = 𝑃

𝜋
[

𝑄4𝛥𝛾𝑛+2
(

3𝑐0∕(4𝐸0)
)2−𝑛

]1∕(2𝑛)
,

𝑎̃ = 𝑎
[

3𝑄2𝛥𝛾𝑐0∕
(

4𝐸0
)]1∕(2𝑛)

, 𝑚 = 𝑐
𝑎
, (48)

the M–D-𝑛-G solution can be rewritten as

𝛿 = 𝑎̃𝑛 − 2𝛬, (49)

𝑛
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Fig. 9. Effect of the Tabor number 𝜇 on the surface deformation corresponding to (a) the pull-off point and (b) the zero-load point for 𝑛 = 2. The representative values of 𝜇 are
0, 0.3, 0.5, 1, and 2. Folding deformation phenomenon appears for large Tabor numbers.
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𝜇

𝑃 = 𝑎̃𝑛+2

2𝑛 + 4
− 𝛬𝑚2𝑎̃2, (50)

𝑛 =
𝑛
(

1 − 𝛬2)

𝛬𝑎̃𝑛
+ 1, (51)

here 𝛬 is the Maugis number for Gibson solid, defined as

=
𝜎0

√

4𝐸0𝛥𝛾∕
(

3𝑐0
)

. (52)

The range of the Maugis number for homogeneous and power-law
graded materials is 0 to ∞. But, for Gibson solid, Eq. (51) restricts 𝛬
from 0 to 1 because 𝑐 should be larger than 𝑎 (i.e., 𝑚 ≥ 1) in the M–
D-𝑛-G model [10]. The M–D-𝑛-G model reduces to the JKR-type model
(denoted as the JKR-𝑛-G model) when 𝛬 approaches 1, i.e.,

𝛿 = 𝑎̃𝑛

𝑛
− 2, (53)

𝑃 = 𝑎̃𝑛+2

2𝑛 + 4
− 𝑎̃2, (54)

and further reduces to the JKR-G model for 𝑛 = 2 [10]. However, it can
be found from Eq. (52) that the Maugis number for Gibson can be very
large for soft materials (e.g., 𝐸0 is very small). Therefore, the limitation
of 𝛬 ≤ 1 is not physically reasonable.

The cohesive stress 𝜎0 should match a specific interaction such as
the L–J law (Eq. (16)). Traditionally, 𝜎0 is chosen to equal to the
theoretical stress of the L–J law [58–60]

𝜎0 = 𝜎th ≈ 1.026
𝛥𝛾
𝑧0

. (55)

For convenience, Jin et al. [9,10] took 𝜎0 ≈ 𝛥𝛾∕𝑧0. Using this relation
nd combining with Eqs. (21) and (52) yield 𝛬 ≈ 𝜇. Hence, Jin

et al. [9,10] did not distinguish these two dimensionless numbers.
In fact, the value of the cohesive stress 𝜎0 may affect the prediction
accuracy of the M–D-type models, and an improved strategy, namely
the rigid-limit-consistency condition, has been proposed by Zheng and
Yu [51] when studying the adhesion of homogeneous material with
power-law surface shapes. The Zheng–Yu strategy determines the value
of 𝜎0 by making the pull-off force of the DMT model and that of the
Bradley model identical [51,61]. This strategy has been successfully
applied to the adhesion of wavy surfaces [38] and power-law graded
materials [14]. For convenience, the present study does not consider
this effect and still adopts the traditional strategy to determine the
value of 𝜎0. In the following discussion, the Maugis number and the
Tabor number are not distinguished and are referred to as the Tabor
number 𝜇, as done by Jin et al. [10].

The force–displacement curves of the FSCM and the M–D-𝑛-G model
re compared for 𝑛 = 1.5, 2 and 5 and 𝜇 = 0.5 and 1, as shown in

Fig. 10. For each case, the FSCM gives a full force–displacement curve
and shows more details than the M–D-𝑛-G model. For 𝑛 = 2, the M–D-𝑛-
G model coincides well with FSCM at the high load branches, especially
for the part near the pull-off point. For 𝑛 = 1.5 and 5, an appreciable
difference is observed between the two models, which implies that the
9

d

adhesion results of non-paraboloidal punch are sensitive to the surface
interaction. For 𝜇 = 1, the force–displacement curves of the FSCM are
bifurcated, while those of the M–D-𝑛-G (JKR-𝑛-G) model are single-
valued. This indicates that the M–D-𝑛-G and the JKR-𝑛-G models cannot
predict the jumping instability and adhesion hysteresis of Gibson solid.

The surface deformation and pressure distribution corresponding to
the pull-off points of the FSCM and the M–D-𝑛-G model are analyzed
or 𝑛 = 2 and 𝜇 = 0.5 or 1, as shown in Fig. 11. For 𝜇 = 0.5, the

surface deformation and pressure distribution of the two models are
both single-valued. For 𝜇 = 1, the folding deformation mode is observed
in the FSCM, but it cannot be detected by the M–D-𝑛-G (JKR-𝑛-G)

odel. It has been shown that the folding deformation and the jumping
nstability occur for the Gibson solid for 𝜇 ≥ 𝜇c ≈ 0.63. Hence, the M–

D-𝑛-G and the JKR-𝑛-G models cannot predict the jumping instability
because of their incorrect prediction of the surface deformation at large
Tabor numbers. This proves that the restriction of the Tabor number in
the M–D-𝑛-G model stems from its inherent limitations on deformation.
That is, the M–D-𝑛-G model fails at large Tabor numbers because the
contact and cohesive zones cannot be well defined due to the folding
deformation.

The variation of the pull-off forces of the FSCM and the M–D-𝑛-G
model with the Tabor number is analyzed for 𝑛 = 1.5, 2, and 5, as
hown in Fig. 12. Note that the Tabor number in the M–D-𝑛-G model
s restricted to the range 0 to 1, while the FSCM does not have such
onstraint. The JKR-𝑛-G pull-off force can be written as [10]

− 𝑃 JKR
c ≡

−𝑃 JKR
c

𝜋
[

𝑄4𝛥𝛾𝑛+2
(

3𝑐0∕
(

4𝐸0
))2−𝑛

]1∕2𝑛
= 𝑛

𝑛 + 2
24∕𝑛, (56)

hich is also plotted in Fig. 12 for comparison. For 𝑛 = 2, the pull-off
orces of the two models are independent of the Tabor number and
qual to the JKR-𝑛-G pull-off force. For 𝑛 = 1.5 and 5, the pull-off
orce of the M–D-𝑛-G model is monotonous and approaches the JKR-𝑛-G
ull-off force with the increase of the Tabor number. The dimensionless
ull-off force −𝑃c of the FSCM as a function of 𝜇 has an extreme point
denoted as hollow dots), which is very close to the position of the
KR-𝑛-G pull-off force (denoted as solid dots). The FSCM pull-off force
irst approaches and then departs from the JKR-𝑛-G pull-off force with
he increase of the Tabor number, which indicates that the JKR-type
olution is no longer the soft limit for the adhesion of Gibson solid. By
omparing with the FSCM, it can be found that the M–D-𝑛-G model
nderestimates the pull-off force for 𝑛 = 1.5 and overestimates the
ull-off force for 𝑛 = 5 when the Tabor number ranges from 0 to 1.

.5. The soft limit for the adhesion of Gibson solid

It has been shown that the JKR-𝑛-G pull-off force corresponding to
= 1 is not the soft limit for the adhesion of Gibson solid. Here, we
etermine the soft limit for the adhesion of Gibson with an asymptotic
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Fig. 10. Comparison of the force–displacement curves predicted by the FSCM (solid line) and the M–D-𝑛-G model (dashed line) with different shape index. The Tabor number 𝜇
s 0.5 in (a) and 1 in (b). The M–D-𝑛-G model reduces to the JKR-𝑛-G model for 𝜇 = 1.
Fig. 11. Comparison of (a) the surface deformation and (b) the pressure distribution predicted by the FSCM and the M–D-𝑛-G model for 𝑛 = 2 and 𝜇 = 0.5 and 1. The M–D-𝑛-G
model reduces to the JKR-𝑛-G model for 𝜇 = 1.
s
f
𝛿
t
a
t

𝑃

w

𝑃

Fig. 12. Variation of the pull-off force with the Tabor number: comparison between
the FSCM (solid line) and the M–D-𝑛-G model (dashed line) for 𝑛 = 1.5, 2, and 5. The
extremum of the FSCM pull-off forces are plotted in hollow dots. The pull-off force of
the JKR-𝑛-G model corresponding to 𝜇 = 1 is also plotted in solid dots for comparison.

analysis when considering 𝜇 → ∞. For simplicity, we take a new
variable

𝜉 =
(

𝐻̄ + 1
)−3, (57)

and then Eqs. (29) and (30) can be rewritten as

𝛿 = −𝜉0−1∕3 + 1 + 16
3
𝜇2 (𝜉30 − 𝜉0

)

, (58)

𝑃 =
𝐻̄=∞

𝑝̄s(𝐻̄) d 𝑟̄2(𝐻̄)
10

∫𝐻̄=𝐻̄0
= 8
3
𝑛2∕𝑛 ∫

𝜉=0

𝜉=𝜉0

(

𝜉3 − 𝜉
)

d
[

𝛿 + 𝜉−1∕3 − 1 − 16
3
𝜇2 (𝜉3 − 𝜉

)

]2∕𝑛
, (59)

where 𝜉0 =
(

𝐻̄0 + 1
)−3, which ranges from 0 to ∞. Through integration

by parts, Eq. (59) yields

𝑃 = 8
3
𝑛2∕𝑛 ∫

𝜉0

0

[

𝛿 + 𝜉−1∕3 − 1 − 16
3
𝜇2 (𝜉3 − 𝜉

)

]2∕𝑛
(

3𝜉2 − 1
)

d 𝜉. (60)

To facilitate asymptotic analysis, the characteristic of the numerical
olutions of Eqs. (30) (or Eq. (60)) corresponding to the pull-off point
or very large Tabor numbers is studied. The variations of 𝐻̄0c, 𝜉0c,
̄c∕𝜇2 and −𝑃c with 𝜇 are shown in Fig. 13, where subscript c represents
he pull-off point. As 𝜇 → ∞, 𝐻̄0c approaches zero and 𝜉0c approaches 1,
s shown in Figs. 13(a) and 13(b). Then, by applying Newton’s binomial
heorem, the pull-off force at the soft limit can be achieved by

̄ sof t
c ∼ 8

3
𝑛2∕𝑛 ∫

1

0

∞
∑

𝛼=0

(2∕𝑛)𝛼
𝛼!

×
[

𝛿c − 1 − 16
3
𝜇2 (𝜉3 − 𝜉

)

]2∕𝑛−𝛼
(

𝜉−1∕3
)𝛼 (3𝜉2 − 1

)

d 𝜉, (61)

where (⋅)𝛼 is the falling factorial, e.g., (2∕𝑛)𝛼 = (2∕𝑛)(2∕𝑛 − 1)⋯ (2∕𝑛 −
𝛼 + 1) and (2∕𝑛)0 = 1. Note that as 𝜇 → ∞,

(

𝛿c − 1
)

∕𝜇2 → 0 (Fig. 13(c))
and the expansions can retain only high-order terms with respect to 𝜇,
e.g., the first two terms. As a result, Eq. (61) follows an asymmetric
behavior

𝑃 sof t
c ∼ 𝑃0 + 𝑃1, (62)

here 𝑃0 and 𝑃1 are given by

̄0 = 8 𝑛2∕𝑛
1 [

−16𝜇2 (𝜉3 − 𝜉
)

]2∕𝑛
(

3𝜉2 − 1
)

d 𝜉, (63)

3 ∫0 3
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Fig. 13. Effect of the Tabor number 𝜇 on the numerical solutions at the pull-off point: (a) 𝐻̄0c, (b) 𝜉0c, (c) 𝛿c∕𝜇2, and (d) −𝑃c. The representative values of the shape index 𝑛 are
1, 1.5, 2, 3, 4, and 5. As 𝜇 → ∞, we have 𝐻̄0c → 0, 𝜉0c → 1, 𝛿c∕𝜇2 → 0 for all values of 𝑛.
𝑃1 = 8
3
𝑛2∕𝑛 ∫

1

0

2
𝑛

[

−16
3
𝜇2 (𝜉3 − 𝜉

)

]2∕𝑛−1
(

𝜉−1∕3
) (

3𝜉2 − 1
)

d 𝜉. (64)

It is found that

𝑃0 =
8
3
𝑛2∕𝑛 ∫

𝜉=1

𝜉=0

[

−16
3
𝜇2 (𝜉3 − 𝜉

)

]2∕𝑛
d
(

𝜉3 − 𝜉
)

= 0, (65)

because the integrand is bounded in the integral domain and the term
𝜉3 − 𝜉 equals 0 at the upper and lower integral limit. Therefore, 𝑃1
ecomes the primary term of 𝑃 soft

c , written as

̄ sof t
c ∼ 𝑃1 =

( 16
3

)2∕𝑛
𝑛2∕𝑛−1𝜇2(2−𝑛)∕𝑛

∫

1

0

(

𝜉 − 𝜉3
)2∕𝑛−1 (𝜉−1∕3

) (

3𝜉2 − 1
)

d 𝜉.

(66)

Hence, an asymptotic solution of the pull-off force for the soft limit is
given by

− 𝑃 sof t
c ∼

(16𝑛∕3)2∕𝑛

6 − 𝑛
B (5∕6 + 1∕𝑛, 2∕𝑛)𝜇2(2−𝑛)∕𝑛, 0 < 𝑛 < 6. (67)

The integral in Eq. (66) converges only for 0 < 𝑛 < 6, so the efficient
range of the asymptotic solution is 0 < 𝑛 < 6. For very large 𝑛, the
surface shape of the intender is relatively flat in the center region and
becomes extremely sharp at the edge [60]. In practical applications,
such as atomic force microscopy (AFM), this kind of surface shape is
rare and the case of 𝑛 ≤ 5 is enough for actual implementation [60].

ur asymptotic solution (Eq. (67)) predicts a different power-law 𝑃c–𝜇
elation from that of the JKR-𝑛-G model (Eq. (38)). The exponent on the
abor number in the asymptotic solution is twice that of the JKR-𝑛-G
heory.

The pull-off force is scaled in a new format, i.e., −𝑃c∕𝜇2(2−𝑛)∕𝑛,
o verify the accuracy of the asymptotic solution. The variation of
𝑃c∕𝜇2(2−𝑛)∕𝑛 with 𝜇 obtained from Eq. (30) using numerical integration

s shown in Fig. 14, and the soft limit predicted by Eq. (67) is also
lotted for comparison. The dimensionless pull-off force approaches
onstant values for large Tabor numbers, indicating that our asymptotic
elation, i.e., −𝑃c = 𝑂(𝜇2(2−𝑛)∕𝑛), is valid for 𝜇 → ∞. For the cases
f 𝑛 ≤ 4 considered, it is obvious that these constant values can be
redicted by Eq. (67). But for the case of 𝑛 = 5, the approaching rate
f the numerical results to the soft limit is quite slow and there is a
11

onsiderable deviation between the numerical and asymptotic results
Fig. 14. Variation of the pull-off force with the Tabor number 𝜇. The exact solution
is plotted in solid lines with symbols, and the soft limit predicted by the asymptotic
solution is plotted in dashed lines. The representative values of the shape index 𝑛 are
1, 1.5, 2, 3, 4, and 5.

even at extremely large Tabor numbers (say 104). Actually, for quite
large Tabor numbers, it may be only of theoretical interest related to
the present model, because the deformation of the material is so large
and its mechanical response is beyond the scope of linear elasticity
theory. Some other factors related to deformation suppression, such as
friction [62–65] and surface tension [66–73], also need to be consid-
ered in the adhesive contact models. These questions remain open and
await further studies.

4. Conclusions

The adhesive contact problem between an axisymmetric rigid
power-law shaped punch and Gibson solid was revisited and a full self-
consistent model (FSCM) was developed. The self-consistent relation
for the adhesion of Gibson solid is an algebraic equation, and it can be
explicitly solved by taking the surface gap as the independent variable.
Therefore, the FSCM for the adhesion of Gibson solid provides the first
explicit form of a self-consistent relation.

The force–displacement curve is bifurcated with an unstable
jumping-in position over a critical Tabor number (𝜇 ≈ 0.63), causing
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adhesion hysteresis during a complete loading–unloading cycle. A fold-
ing deformation mode that the surface is flipped and folded along the
radial direction is observed over this critical Tabor number. Compared
with the FSCM, the M-D-𝑛-G model [10] is invalid for large Tabor
numbers, unable to predict the jumping instability and the adhesion
hysteresis, because the contact and cohesive zones cannot be well
defined due to the folding deformation. This also explains an interesting
result that the JKR-type model [5,10,26], previously thought to be the
soft limit of solid adhesion, is not the case for Gibson solid. The soft
limit of the Gibson solid adhesion is obtained through numerical and
asymptotic analysis using the FSCM.

Many interesting problems, such as the settlement of foundations
on soils and the flaw-tolerant adhesion, have been explored by taking
Gibson solid as a typical graded material in the literature [13,24,25].
We further established a self-consistent toy model for the adhesive
contact of Gibson solid, and found that a folding deformation mode
appears at large Tabor numbers and the JKR-type solution is not the
soft limit for the adhesion of Gibson solid. These findings may be
helpful for understanding the adhesion behavior of general graded
materials, and indicate that the classical adhesive contact models may
need some improvements to predict the folding deformation for both
homogeneous and graded materials.
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