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Abstract
Propellant tanks of satellites usually contain cylindrical structures. Under microgravity, liquid can spread on the revolution’s 
surface regardless of its size. This study focuses on liquid–gas interfaces on the surface of revolution under microgravity. 
Expressions of profiles of the liquid at equilibrium are proposed in this paper. The profiles have two cases according to the 
liquid contact angle and the geometry of the revolution. For given liquid contact angle and geometry of the revolution, the 
profile and volume of the liquid can be obtained by using the Shooting method with certain inputs. Numerical simulation is 
carried out with the Volume of Fluid method and the numerical results are in good agreement with theoretical predictions. 
Besides, dimensionless theoretical solutions of the profiles are proposed and the effects of the liquid contact angle and the 
geometry of the revolution on the profile of the liquid are analyzed in detail.
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Introduction

Propellant tanks of satellites usually contain cylindrical 
structures. In space, liquid can spread on the surface of the 
revolution regardless of its size due to the absence of grav-
ity, which can affect the efficiency of propellant utilization. 
Therefore, it is important to study profiles of the liquid on 
the surface of revolution under microgravity.

Since the well-known Lucas-Washburn equation was 
derived (Lucas 1918; Washburn 1921), capillary driven 
flows have attracted much attention and plenty of achieve-
ments have been obtained. Capillary driven flows in cylin-
drical tubes (Levine et al. 1976; Stange et al. 2003; Figliuzzi  
and Buie 2013; Ramakrishnan et al. 2019; Lei et al. 2021; 
Bahrini et  al. 2022), complex containers (Daniel et  al. 
2010), axisymmetric geometries (Chassagne et al. 2019), 
oval tubes (Chen et al. 2021a) and concentric annuli (Chen 

et al. 2022a) were deeply analyzed and dynamic equations 
of flows were derived. Weislogel et al. explored capillary 
driven flows in corners comprehensively and proposed 
theoretical expressions of flows (1998, 2003, 2005, 2011, 
2012, 2018). Capillary rise of liquid in corners with differ-
ent geometry or wettability was also deeply analyzed and 
mathematical models describing the liquid flow distance 
were proposed (Chen et al. 2006; Li et al. 2015; Wu et al. 
2018; Tian et al.2019; Zhou and Doi 2020; McCraney et al. 
2022). Capillary driven flows between plates were explored 
and differential equations of meniscus height vs time were 
presented (Dreyer et al. 1994; Chen et al. 2022b, c). Theo-
ries of capillary driven flows and numerical simulations 
have been used to optimize propellant management devices 
and analyze liquid behaviours in tanks under micrograv-
ity (Li et al. 2020; Zhang et al. 2020; Chen et al. 2019, 
2021a, b; Wang et al. 2022). The problem of liquid slosh-
ing under microgravity and aerospace applications were 
also deeply analyzed (Ibrahim 2001). The sloshing of mag-
netic liquids in microgravity and the application in space 
propulsion were discussed by Romero-Calvo et al. (2020, 
2021). Thermocapillary-driven dynamics of a free surface 
in microgravity was studied by Gligor et al. (2022a, b) and 
measures of control of sloshing were presented. And more 
generally, a review on fluid control in microgravity was 
completed by Porter et al. (2021).
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Since the liquid free surfaces at equilibrium in cor-
ners and containers were analyzed and the Concus-Finn 
condition was presented (Concus and Finn 1974), static 
capillary surfaces have been paid much attention. Liquid 
drops and bridges were widely explored and their profiles 
were obtained (Carroll 1976; Michielsen et al. 2011; Du 
et al. 2010, 2011; Mason and Clark 1965; Clark et al. 1968; 
Fortes 1982; Weislogel and Lichter 1996; Gennes et al. 
2004; Rabinovich et al. 2005; Vagharchakian et al. 2009; 
Alexandrou et al. 2010; Honschoten et al. 2010; Wang et al. 
2013; Timothy and James 2015; Reyssat 2015). And stability 
and breakup of capillary bridges were also analyzed deeply. 
Capillary surfaces in cubes (Mittelmann 1993) and poly-
hedral containers (Langbein 2002) were discussed and dif-
ferent kinds of free surfaces at equilibrium were presented. 
The hydrodynamic stability of capillary surfaces subject to 
constraints of volume conservation, contact-line boundary 
conditions, and the geometry of the supporting surface was 
comprehensively analyzed by Bostwick and Steen (2015). 
Capillary breakup of armored liquid filaments was explored 
by Zou et al. (2017).

However, liquid drops on the surface of revolution with 
varying cross-section have not been studied yet. And the 
method based on minimizing the Gibbs free energy pro-
posed before to predict profiles of liquid drops on conical 
fibers is too complicated (Michielsen et al. 2011). This study 
focuses on liquid drops on the surface of revolution under 
microgravity and expressions of profiles of liquid drops at 
equilibrium are proposed. Moreover, the Shooting method 
is adopted to predict the profiles and volume of liquid drops 
based on the theoretical expressions. Numerical simulation 
by considering different liquid contact angle, different liq-
uid volume and different geometries is carried out with the 
Volume of Fluid (VOF) method.

Theoretical Derivation

Propulsion systems or liquid management devices in satel-
lites usually contain surfaces of revolution. In the microgravity 
environment, the liquid can spread on the surface of revolu-
tion. The profiles of liquid drops can be divided into three 
types according to the liquid contact angle and the geometry 
of the surface of revolution. The contact angle of liquid on the 
surface of revolution is θ. The angle between the r axis and the 
tangent of the surface of revolution is α. When θ + α = π/2, 
the profile is a vertical line. When θ + α > π/2 or θ + α < π/2, 
the profiles are shown in Fig. 1a and b respectively. The liquid 
spreads around the surface of the container with varying cross-
section. The blue region represents the liquid with a volume of 
Vl. In Fig. 1a, the profile is convex, while in Fig. 1b, the profile 
is concave. The z axis is the symmetry axis of the revolution, 
and the r axis is perpendicular to the z axis. The revolution 

is symmetric with respect to both of the z and r axes, so the 
theoretical analysis is conducted in the first quadrant of the 
model. φ is the angle between the z axis and the normal to 
the profile boundary. Points A and B are two endpoints of the 
profile curve in the first quadrant. The revolution’s radius is r0 
when z = 0. At each point on Curve AB, there are two principal 
curvatures, k1 in the radial direction and k2 in the azimuthal 
direction, which can be written as follows (Wang et al. 2013).

Equations (1) and (2) are the general expressions of the 
curvatures of an arbitrary surface, and they are independent on 
fluid dynamics equations and boundary conditions.

The basic assumptions for theoretical analysis are listed 
below:

1. There is no stress acts on the free surface.
2. The flowing process is isothermal.
3. The liquid is Newtonian, incompressible, and homoge-

neous.
4. There is no slip between the flowing liquid and the 

walls.

At every point on the liquid–gas interface, the pressure 
must be the same. Otherwise, the shape of the liquid drop will 
change to ensure a constant pressure across the interface of the 
drop. In space, the gravity is less than  10−5 g (g is the constant 
of the gravity on earth). According to the Bond number.

where Δ� , L and σ are the density difference between liquid 
and gas, the characteristic length and the surface tension 

(1)k1 = −
d

dr

dz∕dr
√

1 + (dz∕dr)2

(2)
k2 = −

1

r

√

1 + (dz∕dr)2

(3)Bo =
gΔ�L2

�

Fig. 1  Cross-sectional view of the model. a θ + α > π/2. b θ + α < 
π/2
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respectively, in most cases the Bond number is much smaller 
than 1 and the gravity can be neglected in space. In the 
absence of gravitational effects, the condition for the equi-
librium state of the liquid drop surface is that the pressure 
across the drop surface is everywhere constant. The pressure 
across the interface is called the Laplace pressure and is 
given by the Young–Laplace equation (Carroll 1976)

When σ is a constant, adding up the two curvatures leads 
to the capillary equation

where C1 is a constant and (dz/dr)/[1 + (dz/dr)2]0.5 equals 
rsinφ.

Multiplying Eq. (2) by r leads to

where C2 is a constant. C1 and C2 can be determined by 
combining the equation with the boundary conditions,

which are written as

The gradient of the liquid profile curve can be expressed 
as follows

In combination with Eqs. (6) and (8), the gradient of the 
drop’s profile, dz/dr, can be expressed as a function of r. 
Substitution of the expression of sinφ in Eqs. (9) and (10) 
followed by expansion gives a numerator including more 
than 30 terms. After simplification, the following expres-
sions are obtained to replace original ones.

(4)Δp = �
(

k1 + k2
)

(5)
1

r

d

dr

rdz∕dr
√

1 + (dz∕dr)2
=

Δp

�
= C1

(6)
rdz∕dr

√

1 + (dz∕dr)2
= r sin� =

C1

2
r2 + C2

r = r1, 𝜑 = 𝜋 − (𝜗 + 𝛼), 𝛼 = arctan ḟr1

(7)r = r2, � = �∕2

C1 = 2
r1 sin (� + �) − r2

r2
1
− r2

2

(8)C2 = r1r2
r1 − r2 sin (� + �)

r2
1
− r2

2

(9)For 𝜃 + 𝛼 > 𝜋∕2 −
dz

dr
= tan𝜑 =

sin𝜑

(1−sin2𝜑)
0.5

(10)For 𝜃 + 𝛼 < 𝜋∕2 −
dz

dr
= tan𝜑 =

sin𝜑

−(1−sin2𝜑)
0.5

For θ + α > π/2

For θ + α < π/2

Writing

Equations (11) and (12) can be converted into the form as 
below,

Equations (14) and (15) can be solved numerically with the 
ode45 method if r1 and r2 are both known.

The volume of liquid is expressed as

where Vl is the volume of liquid, VC is the volume of the 
revolution with a height of z1 and VAB is the volume sur-
rounded by the liquid profile boundary (Curve AB). Their 
expressions are listed as follows

Using r0 to nondimensionalize Eq. (7) leads to

where r1 = r1
/

r0 , r2 = r2
/

r0 , z1 = z1
/

r0 , r = r
/

r0 , z = z
/

r0 
and a =

[

r1 − r2 sin (� + �)
]/[

r1 sin (� + �) − r2
]

.

(11)

−
dz

dr
=

r2
[

r1 sin (� + �) − r2

]

+ r1r2

[

r1 − r2 sin (� + �)
]

{

r2
[

r1 sin (� + �) − r2

]2(

r2
2
− r2

)

− r2
1

[

r1 − r2 sin (� + �)
]2(

r2
2
− r2

)

}0.5

(12)

dz

dr
=

r2
[

r1 sin (� + �) − r2

]

+ r1r2

[

r1 − r2 sin (� + �)
]

{

r2
[

r1 sin (� + �) − r2

]2(

r2
2
− r2

)

− r2
1

[

r1 − r2 sin (� + �)
]2(

r2
2
− r2

)

}0.5

(13)a =
[

r1 − r2sin(� + �)
]

∕
[

r1sin(� + �) − r2
]

(14)For 𝜃 + 𝛼 > 𝜋∕2 −
dz

dr
=

r2+ar1r2

[(r22−r2)(r2−a2r
2

1)]
0.5

(15)For 𝜃 + 𝛼 < 𝜋∕2
dz

dr
=

r2+ar1r2

[(r22−r2)(r2−a2r
2

1)]
0.5

(16)VI = 2
(

VAB − VC

)

(17)

For 𝜃 + 𝛼 > 𝜋∕2 VAB = 𝜋 ∫ z1
0

r2dz = −𝜋 ∫ r1
r2

r2
r2+ar1r2

[(r22−r2)(r2−a2r
2

1)]
0.5 dr

(18)

For 𝜃 + 𝛼 < 𝜋∕2 VAB = 𝜋 ∫ z1
0

r2dz = 𝜋 ∫ r1
r2

r2
r2+ar1r2

[(r22−r2)(r2−a2r
2

1)]
0.5 dr

(19)Vc = � ∫
z1

0

r2dz

(20)For 𝜃 + 𝛼 > 𝜋∕2 −
dz

dr
=

r
2
+ar1r2

[(

r
2

2
−r

2
)(

r
2
−a

2
r
2

1

)]0.5

(21)For 𝜃 + 𝛼 < 𝜋∕2
dz
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=

r
2
+ar1r2

[(

r
2

2
−r

2
)(

r
2
−a

2
r
2

1
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Simulation Verification

Mesh models of different kinds of revolution are estab-
lished. Figure 2 shows a typical mesh model. The fluid 
domain meshes in three cross-sections are also presented. 
Grid-independent verification is performed and the total 
number of grids is designed to be about 1.1 million. 
Boundary layers are established in the regions close to 
the surface of the revolution.

Numerical simulation is performed in Fluent with the 
VOF method. The VOF method can simulate two or more 
immiscible fluids by solving a single momentum equa-
tion and tracking the volume fraction of each fluid in the 
region. Typical applications include predictions of jet rup-
ture, the movement of large bubbles in liquid, the move-
ment of liquid after dam failure, and the steady-state or 
transient tracking of any gas–liquid interfaces. Owing to 
low Re numbers during the reorientation process of liquid, 
the laminar flow is chosen as the flow pattern in the simu-
lation. The time-step size is 0.0005 s. A type of Silicone 
Oil named by its kinematic viscosity, SO 2, is adopted in 
our study. Its properties are shown in Table 1.

To reduce simulation time, the liquid is set to be on the 
middle region of the revolution with a spherical liquid–gas 
interface in the beginning. As Fig. 3 shows, the yellow 
surface stands for the liquid–gas interface. The revolu-
tion’s geometry, the contact angle and the volume of liquid 
are given. There exists a case that the amount of liquid is 
not enough to cover the entire circle of the revolution and 
liquid drops are formed somewhere on the revolution’s 
surface. This case is not considered in our study.

Figure 4a and b show the liquid–gas interfaces at equi-
librium when θ + α > π/2 while Fig. 4c and d show the 

liquid–gas interfaces at equilibrium when θ + α < π/2. The 
simulation results are consistent with the results of theoreti-
cal analysis. The liquid–gas interfaces are convex when θ 
+ α > π/2 and concave when θ + α < π/2. The liquid–gas 
interface is symmetric with respect to the z and r axes. Coor-
dinates of Points A and B can be measured from numerical 
results. To reduce random errors, final values are obtained 
by reading coordinate values on two cross sections, and tak-
ing the average of these two sets of values for Points A and B 
respectively. The result data are listed in Table 2 along with 
the revolution’s geometries.

Predictions based on the Shooting Method

With given revolution’s geometry and liquid contact angle, 
when r1 and r2 are both known, profiles of the liquid can 
be obtained through solving Eqs. (14) and (15) with the 
ode45 method. However, if r2 or Vl is known, the Shoot-
ing method is needed to obtain the profiles. The shoot-
ing method is an effective method to solve the two-point 
boundary value problem of ordinary differential equations. 
The curve determined by the problem is regarded as the 
ballistic trajectory, and the solution process is to continu-
ously adjust the test firing conditions to make it reach the 

Fig. 2  Typical mesh model established for numerical simulation

Table 1  Fluid properties (25 °C)

Name μ ρ σ ν
(kg/(m*s)) (kg/m3) (N/m) (10–6  m2/s)

SO 2 0.001746 873 0.0183 2
Air 1.789e-5 1.225 / 1.460e-5

Fig. 3  Initial liquid–gas interface on the surface of a revolution with 
varying cross-section
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predetermined target. The key to this kind of method is to 
design the steps of selecting the initial value.

When r2 is known, it is substituted into the mathemati-
cal model. Then r1 is adjusted in a given range until it 
locates on the revolution’s wall. After r1 is determined 
through the Shooting method, theoretical predictions of 
the profile and the volume of liquid can be obtained. In 
this case, the coordinates of Point B are needed as the 
inputs. Therefore, this method also relies on numerical 
simulation. However, it has its unique advantages. For 
example, when the liquid is spread on the surface of revo-
lution, its volume and interface area are hard to measure 
directly. But the coordinates of Points A and B on the pro-
file can be easily obtained. Once the coordinates of these 
points are decided, the volume and interface area can be 
obtained by using this method.

When Vl is given, it is substituted into the mathemati-
cal model at first. Then r1 is set to be in a given range and 
r2 is assigned an estimated value. Calculate the volume of 
liquid using the guessed values of r1 and r2, until the differ-
ence between the calculated volume and the given volume 
is less than  1e−5. When the calculated volume meets this 
requirement, the theoretical predictions of the profile are 
obtained. During this process, r1 is ensured to be located 
on the revolution’s wall. This method depends on only doz-
ens of lines of codes created according to the theoretical 
expressions. Numerical simulation is not required in this 
method. It is easier than the method based on minimizing 
the Gibbs free energy presented before (Michielsen et al. 
2011). With this method, when the geometry of revolution 
and the volume and contact angle of liquid are known, we 
can easily predict profiles of liquid drops spreading on the 
surface of revolution.

(a) (b)

(c) (d)

Fig. 4  Liquid–gas interfaces at equilibrium. a r0 = 40 mm, α = 63.44°, 
θ = 30°, b r0 = 20 mm, f = 60/300.7*(r-20)0.7, θ = 70°, c r0 = 10 mm, f 
=  100.5*(r-10)0.5, θ = 25°, d r0 = 40 mm, α = 41.99°, θ = 30° 
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Theoretical predictions based on this method are also 
shown in Table 2. To compare with numerical results more 
intuitively, ratios of theoretical values of Vl and r2 to numeri-
cal ones are also presented, as shown in Fig. 5. It can be 
seen that the differences between theoretical predictions and 
numerical results are mostly within ±5%, which verifies the 
correctness of the mathematical model and this method.

As shown in Fig. 6a and b, predicted profiles are plotted 
with numerical results. The black line represents the revo-
lution’s wall. The colorful lines stand for predicted profiles 
under different conditions, while the colorful squares rep-
resent numerical data. The condition numbers are labeled 
at the upper-left corner of the figures. Generally speaking 
numerical results are in good agreement with predicted pro-
files. Since the numerical results in Fig. 6a and b is meas-
ured from one cross section, and the predicted profiles are 
based on the average value of r2 measured from two cross 
sections, there is a slight difference between the predicted 
profiles and numerical results, which is acceptable.

Predicted dimensionless results of profiles are shown in 
Fig. 7a and b. The black lines stand for the revolution’s wall 
and the colorful lines represent profiles of the liquid in the 
first quadrant with different liquid contact angle. It can be 
seen that when r2 is given, the height and volume of the liq-
uid will increase monotonically as the liquid contact angle 
decreases; when Vl is given, r2 will decrease monotonically 
as the liquid contact angle decreases, but the height of the 
liquid will increase with the decrease of the liquid contact 
angle. Besides, with the change of the contact angle, profiles 
of the liquid presents two cases, which is consistent with 
Fig. 1a and b in the theoretical analysis.

Fig. 5  Ratios of Vl and r2

Fig. 6  Predicted profiles vs 
numerical results. a z = 0.9(r-
40) mm and b z = 34/400.6*(r-
40)0.6 mm

(a) (b)

Fig. 7  Predicted dimensionless 
profiles with the shooting method. 
a r

2
= 1.6 and the liquid contact 

angle differs from 10° to 80°. b 
Vl = 16 and the liquid contact 
angle differs from 10° to 80°

106   Page 6 of 8



Microgravity Science and Technology (2022) 34:106 

1 3

Conclusions

Profiles of liquid drops on the surface of revolution with 
varying cross-section under microgravity are obtained 
through theoretical derivation. The profiles have three cases 
according to the liquid contact angle and the geometry of the 
revolution. For given liquid contact angle and geometry of 
the revolution, if r1 and r2 are both known, the profile and 
volume of liquid drops can be obtained by using the ode45 
method. When r2 or Vl is known, the Shooting method is 
adopted to predict the profile and volume. Numerical simu-
lation is performed with the VOF method and numerical 
results are in good agreement with theoretical predictions. 
Besides, dimensionless expressions of profiles of the liquid 
are also proposed. For given r2, the height and volume of the 
liquid will increase monotonically as the liquid contact angle 
decreases. And for given Vl, r2 will decrease monotonically 
as the liquid contact angle decreases, but the height of the 
liquid will increase as the liquid contact angle decreases. 
Understanding capillary phenomena on the surface of revo-
lution will be helpful for liquid management in space, and 
the mathematical model and the methods to predict the pro-
files presented in this study can be a theoretical basis for the 
design of liquid management devices in satellites.
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