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a b s t r a c t 

Thermocapillary convection driven by the horizontal temperature gradient is a typical nonlinear dynam- 

ical system. As the applied temperature difference increases, the flow undergoes a series of transitions 

into turbulence. Volume ratio of the liquid layer Vr (liquid volume/volume of the container) is a critical 

parameter that affects transition behaviors of the convection. Direct numerical simulations on thermo- 

capillary convection in annular liquid pools with various volume ratios are carried out. Characteristics 

of the oscillatory convection are detected by time series and frequency spectrum analyses. The dynamic 

mode decomposition (DMD) method is also adopted to investigate inherent structures of the flow field. 

Effect of Vr on oscillation characteristics under a wide range of temperature differences from 10K to 90K 

is discussed. Results show that in annular pools with lager volume ratios, the thermocapillary convection 

is chaotic under very large �T and its transition behaviors are more complicated. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

The most intensively studied convection in space is the fluid 

ow driven by the horizontal surface tension gradient [1] . Under 

ormal gravity, convection is driven by both buoyancy and ther- 

ocapillary force, while in microgravity environment the buoyancy 

ffect is suppressed. Previous works clarified that thermocapillary 

onvection shows various flow patterns under different tempera- 

ure gradients, such as steady, asymmetric, oscillatory, and turbu- 

ent states, and therefore it is significant to expand the theoretical 

rameworks to understand the dynamical mechanisms of the ther- 

ocapillary convection [1] . 

Annular layers are a typical model that stimulates the interest 

f the scientific community by virtue of its elimination of the side- 

alls in the azimuthal direction [1] . This feature supports the in- 

estigation of the property and waveforms of the supercritical hy- 

rothermal waves. The critical and supercritical transitions of ther- 

ocapillary convection in annular pool are heavily dependent on 

uid properties, geometry configurations, thermal boundary con- 

itions, etc. Schwabe et al. [ 2 , 3 ] carried out the microgravity ex-

eriment MAGIA to study thermocapillary flow structures without 

oupling the buoyancy flow in annular layers of different depths 
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eated at the outer wall and cooled at the inner wall. They in- 

estigated the multi-roll-states of thermocapillary convection un- 

er different Prandtl numbers and aspect ratios. Schwabe and Benz 

4] reported experimental results of thermocapillary flow in an an- 

ular pool with an adjustable depth h , 2.5 ≤ h ≤ 20 mm. They 

dentified hydrothermal waves for small h and more complicated 

scillations for larger h . They also measured the critical Marangoni 

umber for different aspect ratios Ar ( = �r / h ). Recently, Kang et al.

5–7] conducted a series of space experiments using an annular 

iquid pool on board the China’s SJ-10 recovery satellite. They in- 

estigated effects of the free-surface shape on the stability of ther- 

ocapillary convection. Dynamics and transitions of the wave pat- 

ern were observed and nonlinear dynamics of travelling waves, 

tanding waves, and counter-propagating waves were also studied. 

n addition to space experiments, many numerical studies on an- 

ular layers have been reported in the past two decades. Using 

inear stability analysis, Hoyas et al. [8] obtained the stability di- 

gram for the flow in annular pools of silicone oil heated at the 

nner wall. By numerical simulations, Sim et al. [9] showed that 

eat loss through the interface increases critical Reynolds number 

nd decreases critical frequency in an annular pool heated at the 

uter wall. Shi and Imaishi [10] determined critical conditions for 

he onset of oscillatory flows in a shallow annular pool of silicone 

il of Pr = 6.7. Liu et al. [11] conducted linear stability analysis on 

hermocapillary convection in annular liquid layers of silicon melt 

 Pr = 0.011) with the meniscus surface, and they investigated ef- 
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Figure 1. Physical model: (a) sketch of the annular pool; (b) free surface configurations of liquid layer with Vr = 0.809, 0.905, 1.0 0 0, 1.113, 1.173. 

f

c

M

d

i

l

r

s

a

P

c

a

l

m

g

(

a

r

t

n

c

I

m

u

l

p

c

t

t

c

y

n

i

s

t

2

u

t  

T  

d  

c

P

π
c

1

e

m

g

v

w

s

t

a

d

l  

w

t

P

3

3

s

a

t

s

l

b

a  

i

t

w  

g  

c

ect of the volume ratio Vr on the stability limit of steady thermo- 

apillary flow. They clarified the relationship between the critical 

arangoni number and the volume ratio. 

Chaos is a state which is enormously complex and unpre- 

ictable for long times, even if the underlying dynamical system 

s deterministic. Chaos has been observed in many natural non- 

inear processes. Typical routes by which systems transition from 

egular to irregular motion have been identified. Gollub and Ben- 

on [12] conducted terrestrial experiments on buoyancy convection 

nd found Rulle-Takens route, Feigenbaum route and Manneville–

omeau route to chaos. Bucchignani and Mansutti [13] numeri- 

ally studied 3D buoyant-thermocapillary convection in a cavity, 

nd they showed evidence that the system evolves to chaos fol- 

owing the Ruelle-Takens route. Li et al. [14] conducted direct nu- 

erical simulations on 2D thermocapillary convection in a rectan- 

ular cavity, and they found that the flow takes different routes 

quasi-periodic and period-doubling routes) to chaos for different 

spect ratios. Zhang et al. [15] numerically investigated bifurcation 

outes to chaos of thermocapillary convection in an annular pool; 

hey also found different routes for different Biot number. 

Influence of volume ratios on thermocapillary convection in an- 

ular pools is still an open question, and most of the works fo- 

uses on critical stage at which the convection loses stability [5–7] . 

n our previous work [16] , dependency of critical values of ther- 

ocapillary convection in annular pools of large- Pr fluid on vol- 

me ratios has been studied. In this work, simulations under much 

arger Marangoni numbers ( �T ) are conducted to investigate de- 

endency of supercritical transitions on volume ratios. The physi- 

al model and fluid property chosen here are identical to those of 

he space experiment in China’s SJ-10 recovery satellite [5–7] . 

Velocity and temperature fields of the thermocapillary convec- 

ion are calculated using direct numerical simulations (DNS), and 

haracteristics of transitions are obtained using time series anal- 

sis and dynamic mode decomposition (DMD). This paper is orga- 

ized as follows: physical and mathematical models are introduced 

n section 2 , numerical aspects of the simulations are described in 

ection 3 , section 4 is about the results and discussions, and finally 

he conclusions are given in section 5 . 

. Physical and mathematical model 

Figure 1 shows the annular liquid pool and free surface config- 

rations of the liquid layer with different volume ratios. Radius of 

he inner wall is r i = 4mm, and of the outer wall is r o = 20mm.

he gap width is defined as �r = r o - r i , and height of the pool is

 = 12mm. The inner wall is heated at T i , and the outer wall is

ooled at T o = 290K. The working fluid is 2cSt silicone oil with 

r = 28.01. The volume ratio is defined as V r = V l / ( πdr o 
2 –

dr i 
2 ), where V l is the volume of liquid. Simulations of thermo- 

apillary convection in liquid layer with Vr = 0.809, 0.905, 1.0 0 0, 

.113 and 1.173 are conducted under different temperature differ- 

nces ( �T = T o - T ). 
i 

2 
The mathematical model is composed of the continuity, mo- 

entum and energy equations for the fluid. The dimensionless 

overning equations can be written as (Einstein’s summation con- 

ention is implied for repeated indices) 

∂U i 

∂X i 

= 0 (1) 

∂U j 

∂τ
+ 

∂(U i U j ) 

∂X i 

− ∂ 

∂X i 

(
∂U j 

∂X i 

)
= − ∂P 

∂X j 

(2) 

∂�

∂τ
+ 

∂(U i �) 

∂X i 

− 1 

P r 

∂ 

∂X i 

(
∂�

∂X i 

)
= 0 (3) 

here X i denotes the i- th Cartesian coordinate, U i the i- th Carte- 

ian velocity component, τ the time. In deriving the above equa- 

ions, the length, velocity, temperature difference ( T - T o ), pressure 

nd time are scaled by the reference length, velocity, temperature 

ifference, pressure and time 

 re f = d, u re f = 

ν

d 
, T re f = T i − T o , p re f = ρu 

2 
re f , τre f = 

l re f 

u re f 

(4)

here p is the pressure, T the fluid temperature, ρ the density, v 

he kinematic viscosity, α the thermal diffusivity and Pr = ν/ α the 

randtl number. 

. Numerical aspects 

.1. Numerical methodology 

According to the advantages discussed in [17] , a block- 

tructured grid [18] with matching/non-overlapping interfaces was 

dopted in the present study. The domain was divided into more 

han 30,0 0 0 0 finite control volumes (CVs). Non-uniform grid as- 

ignment is employed in the physical domain to improve the reso- 

ution near the boundaries. 

Due to the non-orthogonality of the grids and the curvilinear 

oundaries, the boundary-fitted-coordinate (BFC) method [19] is 

dopted. The governing equation in the physical space ( X i , i = 1,2,3)

s first transformed to the computational space ( ξ i , i = 1,2,3) and 

akes the following form after the coordinate transformation: 

∂U 

∗
k 

∂ξk 

= 0 (5) 

∂U j 

∂τ
+ 

1 

J 

∂(U 

∗
k 
U j ) 

∂ξk 

− 1 

J 

∂ 

∂ξk 

(
Jg kl 

∂U j 

∂ξl 

)
= − ∂P 

∂ξk 

∂ξk 

∂X j 

(6) 

∂�

∂τ
+ 

1 

J 

∂(U 

∗
k 
�) 

∂ξk 

− 1 

P rJ 

∂ 

∂ξk 

(
Jg kl 

∂�

∂ξl 

)
= 0 (7) 

here J = ∂( X 1 , X 2 , X 3 )/ ∂( ξ 1 , ξ 2 , ξ 3 ) is the Jacobian matrix, and

 kl = ( ∂ ξ k / ∂ X i )( ∂ ξ 1 / ∂ X i ) is the metric tensor. In Eq. (5) , U k 
∗ is the

ontravariant velocity, which is defined as U k 
∗ = ( JU j ∂ ξ k )/ ∂ X j . 
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The shape function is applied to estimate the derivatives related 

o the coordinate transformation ∂ X i / ∂ ξ j , where X i is expressed 

s X i = 

8 ∑ 

n =1 

ϕ n ( ξ1 , ξ2 , ξ3 ) X 
n 
i 

, i = 1, 2, 3, ϕn ( ξ 1 , ξ 2 , ξ 3 ) is the shape

unction and subscript n denotes the corner points of the CV. This 

ethod is found to be able to improve the accuracy of the metric 

aluables such as the Jacobian matrix and the metric tensor. 

Governing equations are discretized using a fully conservative 

nite-volume method with a non-staggered arrangement of the 

ariables [20] . Central difference is used for all spatial derivatives 

nd first order forward difference for the time derivatives. For the 

onvective term, QUICK scheme [21] is applied. Based on the conti- 

uity equation, a pressure-correction equation is derived according 

o SIMPLE algorithm [22] . To ensure the correct coupling of pres- 

ure and velocity fields, the well-known Rhie-Chow interpolation 

echnique [20] is applied. The time interval �τ = 10 −5 is tested to 

e suitable. 

The code for handling meniscus shapes is validated in [23] , and 

he validation of this code is also confirmed by previous work 

16] on the effect of volume ratio on the critical value. 

.2. Boundary conditions 

For curved free surface, detailed dimensionless boundary con- 

itions can be found in [ 16 , 23 ], so only a brief description is given

ere: 

1) The velocity at the free surface is determined by the bal- 

ance between the thermocapillary force and the shear stress 

of the fluid, and an important dimensionless parameter, the 

Marangoni number, is defined as Ma = -( γ T �Td )/ μν , where γ T 

is the temperature coefficient of surface tension. The free sur- 

face is assumed to be adiabatic. 

2) The no-slip boundary condition is imposed at the solid walls. 

The temperature at the inner and outer walls is fixed, and the 

bottom is assumed to be adiabatic. 

The initial velocity of the fluid is 0, and the temperature dif- 

erence is assumed to be directly applied between the inner and 

uter walls at the beginning of the calculation ( τ = 0 ) . The free 

urface shape is calculated from the Young-Laplace equation at 

= 0 and is kept constant over time, which means it is not up- 

ated at each time step. 

.3. Dynamic mode decomposition (DMD) [24] 

The numerical results are analyzed by the dynamic mode de- 

omposition (DMD) to figure out how the higher instabilities pro- 

eed. DMD is known as a powerful tool for analyzing the dynam- 

cs of nonlinear systems [25] . DMD assumes that the flow state is 

 superposition of several “modes”, which are produced from the 

riginal timeseries data, snapshots of the flow fields, and the cor- 

esponding eigenvalues determine both the growth (or decay) rates 

nd oscillation frequencies of each mode. In this way, although the 

eal fluid flow is governed by infinite-dimensional partial differen- 

ial equations, its underlying low-dimensional dynamic behaviors 

an be captured by the truncated modes. 

The essence of DMD method is to approximate the original non- 

inear system with the locally linear dynamical system, the dynam- 

cs can be modeled as 

dX 

dt 
= A c X (8) 

or discrete-time system sampled every �t in time, the model is 

 k +1 = exp ( A c �t ) X k (9) 
3 
he solution to this system can be expressed in terms of the 

igenvalues λk and eigenvectors φk of the discrete-time map A = 

xp (A c �t) 

 k = �r 
j=1 φ j λ

k 
j b j = ��k 

b (10) 

here the coefficients b are the coordinates of the initial vector X 1 

n the eigenvector basis, and r is the reduced order. 

The DMD algorithm produces a low-rank eigen decomposition 

f the matrix A that optimally fits the measured trajectory X k for 

 = 1,2, . . ., m ( m is the number of snapshots), in a least-square

ense so that 

 | X k +1 − AX k | | 
s minimized across all points for k = 1,2, . . ., m −1. 

The basic procedure for standard DMD consists of the following 

teps: 

1) A sequence of snapshots of the velocity (temperature) fields are 

collected from the numerical simulation results. These snap- 

shots of velocity (temperature) fields are arranged into two ma- 

trices 

X = [ x 1 x 2 . . . x m −1 ] , X 

’ = [ x 2 x 3 . . . x m 

] 

2) The locally linear approximation may be written in terms of 

these data matrices as 

X 

’ = AX (11) 

he best-fit A matrix is given by 

 = X 

’ X 

+ (12) 

here X 

+ is the Moore–Penrose pseudoinverse. 

1) In practice, considering the large dimension of the system and 

the much smaller rank of A , ˜ A is computed to circumvent the 

computational load, ˜ A = U 

∗AU = U 

∗X 

’ V �−1 (13) 

here A = X 

’ V �−1 U 

∗ is the Singular Value Decomposition (SVD). 

1) Then the characteristic modes of A are given by columns of �

� = X 

’ V �−1 W (14) 

here columns of W are eigenvectors of ˜ A 

In this work, the method is implemented in Python using the 

yDMD package [26] . 

. Discussion 

.1. Time series analysis 

As the applied temperature difference ( �T ) increases, the 

teady axisymmetric thermocapillary convection loses stability and 

ecomes oscillatory flow. The �T under which the flow starts to 

scillate is defined as the critical temperature difference ( �T c ). 

ince the azimuthal velocity is zero in the steady thermocapillary 

ow, the presence of azimuthal velocity in the liquid is the most 

ensitive indicator of the transition from steady flow to oscillatory 

ow. To investigate spatial characteristics of transition behaviors, 

ime evolutions and the corresponding frequency spectra of the az- 

muthal velocity at a point right below the free surface are exam- 

ned. For Vr < 1.0 0 0 ( Vr = 0.809, 0.905), the oscillation is peri-

dic and the fundamental frequency ( f ) increases as �T increases 
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Figure 2. Frequency spectra ((a) ∼(d)) and time series ((e) ∼(h)) of the azimuthal velocity ( Vr = 0.905, �T = 20K, 40K, 60K, 80K). 

Figure 3. (a) ∼(h) Phase space diagrams of the azimuthal velocity time series ( Vr = 0.905, �T = 20K ∼90K). 
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Table 1 

Frequencies of the azimuthal ve- 

locity oscillation ( Vr = 1.0 0 0, 

�T = 20K ∼80K). 

�T \ f f 1 f 2 f 3 

10K 0.038 

20K 0.055 0.056 

30K 0.064 0.071 

40K 0.077 0.081 

50K 0.065 0.089 

60K 0.080 0.096 

70K 0.076 0.089 0.100 

80K 0.079 0.095 0.108 

�

i

(

i

rom 20K to 90K. The increase of �T leads to the presence of more 

armonic frequencies (2 f 1 , 3 f 1 ,…) in the frequency spectrum (as 

hown in Figure 2 for Vr = 0.905). Using phase space reconstruc- 

ion, flow dynamics are retrieved from the azimuthal velocity time 

eries. Figure 3 shows phase diagrams of the azimuthal velocity for 

r = 0.905 under �T from 20K to 90K, and all of them are closed

rbits, indicating that flows under these temperature differences 

re periodic. However, as �T increases, the orbit becomes more 

omplex, twisting and folding, and moving away from the simple 

val shape. Diversity of the deformed orbit shapes differentiates 

arious flow structures of the periodic flow. 

Results for Vr ≥ 1.0 0 0 are different from those for Vr < 1.0 0 0. In

hese cases, the time evolution of the azimuthal velocity changes 

rom periodic oscillation to irregular one. As shown in Table 1 , 

or Vr = 1.0 0 0, the oscillation is periodic under �T = 10K and

s quasi-periodic with two incommensurate fundamental frequen- 

ies under �T = 20K to 60K, with three incommensurate funda- 

ental frequencies under �T = 70K and 80K. The two frequencies 

re very close to each other under �T = 20K to 40K, while when
 (

4 
T reaches 50K and 60K, difference between the two frequencies 

ncreases, but under �T = 50K, the first fundamental frequency 

 f 1 = 0.065Hz) decreases a little bit. Under �T = 90K, the veloc- 

ty time series is irregular and the power spectrum is continuous 

 Figure 4 ). However, several peaks are spaced apart and distinct 
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Figure 4. Time series (a) and power spectrum (b) of the azimuthal velocity ( Vr = 1.0 0 0, �T = 90K). 

Table 2 

Frequencies of the azimuthal 

velocity oscillation under 

�T = 10K ∼60K ( Vr = 1.113). 

�T \ f f 1 f 2 

10K 0.042 

20K 0.060 

30K 0.066 0.074 

40K 0.073 0.084 

50K 0.089 

60K 0.085 0.088 

i

r

s
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i
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t

o
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Table 3 

States of the azimuthal velocity oscillation during 

the transition ( Vr = 0.809, 0.905, 1.0 0 0, 1.113, 1.173, 

�T = 10K ∼90K; S: steady state, P: periodic oscillation, 

QP: quasi-periodic oscillation, I: irregular, C: chaotic). 

�T / Vr 0.809 0.905 1.0 0 0 1.113 1.173 

10K S S P P P 

20K P P QP P P 

30K P P QP QP QP 

40K P P QP QP QP 

50K P P QP P I 

60K P P QP QP I 

70K P P QP I C 

80K P P QP C C 

90K P P I C C 

c

p

t

c

d

4

t

b

a

p

o

t

t

t

4

s

(

n

t

i

o  

2

b

n the power spectrum ( Figure 4b ), thus the oscillation is erratic 

ather than chaotic. 

Table 2 and Figure 5 show fundamental frequencies and time 

eries of the azimuthal velocity for Vr = 1.113 under tempera- 

ure differences from 10K to 60K. When �T = 10K and 20K, the 

scillation is periodic. Under �T = 30K and 40K, the oscillation 

s quasi-periodic with two fundamental frequencies very close to 

ach other. There are two waves that interfere with each other, and 

he resulting waveform is a beat, appearing as an envelope in the 

ime series ( Figure 5c , d , e ). When �T = 50K, the oscillation re-

urns to a periodic pattern and shifts to a quasi-periodic pattern 

nce more when �T = 60K. As �T exceeds 60K, the oscillation 

ecomes irregular. Figure 6 shows power spectra of azimuthal ve- 

ocity for Vr = 1.113 under �T = 70K ∼90K. The power spectra are

ontinuous and as �T increases, the specific peaks do not persist. 

hen �T is 80K and 90K, the power spectrum becomes grassy 

nd has many incompletely separated peaks with no obvious pat- 

ern of central frequencies and amplitudes, which is the feature of 

 chaotic signal. 

For Vr = 1.173, the oscillation is periodic under �T = 10K and 

0K, and it is quasi-periodic with two incommensurate fundamen- 

al frequencies under �T = 30K and 40K. When �T exceeds 50K, 

he time series becomes irregular and the frequency spectrum is 

ncreasingly grassy. The flow changes into a chaotic state when 

T = 70K. 

Table 3 summarizes the transition behaviors as �T increases, 

or different values of the volume ratio. For Vr < 1.0 0 0, the az-

muthal velocity oscillation is always periodic, regardless of �T 

20K, 30K, …, 90K). For Vr = 1.0 0 0, the oscillation changes from 

 periodic state to a quasi-periodic state and finally to an irregu- 

ar state as �T increases. For Vr > 1.0 0 0, the oscillation transitions

rom a periodic state to a quasi-periodic state and ultimately be- 
5 
omes chaotic. The transition process for Vr = 1.113 is more com- 

licated than that for Vr = 1.173 because the flow undergoes mul- 

iple transitions from periodic to quasi-periodic states before it be- 

omes chaotic. Briefly speaking, the larger volume ratio tends to 

rive flow transition and increase the likelihood of chaotic flow. 

.2. Details of temperature and velocity fluctuations for Vr = 1.113 

In the following, more detailed analyses of the transitions of 

emperature and flow fields in annular pool with Vr = 1.113 will 

e shown. Vr = 1.113 is chosen because the transition behaviors 

re most complex as shown in Table 3 , i.e., periodic → quasi- 

eriodic → periodic → quasi-periodic → irregular → chaotic. In 

rder to detect the flow and temperature structures, the fluctua- 

ion temperature and fluctuation velocity in the azimuthal direc- 

ion at a fixed position are defined as the dimensionless tempera- 

ure (velocity) minus its azimuthally averaged value. 

.2.1. Temperature fluctuation field 

Figure 7 shows the temperature fluctuation field on the free 

urface under �T = 10K ∼60K and its spatial-temporal diagram 

STD) at dimensionless radial distance R = 1.02, where arrows de- 

ote the propagation direction of the travelling waves. From the 

emperature fluctuation field, it is found that the number of waves 

s 3 in all these cases and the temperature fluctuation is more vi- 

lent near the inner wall. According to Table 2 , under �T = 10K,

0K and 50K, the flow is periodic, but the spatial-temporal distri- 

utions of their temperature fluctuation fields are quite different 
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Figure 5. (a) ∼(f) Time series of the azimuthal velocity under �T = 10K ∼60K ( Vr = 1.113). 

Figure 6. (a) ∼(c) Power spectra of the azimuthal velocity oscillation under �T = 70K ∼90K ( Vr = 1.113). 

Figure 7. (a1 ∼f1) Temperature fluctuation on the free surface under �T = 10K ∼60K respectively; (a2 ∼f2) STD of the temperature fluctuation at dimensionless radial R = 1.02 

under �T = 10K ∼60K respectively ( Vr = 1.113). 

6 
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Figure 8. (a0) ∼(c0) Frequency spectra of the azimuthal velocity oscillation under �T = 10K, 20K, 50K respectively; (a1) ∼(a4) four stable azimuthal velocity fluctuation 

characteristic modes under �T = 10K; (b1) ∼(b4) four stable azimuthal velocity fluctuation characteristic modes under �T = 20K; (c1) ∼(c4) four stable azimuthal velocity 

fluctuation characteristic modes under �T = 50K ( Vr = 1.113). 
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nd the same is the case when �T is 30K, 40K and 60K, under 

hich the flow is quasi-periodic. 

When �T = 10K and 50K, the oscillation is periodic and 

he fluctuation propagates along the clockwise direction in a 

orm of a travelling wave. The STD consists of parallel slanted 

ines ( Figure 7 a2 , e2 ) . When �T = 20K, the STD presents as a

heckboard-like pattern ( Figure 7 b2), and in this case the tem- 

erature fluctuation field is dominated by the standing wave. The 

scillation amplitude is larger under �T = 20K than that under 

T = 10K. When �T = 30K, 40K and 60K, the pattern of high

nd low temperature fluctuations evolves over time in the STD 

 Figure 7 c2, d2, f2), which indicates the presence of both stand- 

ng wave and travelling wave. Under �T = 30K and 40K, the wave 

ropagates in the clockwise direction, while under �T = 60K, in 

he counterclockwise direction. Characteristics of the velocity fluc- 

uation field are similar with those of the temperature fluctuation 

eld. 

To summarize, under �T = 10K ∼60K the sequence of flow tran- 

ition is: clockwise travelling wave → standing wave → clock- 

ise travelling wave + standing wave → clockwise travelling 

ave → counterclockwise travelling wave + standing wave. The 

umber of these waves does not change. 

.2.2. Dynamic mode decomposition analysis 

To investigate inherent structures of the complex flow fields un- 

er large temperature differences, the dynamic mode decomposi- 

ion (DMD) method is applied. Sequences of velocity and tempera- 

ure fluctuation fields are collected to construct the snapshot ma- 

rix respectively. The reduced order of the truncated modes is 30, 

n which case the relative error between the reconstructed data 

nd the original data is less than 1%. The dynamic modes can pro- 

ide insights into both temporal and spatial characteristics of the 
7 
ow structure, which will be discussed in detail in the following 

ontext. 

For Vr = 1.113, when �T = 10K, 20K and 50K, the oscillation is 

eriodic. Figure 8 shows some of the stable azimuthal velocity fluc- 

uation modes on the free surface under these temperature differ- 

nces. Frequencies of these modes are 0.040Hz, 0.084Hz, 0.142Hz, 

.230Hz under �T = 10K, 0.060Hz, 0.140Hz, 0.293Hz, 0.578Hz un- 

er �T = 20K and 0.084Hz, 0.230Hz, 0.968Hz, 0.381Hz under 

T = 50K, which are consistent with frequencies of the flow os- 

illation ( Figure 8 a0, b0, c0). When �T = 10K and 50K, the trav-

lling wave propagates in clockwise and counterclockwise direc- 

ion respectively, and as shown in Figure 8 a1 ∼a4, c1 ∼c4, number 

f waves of the higher modes is an integer multiple of that of the 

undamental mode (mode with the fundamental frequency). How- 

ver, when �T = 20K, number of waves of the third mode is also 

 ( Figure 8 b3), in which case standing wave takes the place of 

ravelling wave in the azimuthal velocity fluctuation field. Higher 

odes show the presence of small-scale structures (larger num- 

er of wave), which illustrates a scaling between scales of the flow 

tructure and its temporal frequency, indicating a dispersion rela- 

ion [27] . 

When �T = 30K, 40K and 60K, the oscillation is quasi-periodic. 

igure 9 shows some of the stable modes of the azimuthal veloc- 

ty fluctuation on the free surface under these temperature dif- 

erences. Frequencies of these modes are 0.067Hz, 0.076Hz un- 

er �T = 30K, 0.076Hz, 0.087Hz under �T = 40K and 0.093Hz, 

.096Hz under �T = 60K, which are consistent with the two fun- 

amental frequencies of the flow oscillation ( Figure 9 a0, b0, c0). 

elocity fluctuation fields of the two fundamental modes (modes 

ith frequencies consistent with the fundamental frequencies) 

ave similar structures. The number of waves is 3 and the velocity 

radient near the inner wall is larger. However, the wave structure 

s twisted in the velocity fluctuation field of the second fundamen- 
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Figure 9. (a0) ∼ (c0) Frequency spectra of the azimuthal velocity oscillation under �T = 30K, 40K, 60K respectively; (a1), (a2) two stable azimuthal velocity fluctuation 

characteristic modes under �T = 30K; (b1), (b2) two stable azimuthal velocity fluctuation characteristic modes under �T = 40K; (c1), (c2) two stable azimuthal velocity 

fluctuation characteristic modes under �T = 60K ( Vr = 1.113). 
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al mode. Interactions of the two fundamental modes result in the 

ave pattern of a mixture of both travelling and standing waves. 

In summary, as �T increases, spatial and temporal characteris- 

ics of the flow has a dramatic change. Generally, under small �T , 

he periodic flow consists of a fundamental characteristic mode 

nd its harmonics, while under larger �T , a new characteristic 

ode with a different fundamental frequency emerges, and the 

ow oscillation becomes quasi-periodic. Due to the nonlinearity of 

he thermocapillary convection, the increasing �T is not the deci- 

ive factor of the occurrence of a new characteristic mode, which 

an be seen from the fact that the flow transits from quasi-periodic 

ack to periodic state when �T increases from 40K to 50K. 

. Conclusion 

Thermocapillary convection in annular pools undergoes compli- 

ated transitions with the increasing temperature difference, and 

he transition behaviors are greatly affected by volume ratios of 

he liquid layer. 

For Vr < 1.0 0 0, the oscillation is periodic even under very 

arge temperature differences. For Vr = 1.0 0 0, the oscillation is 

eriodic under �T = 10K, quasi-periodic under �T = 20K ∼80K, 

nd becomes irregular when �T is 90K. For Vr > 1.0 0 0, 

he oscillation changes from periodic to quasi-periodic state as 

T increases. For Vr = 1.113, the transition process is: peri- 

dic → quasi-periodic → periodic → quasi-periodic → irreg- 

lar → chaotic, while for Vr = 1.173, the process is: peri- 

dic → quasi-periodic → irregular → chaotic. 

With the DMD method, it is found that periodic flow is char- 

cterized by the mode with a fundamental frequency and its har- 

onics. The number of waves of the harmonic mode is an inte- 

er multiple of that of the fundamental mode. Quasi-periodic flow 

s characterized by modes with different fundamental frequencies. 

he number of waves of these fundamental modes are the same 

nd flow structures of the modes are quite similar. For Vr < 1.0 0 0,

ince the flow oscillation under all temperature differences is pe- 

iodic, it seems that contribution of the increasing �T is to gen- 

rate harmonic modes, while for Vr ≥ 1.0 0 0, the flow transitions 

o quasi-periodic state from periodic state, so it seems that con- 

ribution of the increasing �T in this case is to generate different 

undamental modes. 

In conclusion, liquid layer with smaller volume ratio depresses 

he generation of new fundamental modes, causing the flow to 

aintain in a periodic state, while liquid layer with larger volume 

atio does not impede the generation of new fundamental modes 
8

s �T increases, resulting in the flow instability and complex tran- 

itions. 
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