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ABSTRACT
Due to the complicated geometric shape, it’s difficult to precisely obtain the aerodynamic force of
high-speed trains. Taking numerical and experimental data as the training data, the present work
proposed a data-driven rapid prediction model to solve this problem, which utilized the Support
Vector Machine (SVM) model to construct a nonlinear implicit mapping between design variables
and aerodynamic forces of high-speed train. Within this framework, it is a key issue to achieve
the consistency and auto-extraction of design variables for any given streamlined shape. A gen-
eral parameterization method for the streamlined shape which adopted the idea of step-by-step
modeling has been proposed. Taking aerodynamic drag as the prediction objective, the effective-
ness of the model was verified. The results show that the proposed model can be successfully
used for performance evaluation of high-speed trains. Keeping a comparable prediction accuracy
with numerical simulations, the efficiency of the rapid prediction model can be improved by more
than 90%. With the enrichment of data for the training set, the prediction accuracy of the rapid
prediction model can be continuously improved. Current study provides a new approach for aero-
dynamic evaluation of high-speed trains and can be beneficial to corresponding engineering design
departments.
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1. Introduction

As a near-ground rail transport tool with large slender
ratio, the high-speed train usually experiences complex
three-dimensional turbulent flow at high Reynolds num-
ber (Baker, 2010; Raghunathan et al., 2002; Schetz, 2001).
The complex geometric shapes of key exposed compo-
nents such as pantographs, bogies, and windshields have
a great impact on the aerodynamic performance of trains.
During the engineering design process, it’s unbearable
to perform high-fidelity numerical simulations for prac-
tical high-speed trains with multiple carriages. There-
fore, most researches on the flow field characteristics of
high-speed trains commonly consider simplified shapes
(Hemida & Baker, 2010), for instance, ignoring the influ-
ence of bogies, pantographs and windshields, reducing
the number of carriages(Wang et al., 2008), and scaling
down the size of the model. Hemida and Baker (2010)
adopted the Large Eddy Simulation (LES) method to
investigate the influence of the streamlined shape and the
deflection angle of crosswind on the flow field structures
around the train for an extremely simplified scaled
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model. Wang et al. (2008) utilized the Lattice Boltz-
mann Method (LBM) to analyze the flow characteristics
of the simplified three-carriage high-speed train model.
Yao et al. (2013) adopted the DES method to investigate
the wake characteristics of a simplified high-speed train
model with three carriages. Yang et al. (2012) adopted
the RANS method to evaluate the aerodynamic drag
of the simplified eight-carriage high-speed train model.
Sima et al. (2008) validated the accuracy of numerical
approaches with the wind tunnel experimental data from
a scaled bogie model. Wang et al. (2017) adopted a sim-
plified two-carriage high-speed train model to compare
and analyze the simulation accuracy of different turbu-
lence models. Catanzaro et al. (2010) adopted simplified
models and wind tunnel test data to verify the accuracy
of numerical calculations.

Although themain flow characteristics of the flowfield
around the high-speed train can be obtained through
simplified models, the impacts of key components like
bogies on the aerodynamic loads such as aerodynamic
drag, aerodynamic lift, and aerodynamic noise of the
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train, which are critical indicators for the shape design
of high-speed train, cannot be accurately obtained. The
shape smoothing design of high-speed train mainly aims
at key components such as bogies, pantographs and
inter-connection parts (Yang et al., 2012). A reason-
able smoothing design will greatly reduce the aerody-
namic drag and aerodynamic noise of the high-speed
train, which can significantly improve the environmen-
tal adaptability of the train. Meanwhile, strong nonlin-
ear relationship exists between the smoothing design of
key components and factors such as train marshaling
and streamlined shape, which requires investigation of
the influences caused by various factors on the aero-
dynamic performance of trains during the engineering
design process. Therefore, with the rapid development
of high-speed train aerodynamic design technology and
massively parallel computing technology, aerodynamic
prediction methods aiming at the real-train scale, real
carriages and complex model will become the new trend
for train aerodynamics.

The reduced-order model can be adopted to inves-
tigate the coherent vortex structures of the wake field
behind the bluff body at high Reynolds number (Östh
et al., 2014).Muld et al. (2012) adopted different reduced-
order models to investigate the flow characteristics of
the wake field of high-speed train. However, litera-
ture using reduced-order model to predict aerodynamic
force of high-speed train has not been found. With the
continuous deepening of machine-learning applications,
different types of machine-learning models are gradu-
ally adopted to predict aerodynamic force (Wang et al.,
2015; Zhang et al., 2019; Zhu & Wang, 2019), so as
to reduce the computational cost. In the field of aero-
dynamic shape optimization design, machine-learning
models aremorewidely used as surrogatemodels. Shuan-
bao et al. (2014) and Sun et al. (2020) applied differ-
ent machine-learning methods as surrogate models to
the aerodynamic drag reduction design of high-speed
train heads. Ku et al. (2010) and Yang et al. (2022) car-
ried out the multi-objective aerodynamic optimization
design of the streamlined shape of high-speed train with
the use of Kriging model. Munoz-Paniagua and García
(2020) adopted feedforward neural networks to develop
single-objective aerodynamic optimization designs for
the streamlined shape of high-speed train. The exist-
ing methods of predicting aerodynamic force apply-
ing machine-learning models can establish the non-
linear mapping between design variables and aerody-
namic force. However, they mainly base on determined
geometric design variables. Without determined design
variables, prediction of aerodynamic force seems to be
impossible.

Streamlined head of high-speed train usually con-
tains complex three-dimensional surfaces and owns var-
ious topological structures. To rapidly predict the aero-
dynamic force of high-speed train based on machine-
learning methods, it is necessary to first propose a
parametrization method to extract design variables.
Using block-by-block modeling method, Munoz-
Paniagua and García (2020) implemented the three-
dimensional parametric design of the high-speed train
head shape with quadratic Bezier curves. Shuanbao
et al. (2014) and Sun et al. (2020) have implemented
the three-dimensional parametric design for the new
streamlined shape and the existing streamlined shape
of the high-speed train by adopting vehicle model-
ing function (VMF) method and local shape func-
tion method, respectively. Yang et al. (2022) achieved
three-dimensional surface deformation of high-speed
train by adopting free form deformation (FFD) method.
However, these parametrization methods usually lack
of the generalization capability. That’s to say, they
cannot be adopted to generate any given streamlined
shape.

Aiming at precisely and efficiently predicting aerody-
namic force of high-speed train with arbitrary stream-
lined shape, a data-driven rapid prediction model was
proposed in this study, which couldmake full use of exist-
ing data from numerical simulations and wind tunnel
tests. With use of this model, a nonlinear implicit map-
ping between design variables and aerodynamic forces
of high-speed train could be constructed. More impor-
tantly, within this framework, it is a key issue to achieve
the consistency and auto-extraction of design variables
for any given streamlined shape. A general parameteri-
zation method for the streamlined shape which adopted
the idea of step-by-step modeling has been proposed, so
that the rapid extraction of the values of design variables
could be realized.

The remainder of the paper is organized as follows: the
general parametrization method and the inverse design
of the streamlined shape are exhibited in Section 2.
Combining these two methods, any arbitrary stream-
lined head could be represented by a series of design
variables, which work as the input for the rapid predic-
tion model. Section 3 gives out the detailed construction
process of the rapid prediction model, which includes
the approaches concerning the training data acquisition,
the design space of the design variables, and the uti-
lization of SVM model. Taking the aerodynamic drag
coefficient as the prediction objective, results and dis-
cussion with regard to the rapid prediction model is
carried out in Section 4. Finally, Section 5 concludes the
research.
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Figure 1. Definition of coordinate system.

2. Rapid extraction of design variables of
streamlined head

As mentioned above, for any given streamlined head of
high-speed train, it is of primary significance to obtain
its design variables, so that they can be taken as the input
for the rapid prediction model. It is required to suffi-
ciently widen the design space so as to take as many
streamlined shapes as possible into consideration. As a
result, a more generalized parametrization method for
the streamlined head has been proposed firstly. It is worth
mentioning that we mainly focus on the parametriza-
tion of the streamlined head in present study, since the
streamlined head shape of the leading and trailing car
takes amajor contribution in aerodynamic forces and the
design of a brand new streamlined shape is the most con-
spicuous part when designing a new high-speed train.
Once the parametrization method has been constructed,
the inverse design idea has been adopted together with
optimization method so that the design variables of any
given streamlined shape can be approximated.

2.1. Parametrizationmethods for streamlined head

2.1.1. Location of key control profiles
The streamlined shape is a three dimensional free-form
surface, and the parametric expression of the key control
profiles is determined by the definition of the coordi-
nate system, as shown in Figure 1. The x-, y- and z-axes
are the length, width and height directions, respectively.
It should be mentioned that the origin of the coordi-
nate locates at the tip of the nose for x-axis, at the half
width of the nose for y-axis and on the top of the rail
surface for z-axis. The distance between the bottom of
the train head and rail surface is H1, and the distance
between the bottom of the cowcatcher and rail surface
is H2. Taking the height H3 above the rail surface as
the dividing point, the train head can be divided into
upper and lower parts, in which parametric design are
conducted separately. In order to facilitate the paramet-
ric design, the original streamlined shape is normalized
along the x direction, so that the length of the stream-
lined part is 1m, while the y direction and z direction are
scaled proportionally.

Figure 2. Key control profiles for the streamlined head.

The streamlined shape of the high-speed train is sym-
metrically distributed along the y direction, thus in order
to reduce the complexity of parametrization, current
study only carries out the parametrization design on half
of the head, as shown in Figure 2. The topological struc-
ture of the head shape is determined by key control
profiles. The key control profiles include cross-sectional
profiles in zone 1 and zone 2, longitudinal profile, hori-
zontal profile, bottomprofile, and cowcatcher profile. The
position of each profile is shown in Figure 2.

2.1.2. Definition of key control profiles
(I) cross-sectional profile. Any kind of profiles can be
obtained by the non-uniform rational B-spline method
by properly setting the number, coordinates, and corre-
sponding weights of the control points. It is one of the
most commonly used methods for parametric design of
geometric shapes. The key control profiles of high-speed
train head are rich and changeable. In order to fit the
high-speed train head more accurately, NURBS curve
method is chosen for parametric design of different types
of control profiles.

The rational polynomial expression of aNURBS curve
of degree k is:

p(u) =
n∑

i=0
widiNi,k(u)/

n∑
i=0

wiNi,k(u) (1)

where wi is the weight factor, di is the coordinate vec-
tor of the control vertex, and the basis function Ni,k(u)
is determined by the recursive formulas (2) and (3):

Ni,0(u) =
{
1, u ∈ [ui, ui+1]
0, u /∈ [ui, ui+1]

(2)

Ni,k(u) = u − ui
ui+k − ui

Ni,k−1(u)

+ ui+k+1 − u
ui+k+1 − ui+1

Ni+1,k−1(u) (3)

where ui is the coordinate of the node, which is related to
the corresponding control vertex.

The cross-sectional profiles of the train body are gen-
erally composed of multiple straight lines and arcs, but
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Figure 3. Control points of the cross-sectional profile of the train
body.

for different models, combinations and sizes vary greatly.
TheNURBS curve is used to fit the cross-sectional profile
of the train body, as shown in Figure 3. To ensure the con-
tinuous curvature at the center point of the curve, a sym-
metrical arrangement of control points is employed. Five
control points P1∼P5 are arranged on one side of the
train. Taking the z-axis as the axis of symmetry, P1∼P4
are symmetrized to the non-parametric side. The z coor-
dinate of P1 is fixed, the y coordinate of P5 is 0, while the
other coordinate parameters are design variables, with a
total number of 8.

(II) Longitudinal profile. The longitudinal profile of the
streamlined head includes the main profile and addi-
tional window profile, as shown in Figure 4. For different
head shapes, the window profile can be quite different, as
shown in Figure 4(a) with the convex shape and the front
end downward chamfered shape. To ensure the consis-
tency of the parametric design expression, the NURBS
curve is employed to fit the longitudinal line, as shown in
Figure 4(b), with a total of five control parameters. The
x coordinate of P1 is 0, the z coordinate of P1 is H3, the
z coordinate of P5 is the same as the z coordinate of P5

Figure 5. Control points of the longitudinal profile of the
cowcatcher.

of the train body cross-sectional profile, and the coordi-
nates of other control points are design variables, that is,
9 design variables in total.

(III) Profile of the Cowcatcher. The cowcatcher of high-
speed train usually owns complicated shape, and has a
great influence on the flow characteristics beneath the
streamlined head. As stated previously, the NURBS curve
was adopted to fit the longitudinal profile of the cow-
catcher, as shown in Figure 5, five control points are
adopted, in which P5 is the same point as P1 of the lon-
gitudinal profile, and the coordinates of the other four
control points are design variables, with a total number
of 8.

(IV) Horizontal profile. The horizontal profile of high-
speed train streamlined head is the dividing curve
between zone 1 and zone 2. To reduce the number of
design variables during parametric design, the height H3
is defined as a fixed value. To ensure the shape of longitu-
dinal beam structure of the train body is fixed, a straight
line is positioned in the area close to the straight section
of the train body, and the remaining part is a free curve, as
shown in Figure 6. Here we did not carry out parametric

Figure 4. Schematic diagram of parameterization of longitudinal line.
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Figure 6. Control points of horizontal profile.

Figure 7. Control points of bottom profile.

design for the straight-line section but did adopt NURBS
curve to fit the free curve. There are totally 5 control
points, of which P1 is the same point as P1 of the longitu-
dinal line, and the y-coordinate of P5 is determined by the
cross-sectional profile. The coordinates of the remaining
control points are design variables, that is, seven design
variables in total.

(V) bottom profile. The bottom profile of the head shape
is similar to the horizontal profile. Similarly, parametrical
design was not carried out for the straight-line section
and free curve was fit by the NURBS curve. There are
totally five control points, of which P1 is the same point
as P1 of the cowcatcher profile, the y-coordinate of P5 is
determined by the cross-sectional profile, and the coor-
dinates of the remaining control points are design vari-
ables, that is, seven design variables in total, as shown in
Figure 7. Note that affected by the function of the cow-
catcher, the z-coordinate of P1 is H2, the z-coordinate
of P5 is H1, and the z-coordinate of the free curve is
obtained by linear interpolation of H1 and H2.

2.1.3. Interpolation of the spatial surface
The surface of the streamlined head is a three-
dimensional free-form surface. It was discretized into
spatial grids, and the surface shape was fitted by coor-
dinate interpolation of spatial grids. Polynomial func-
tions were utilized to interpolate for the spatial curved
surface. When dealing with connection places where
two surfaces meet, quadratic polynomial functions are

Figure 8. Discrete grid of spatial surface.

usually adopted so that the curvature could be kept the
same at the connection parts, which could meet the
smooth transition requirement for engineering design.
The discrete surface is shown in Figure 8. The grid points
are ordered structural surface grids.

To reduce the number of design parameters, this
paper took the key control profiles as the boundaries,
and adopted different surface fitting methods for dif-
ferent areas according to the area division in Figure 6.
Taking x-coordinate of the surface point the same
as that of horizontal profile, the interpolation formu-
las for the y coordinate and z coordinate take the
forms as:

y(x) = ymin(x) + ymax(x)
i − 1
n − 1

�y (4)

z(x, y) = zmin(x, y) + zmax(x, y)

×
(

y − ymin(x)
ymax(x) − ymin(x)

)m
(5)

In formula (4), i is the serial number of the ith point,
n is the number of discrete points on the train body
section curve, �y is the increment of the y-coordinate
between adjacent points. Quadratic parabolic interpo-
lation method was adopted in ZONE1 to control the
continuity of the curvature at the y = 0 symmetry plane,
where the corresponding value of m in formula (5) is
2. Linear interpolation method was adopted in ZONE2,
wherem = 1.

The parametric design is the key to the inverse design
of the streamlined head. It should be emphasizing that the
inverse design accuracy of the streamlined shape relies
heavily on careful specification of the parametric design
method. Poor parametric method could lead to signifi-
cant reduction of the prediction accuracy of the aerody-
namic performance of high-speed train. The parametric
method proposed in present study takes into account
the characteristics of different topological structures of
the head types to the greatest extent. The key design
variables for the parametric design of the high-speed
train streamlined shape are given in Table 1, with a total
number of 39.
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Table 1. Key design variables.

Curve type Design variables

Cross-sectional profile y11 y12 z12 y13 z13 y14 z14 z15

Longitudinal profile x22 z22 x23 z23 x24 z24 x25 z25 x26
Cowcatcher profile x31 z31 x32 z32 x33 z33 x34 z34
Horizontal profile x42 y42 x43 y43 x44 y44 x45
Bottom profile x52 y52 x53 y53 x54 y54 x55

2.2. Inverse design of the streamlined head

2.2.1. Inverse design process
The inverse design of the head shape of high-speed train
is to obtain the values of the design variables according
to the three-dimensional geometric data of the existing
head shape, then input the values into the head shape
parametric design model to implement the reconstruc-
tion of the three-dimensional shape. The specific process
for the inverse design of a streamlined head is shown in
Figure 9:

1) Determine the streamlined head that needs to be
inversely designed, and perform grid discretization
on it.

2) Use the self-developed data-processing code to auto-
matically obtain the discrete data of each profile
according to their location characteristics.

3) Adopt PSO algorithm (Kennedy & Eberhart, 1995)
to optimize and obtain the optimal value of each
design variable for the key control profiles by taking
minimizing the average fitting error as the optimiza-
tion goal.

As seen in Figure 9, the single-objective PSO
algorithm was adopted herein for the inverse design of
the streamlined head. The specific coefficients for PSO
are listed as follows: the population of particle swarm
is 200, the total number of iterations is 500, the value
of acceleration factor is 2, the inertia factor gradually
changes from 1.2 to 0.8 as the number of iterations
increases, and the maximum flight speed of the particles:
the value for the cowcatcher is 2 and the value for the
other key control profiles is 5.

The inverse design objective of each control profile is
the average error between the inverse design profile and
the target profile, and the objective function is shown
below:

fr = 1
n

n∑
i=1

di (6)

Where fr is the value of the objective function in inverse
design, n is the number of discrete points of the con-
trol profile, and di is theminimumdistance between each
discrete point and the target line.

2.2.2. Validation of the inverse design process
Two aspects should be carefully paid attention to when
dealing with the inverse design of a three-dimensional
geometry, which are the inverse design of the two-
dimensional key profiles and the final three-dimensional
shape. In this section, four different types of streamlined
shape models, as shown in Figure 10, are employed to
illustrate the effect of current inverse design method,
which are named TEST1, TEST2, TEST3 and TEST4,
respectively. They shared the same cross-section shape
of the carriage body except TEST2. Meanwhile, the main
window profile of the driver’s cab for TEST2was a down-
ward chamfered shape at the front end.

It should be mentioned that these four streamlined
heads are also under investigation in wind tunnel tests
and numerical validations, which will be discussed later.

(I) inverse design of two-dimensional profiles. The accu-
racy of the inverse design is mainly determined by the
fitting accuracy of key control profiles. The topological
structure of the cross-sectional profile, the longitudinal
profile, and the cowcatcher profile are completely dif-
ferent. Different streamlined heads usually own quite
different topological structures for the longitudinal pro-
files and the cowcatcher profiles. To verify the accuracy
of inverse design for two-dimensional profiles, inverse
design for different types of control profiles has been
conducted. The five key profiles, cross-sectional profile,
longitudinal profile, the cowcatcher profile, horizontal
profile and bottom profile, are respectively named L1,
L2, L3, L4 and L5 for simplicity. The convergence curve
of the fitness of the control profiles with the number of
iterations is shown in Figure 11. It can be observed that
after 500 iterations, the fitness of each control profile con-
verges, indicating that PSO can rapidly obtain the values
of design variables for each profile. More specifically, the
average error of the inverse design of L2 is the largest,
and the average errors of the inverse design of L3, L4
and L5 are basically the same, but they are significantly
smaller than the errors of L1 and L2. Thus, it can be con-
cluded that sudden change in the curvature of the profile
could propose a challenge to the fitting by NURBS curve
method. The sharper the curvature of the profile changes,
the lower the fitting accuracy becomes.

The inverse design results of the key profiles of TEST1
and TEST3 are presented in Figure 12. The topological
structures of the key profiles of two streamlined shapes
differ notably. Obviously, the current method is capa-
ble of accurately fitting profiles with completely different
topological structures, and only a certain error exists
in the locations where the curvature changes sharply.
To reduce computational cost during the construction
of aerodynamic prediction model for high-speed trains,
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Figure 9. Flow chart for the inverse design of the streamlined head.

Figure 10. Different head types for wind tunnel test.

Figure 11. Convergence curve of the fitness of the control
profiles.

under the premise that the inverse design error meets the
requirements, the number of control points of the key
profiles should be reduced as much as possible, thereby
reducing the number of design variables.

In order to facilitate the comparative analysis of
inverse design error of head shapes in different sizes,
the head length is used as the characteristic length to
normalize the three-dimensional shape of train head.
After normalization, the streamlined head length is kept

1000mm. Maximum and average inverse design errors
of the key control profiles of four different head shapes
is shown in Table 2. It can be found that the abso-
lute average errors of the key control profiles of four
different head shapes are within 2mm, and the rela-
tive error (absolute error/head length) is less than 0.2%.
Although the length and width of the longitudinal pro-
file, the horizontal profile and the bottom profile are
relatively large, the corresponding absolute errors are
no more than 9mm, and the relative errors are no
more than 1%. Meanwhile, the absolute errors of cross-
sectional profile and cowcatcher profile are less than
5mm, and the relative errors are less than 0.5%. These
errors are basically consistent with EN14067-6-2018(EN,
2010) for the manufacturing error requirements of wind
tunnel test models. Therefore, it can be concluded that
such errors have negligible effect on the results of rapid
calculations.

(II) inverse design of the streamlined head. The two-
dimensional key control profile determines the topo-
logical structure of the three-dimensional shape of the

Table 2. Maximum and average errors for the inverse design of two-dimensional profiles

Cross-
sectional
Profile

Longitudinal
Profile

Cowcatcher
Profile

Horizontal
Profile

Bottom
Profile

TEST1 Max Error/mm 4.17 1.73 0.68 1.72 8.03
Ave Error/mm 1.15 1.28 0.50 0.54 0.82

TEST2 Max Error /mm 2.88 7.31 2.23 3.44 1.80
Ave Error /mm 1.53 1.18 0.93 0.90 0.36

TEST3 Max Error /mm 1.91 8.58 0.43 7.42 0.17
Ave Error /mm 0.92 1.69 0.34 1.64 0.03

TEST4 Max Error /mm 1.64 8.64 1.45 3.01 0.86
Ave Error /mm 1.08 1.85 0.61 0.52 0.61
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Figure 12. Inverse design results of different key profiles.

Table 3. Maximum and average errors of inverse design shape.

TEST1 TEST2 TEST3 TEST4

Max error/mm 8.43 8.75 9.83 9.67
Ave error/mm 1.82 2.36 2.74 2.31

high-speed train head, and the surface interpolation
method determines the fitting accuracy of the three-
dimensional surface. Figure 13 shows the inverse design
results of four different topological structures. It can be
seen that the inversely designed shape obtained based
on the interpolation of the two-dimensional key control
profiles is basically consistent with the target shape, indi-
cating that the inverse design method can relatively well
realize the inverse design of the high-speed train head,
which is also the basic condition for the implementation
of the proposed rapid prediction model.

Similar to the error analysis of the inverse design
of two-dimensional profiles, the maximum and average
errors of the surface fitting of four streamlined shapes
are shown in Table 5. It can be found that the fitting
error of the curved surface is larger than that of the two-
dimensional profiles, and the location of the largest error
is mainly distributed in the area with sharp curvature
changes. Thus, in order to ensure that the average error of
the curved surface is small, the interpolationmethod was
locally smoothed in the area where the curvature changes
sharply. As shown in Table 3, the relative value of the
maximum fitting error of the curved surface is less than
1%, while the relative value of the average fitting error
is less than 0.5%, which both satisfy the requirements
of EN14067-6-2018 (EN, 2010) for the manufacturing
errors of wind tunnel test models. Therefore, the current
inverse design method for high-speed train streamlined
shape can be used for rapid prediction of aerodynamic
forces.

Table 4. Mesh configurations.

Boundary
layers

Growth
ratio

Minimum
grid size

Number of
grids

Coarse mesh 50 10 1.2 10mm 35.15M
Fine mesh 30 10 1.1 1.5mm 68.35M

Table 5. Aerodynamic drag coefficients of wind tunnel test and
two meshing methods.

TEST1 TEST2 TEST3 TEST4

Wind tunnel test
(Gao et al., 2019;
Shuanbao et al.,
2014)

0.3261 0.3482 0.3477 0.3234

Wind tunnel test
(Gao et al., 2019)

/ 0.3549 / /

Coarse mesh 0.3676 / / /
Fine mesh 0.3261 0.3442 0.3483 0.3279

3. Construction of the rapid predictionmodel

There are more than ten design indicators such as aero-
dynamic drag, aerodynamic noise and pressure wave
in terms of aerodynamic design of high-speed train,
whereas the proposed data-driven rapid aerodynamic
predictionmodel does not have limitations on the type of
design indicators. Without loss of generality, the aerody-
namic drag coefficient of three-carriage trainwas taken as
the objective to illustrate the effectiveness of the proposed
method.

Rapid prediction model for aerodynamic force is an
implicit function of the shape design variables and aero-
dynamic force of high-speed train. It is difficult to obtain
the implicit function by analytical method because of
the obvious nonlinear relationship between design vari-
ables and the objectives as well as the interaction between
design variables. Consequently, we adopted the SVM
model to describe the implicit relationship between the
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Figure 13. Inverse design results of different topological structures.

shape design variables and aerodynamic force in cur-
rent study. To build up the SVM model, we need to find
approaches for the collection of training data and deter-
mine the design space for the design variables, which are
discussed below.

3.1. Training data acquisition

As the basis for the construction of the rapid prediction
model, wind tunnel test andnumerical simulation play an
important role in providing sufficient initial data. In this
study, similar high-speed train models (the term “simi-
lar” means models with the same train body, bogies, and
windshields but with different streamlined shapes) have
been employed for both wind tunnel test and numerical
simulation. Details about wind tunnel tests and numeri-
cal simulations are presented in this section.

3.1.1. Wind tunnel test
The wind tunnel tests provide a direct way to evalu-
ate aerodynamic loads of high-speed trains, which are
used for aerodynamic prediction and comparison of dif-
ferent configurations during the initial design stage of
newhigh-speed trains.Meanwhile, the experimental data
from wind tunnel tests can also be utilized to validate the
numerical algorithms. In this study, experimental data
are adopted both for the buildup of initial sample set and
numerical validation as well. For the sake of illustration,
wind tunnel tests in Mianyang, Sichuan are exhibited.
The experiments were completed in a large low-speed
wind tunnel with an open test section of 8m× 6m. As
shown in Figure 14, the test model was a three-carriage
scaled train model with a ratio of 1:8, and the length,
height, andwidth of themodel are 9.75, 0.4375, 0.4225m,
respectively. During the test, the length of the model was
parallel to the incoming flow, each carriage was inde-
pendently supported, and a force balance was installed

at the geometric center of each carriage to evaluate the
aerodynamic drag. The velocity of the incoming flowwas
60m/s. Taking the model height as the reference length,
the Reynolds number is 1. 71× 106.

Besides the aforementioned four wind-tunnel stream-
lined models, experimental data from other train models
are also included during the construction of the rapid
prediction model. The inverse design provides the spe-
cific value of each design variable of the train model,
while the wind tunnel tests give out the aerodynamic
performance.

3.1.2. Numerical simulation
Numerical simulation plays an important role in eval-
uation of the aerodynamic performance of high-speed
trains, as long as its credibility has been validated. In
order to provide sufficient initial data for the construction
of the rapid prediction model, samples from numerical
simulations have been extensively utilized.

This study uses wind tunnel test data as benchmark
data to validate the accuracy of numerical approaches.
The aerodynamic forces of different streamlined shapes
are obtained by numerical simulations. To ensure the
comparability of numerical models, the computational
model and setup used in the simulations are consistent
with wind tunnel tests.

Figure 15 shows the geometric model of the high-
speed train. It is a three-carriage model with the scaled
ratio of 1:8 including bogies, windshields, roadbeds, and
tracks. The impacts of other components, such as pan-
tographs, on the aerodynamic performance of the train
are not considered.

The computational domain is identical to the wind
tunnel test section. As shown in Figure 16, the height
H from the top of the train body to the rail surface is
taken as the characteristic length. The distance between
the inlet boundary and the nose tip of the leading train
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Figure 14. Wind tunnel test.

Figure 15. Geometric model of three-carriage high-speed train.

is 6.5H, the distance between the outlet boundary and
the trailing nose is 11H, and the height and width of the
computational domain are 13H and 17.3H, respectively.

The incompressible steady RANS solver is employed
for aerodynamic calculation. The second-order upwind
scheme is adopted for convection term and second-order
central difference scheme for viscous term. The k-w SST
model is used for turbulence closure. The boundary con-
ditions of the numerical simulations are consistent with
wind tunnel test. The velocity inlet condition with the
incoming flow of 60m/s is employed for the inlet bound-
ary. The outlet boundary is set with a zero-pressure out-
let. The lateral sides, top, ground, roadbed and track of
the computational domain are non-slip walls.

The Cartesian grids are used for spatial discretization
through the commercial software STAR-CCM+ 13.04.
Prism layer grids are arranged along the train body, track,
and ground. To reduce the amount of grids in the bound-
ary layer area, the standard wall function is adopted, so
that the value of y+ for the height of the first cell near
the wall can be kept around 30–50. To better capture the
flow details around the train, several refined regions are
placed, such as the irregular areas of the train body, the
bottom space of the train, and the wake field, as shown in
Figure 17. The minimum grid size of the refined zone is
12mm, and the total amount of grids is approximately 68
million.

To validate the rationality of meshing and investigate
the influence of the grid size on the numerical results,
coarse mesh and fine mesh are both generated for model
TEST1, as shown in Table 4. Among them, the configu-
ration of the fine mesh is consistent with Figure 17.

Aerodynamic drag (Li et al., 2021) is nondimension-
alized as follows,

Cd = Fd/0.5ρV2S (7)

where Fd is the aerodynamic drag, ρ is air density, S
is the maximum cross-section area of the train, and V
is the speed of the train, whereas for wind tunnel test,
V represents the speed of incoming flow. To ensure the
comparability of the data, this paper takes the value of S
as 0.175 m2.

Aerodynamic force of the model train was obtained
through steady methods for wind tunnel test, therefore
time-averaged value is adopted from numerical simula-
tions. EN 14067-6-2018(EN, 2010) requires that when
the same standard model is tested in different wind tun-
nels or at different times in the same wind tunnel, the
average error of the test results should be less than 10%,
and the maximum error should be less than 15%.

TEST2 model was tested in 2014 and 2019 respec-
tively in the 8m× 6mwind tunnel inMianyang, Sichuan
Province, China as shown in Table 2. The test error
for aerodynamic drag is 1.92%, meeting the accuracy
requirement of 14067-6-2018(EN, 2010). The aerody-
namic drag coefficients of the three-carriage train model
corresponding to the wind tunnel test and the two mesh-
ing methods are given in Table 5. It can be seen from
Table 2 that the aerodynamic drag coefficient of thewhole
train calculated by the coarse mesh is obviously too large,
while the aerodynamic drag coefficients of the four head
shapes calculated by the fine grid are basically consistent
with the wind tunnel data. The prediction error of TEST2
is the largest, but only with the value of 1.2%, which still
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Figure 16. Computational domain.

Figure 17. The spatial grids and local surface mesh.

meets the accuracy requirement of engineering applica-
tions. Consequently, the fine mesh configuration will be
adopted for further numerical simulations.

3.2. Design space

The streamlined shape of the high-speed train is designed
variously to adapt to different operating conditions. In
order to cover as many topologic types of streamlined
shapes as possible, all the design variables in Table 3 are
used to construct the rapid prediction model. To facil-
itate the determination of the design space, the head
length is taken as the characteristic length for the three-
dimensional shape. The head length after scaling is 1.
Thus, the design space is scaled down to the space of unit
1. The scaling formulas of design parameters are shown
below:

x′
ij = xij

L
(8)

y′
ij = yij

L
(9)

z′
ij = zij

L
(10)

where L is the head length.
The design variables of the parametric design of high-

speed train are coordinates of the control points on the
control profiles. Along with the change of the cross-
sectional shape, the positions of each control point will
move correspondingly. However, if the design space of
each design variable adopts the absolute coordinate value,
the curvature of the control profile could easily vary too
much or even interfere with each other. Therefore, this

Table 6. Design space of benchmark variables.

Benchmark variables L W/2 H

Value range/m [0.2,1.75] [0.1,0.1875] [0.2,0.375]
Actual size/m [2.4,21] [1.2,2.25] [2.4,4.5]

study adopts the relative coordinate value to obtain the
design space.

Head length L, body widthW and body height H are
selected as reference lengths. Among them, L andH cor-
respond to the design variable x26 and z15, while W has
no corresponding design variable. Design space of these
three variables is determined using absolute coordinate
value, through appropriately expanding the value range
of the three benchmark variables on the basis of the actual
size of the existing high-speed trains, as shown in Table 6.

Design space of other variables takes the proportional
values of these three benchmark variables. Among them,
L is the benchmark parameter for x-coordinate of design
variables,W/2 for y-coordinate andH for z-coordinates.
The design space of each design variable is shown in
Table 7.

3.3. Support vectormachinesmodel

Support Vector Machines (SVM) model (Vapnik, 1998)
benefits from good generalization ability, nonlinear pro-
cessing ability and high dimensional processing ability.
SVM takes training error as the constraint condition
and confidence range minimization as the optimization
objective to solve a convex quadratic optimization prob-
lem with linear constraints. For nonlinear regression
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Table 7. Design space.

Parameter
Value
range Parameter

Value
range Parameter

Value
range Parameter

Value
range

y11 [0.5,1.0] x23 [0.2,0.4] z32 [0.3,0.5] y44 [0.4,1.2]
y12 [0.5,1.2] z23 [0.1,0.7] x33 [−0.1,0.2] x45 [0.3,1.0]
z12 [0.05,0.3] x24 [0.4,0.6] z33 [0.5,0.8] x52 [0.0,0.2]
y13 [0.6,1.5] z24 [0.2,1.0] x34 [−0.1,0.2] y52 [0.05,0.4]
z13 [0.3,0.85] x25 [0.6,0.9] z34 [0.8,1.0] x53 [0.2,0.5]
y14 [0.6,1.5] z25 [0.8,1.0] x42 [0.0,0.2] y53 [0.1,1.0]
z14 [0.85,1.0] x26 [0.2,1.75] y42 [0.05,0.4] x54 [0.5,1.0]
z15 [0.2,0.375] x31 [−0.1,0.2] x43 [0.2,0.5] y54 [0.4,1.2]
x22 [0.0,0.2] z31 [0.1,0.3] y43 [0.1,0.8] x55 [0.3,1.0]
z22 [0.05,0.5] x32 [−0.1,0.2] x44 [0.5,1.0]

problem, SVM first conducts a nonlinear mapping to
map the vector to a high-dimensional space, and then
performs linear regression in the feature space, so as to
achieve the effect of nonlinear regression in the original
space. In order to solve the problem that it is difficult
to directly calculate the optimal hyperplane in the fea-
ture space due to the rapid increase of dimensions in
the process of mapping from low-dimensional space to
high-dimensional feature space, SVM introduces kernel
function to transform the problem into calculation in the
input space.

This study adopts the algorithm ε-TSVR (ε-twin sup-
port vector regression) proposed by Shao et al. (2013)
compared with standard SVM algorithm, ε-TSVR owns
higher prediction ability and requires less training time.
For nonlinear regression problems, the original problems
of ε-TSVR algorithm are described as below:

min
u1,b1,ξ

1
2
c3(uT1u1 + b21) + 1

2ξ
Tξ∗ + c1eTξ ,

s.t.Y − (K(A,AT)u1 + eb1 ≥ −ε1e − ξ , ξ ≥ 0,

Y − (K(A,AT)u1 + eb1 = ξ∗

(14)

min
u2,b2,η

1
2
c4(uT2 u2 + b22) + 1

2η
Tη∗ + c2eTη,

s.t.(K(A,AT)u1 + eb1) − Y ≥ −ε2e − η, η ≥ 0,

(K(A,AT)u2 + eb2) − Y = η∗

(15)

Where c1, c2, c3, c4, ε1 and ε2 are the coefficients greater
than 0; u1 and u2 are real vectors; b1and b2 are real coef-
ficients; ξ , ξ∗, η and η∗ are relaxation vectors; K(A,AT)

is the kernel function which can have many expressions.
TheGaussian kernel function is adopted, as shown below,
where σ is a coefficient called width factor:

exp
(

− 1
2σ 2 ||x − xi||2

)
(16)

For the problem withm dimensions and n training sam-
ples, the corresponding A is an m× n matrix, where

Ai is the ith training sample. Y = (y1, y2, . . . , ym) is the
response value of the training samples. e is unit vector. By
constructing Lagrange function andusingKarush-Kuhn-
Tucker complementary condition, the dual problem of
formulas (14) and (15) can be obtained respectively, as
shown in formula (17) and (18). Specific derivation can
be found in literature [15].

max
α

−1
2
αTH(HTH + c3I)−1HTαT

−(eTε1 + YT)α + YTH(HTH + c3I)−1HTα

(17)

s.t.0 ≤ α ≤ c1e. (18)

where

H = [K(A,AT)e] (19)

v1 = (HTH + c3I)−1HT(Y − α) (20)

v2 = (HTH + c4I)−1HT(Y + γ ) (21)

where v1 = [uT1 b1]
T ,v2 = [uT2 b2]

T . By solving formula
(17) and (18), u1, u2, b1 and b2 can be derived, and
then the predicted value of SVM model can be obtained
through formula (22).

f (x) = 1
2
(f1(x) + f2(x))

= 1
2
(uT1 + uT2 )K(A, x) + 1

2
(b1 + b2) (22)

After determining the training sample points, the free
coefficients of the SVM model are c1, c2, c3,c4, ε1, ε2
and σ , which affect significantly on the generalization
ability of SVM model. However, there is no theoretical
basis for rigorous calculation of these coefficients. The
cross validationmethod and particle swarmoptimization
algorithm are combined herein to determine these free
coefficients, and to simplify this problem, we set c1 = c2,
c3 = c4. Therefore, only five coefficients need to be deter-
mined. For a set of given free coefficients, it is necessary
to solve convex quadratic optimization problems (17)
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Figure 18. Construction flow chart of the SVMmodel.

and (18) twice. Shao et al. (2013) introduced the over-
relaxation iteration method, which is also adopted when
solving (17) and (18), to improve the training efficiency
of the model.

Figure 18 shows the flow chart of optimizing free
coefficients of the SVM model. The whole process is as
follows:

1) For a given training sample set, determine the num-
ber of sampling groups, randomly group each train-
ing sample, and ensure that the number of training
samples in each group is the same.

2) Determine the initial coefficients of PSO, such as
the number of particle swarms, the number of iter-
ations. The number of particles and the number of
iterations have a great influence on the optimization
efficiency, and should neither be too large nor too
small.

3) Select a group of training samples sequentially as
the test samples and use the other groups of train-
ing samples to construct the sub-SVM model, then
obtain the prediction error of the test samples. Sub-
sequently, the fitness function of the PSO algorithm
can be calculated using formula (23).

fit = 1
l

l∑
i=1

%RMSEi (23)

where l is the number of sampling groups; %RMSEi
is the prediction error of the ith test group,which gets
the expression as:

%RMSE = 100

√√√√ 1
ns

ns∑
i=1

(yi − y(p)
i )

2
/
1
ns

ns∑
i=1

yi

(24)

In equation (24), yi is the true value, y
(p)
i is the pre-

dicted value of the SVMmodel, and ns is the number
of test samples.

(1) Obtain the optimal value of free coefficients after
iteration. When using SVM to predict the target
value, the average of the predicted values of each
sub-SVMmodel is used as the final predicted value.

4. Results and discussion

When carrying out aerodynamic shape design of high-
speed trains, a variety of aerodynamic shapes are gener-
ally designed, and then through the comparative analysis
of numerical simulations, some shapes with better aero-
dynamic performance are selected for wind tunnel tests.
Therefore, a large amount of numerical data and wind
tunnel test data will be generated during the research
and development of high-speed trains, and these data can
be used as initial training data for the rapid prediction
model. Comparedwith numerical simulations, wind tun-
nel tests suffer from higher cost and longer experimental
period. Numerical simulations have become the most
important analysis method in aerodynamic design of
high-speed trains, and the corresponding data formed is
far more than that of wind tunnel tests. However, affected
by the accuracy of numerical simulations, wind tunnel
test is the most important method to validate numerical
simulations, and it is also indispensable in engineering
design. When constructing the repaid prediction model,
data from numerical simulations and wind tunnel tests
are both adopted as training data, and the former is far
more than the latter.

The effectiveness of the rapid prediction model is val-
idated by taking the aerodynamic drag coefficient as the
objective in current study. The distribution of the drag
coefficient of the initial sample set is shown in Figure 19.
The design variables for all the samples are the same,
which are the same as those in Table 1. The design objec-
tive is obtained ether from numerical simulations, as
the black dots show, or from wind tunnel tests, as the
blue dots show in Figure 19. It can be seen that sam-
ples from the numerical simulations are uniformly dis-
tributed while that fromwind tunnel tests are distributed
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Figure 19. Target value distribution of the sample set.

Figure 20. Convergence curve of fitness.

in area with larger value ranging from 0.32 to 0.39, which
is because samples tested in wind tunnels are designed
specifically under engineering design requirements with
plenty engineering constraints such as vehicle gauge, cab
space, and head length.

As observed in Figure 19, two samples from numeri-
cal simulations and two samples from wind tunnel tests
are randomly selected from the initial sample set as test
samples, which are marked with the diamond shape.
The remaining 38 numerical samples are taken as ini-
tial training samples. They are divided into 38 groups,
each with 1 sample point. The formula (23) is adopted
as the objective function, and the SVM model is trained
through the cross-validation method. The training pro-
cess is shown in Figure 18. The PSO algorithm is adopted
for the training process. The basic setting of PSO for
the construction of the SVM model is as follows: the
number of particle swarms is 200, the number of itera-
tions is 500, the acceleration factor value is 2, and the
inertia factor gradually changes from 1.2 to 0.8 as the
number of iterations increases; themaximumflight speed
of the particles is 0.1. The convergence curve of fitness
with the number of iterations is shown in Figure 20, in
which it can be observed the average calculation error
can rapidly converge to a stable value. When applying
the rapid predictionmodel into engineering applications,
the iterations can be properly reduced to improve the
training efficiency.

In order to analyze the effect of training set on the pre-
diction accuracy of SVM, taking two wind tunnel test
samples as a group, a total of eight groups of samples
were divided. These samples were added to the training

Figure 21. Prediction error of SVM.

set group by group. During this process, we still take 1
sample as 1 group and use the cross-validationmethod to
train the SVM model, and the parameter setting of PSO
remains unchanged. The average prediction error of the
SVM model in the design space and the average predic-
tion error of the test samples are shown in Figure 21. It
can be observed that as the number of training samples
increase, the average prediction error in the design space
and the average prediction error of the test samples both
gradually decrease. After adding points for 9 times, the
average prediction error in the design space is reduced to
3.46%, and the average prediction error of the test sam-
ples is reduced to 2.83%, which aremuch smaller than the
test error requirements of EN 14067-6-2018(EN, 2010),
indicating the prediction accuracy of the proposedmodel
will gradually improve as the number of training samples
increases. It’s worth mentioning that with the continu-
ous development of high-speed trains, a large number of
numerical calculations as well as wind tunnel test data
will be accumulated in the engineering design process.
Combining these data with the rapid prediction model
will offer a promising alternative for accurate evaluation
of aerodynamic forces of high-speed trains.

Table 8 shows the comparison of results of 4 test sam-
ples calculated by the rapid prediction model, wind tun-
nel tests and numerical simulations. The relative error
of T1 and T2 refers to the error between the rapid pre-
diction results and the CFD simulation results while the
relative error of T3 and T4 refers to the error between the
rapid prediction results and the wind tunnel test results.
Note that the maximum relative error is 4.49%, and the
minimum is 0.96%, both less than 5%, which is 50% less
than the average error required by EN 14067-6-2018(EN,
2010). Compared with the wind tunnel test results, the
relative error of CFD calculation of T4 is 3.12%, which
is equivalent to the CFD calculation error of Gao et al.
(2019).

Taking the wind tunnel test data as benchmark data,
there is little difference between CFD calculation error
and that of rapid prediction model, indicating that
when the training samples reaches a certain number, the
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Table 8. Comparison of results from three different approaches.

T1 T2 T3 T4

Wind Tunnel Test / / 0.3394 0.3650
Numerical Simulation 0.2783 0.3163 0.3375 0.3536
Rapid Prediction 0.2849 0.3021 0.3485 0.3685
Relative Error 2.37% 4.49% 2.61% 0.96%

accuracy of the rapid prediction model is basically the
same as the CFD simulation.

Apart from the prediction accuracy, the time cost is
another important issue that needs to be paid attention
to. Current study adopts the three-carriage high-speed
train as the train model. To obtain the aerodynamic drag
coefficient of one training sample, the model preparation
time for CFD is about 4 h, and the simulation time is 6 h
with 128CPUs used for parallel computation. As forwind
tunnel test, to obtain the aerodynamic drag coefficient of
1 training sample, 360 h needs to be spent on designing
and processing wind tunnel test model and 3 h needs to
be spent on experimental preparation and testing. How-
ever, as long as the construction of the rapid prediction
model has been completed, when calculating the aerody-
namic force of high-speed train, only the surfacemeshing
of the head shape is required, which costs only 0.5 h,
and the aerodynamic prediction is at practically no addi-
tional cost. Therefore, compared with numerical simu-
lation and wind tunnel test, the rapid prediction model
proposed in this study can significantly increase the pre-
diction efficiency by 90% without reducing prediction
accuracy.

It should be emphasizing that with regard to the pro-
posed rapid prediction model, we can make full use of
both the existing and the upcoming experimental and
numerical data. Consequently, the sampling data set will
be enriched continuously, to make the model more and
more accurate.

5. Conclusion

The emphasis of this study is to present a framework of
data-driven rapid prediction model and demonstrate its
promising potential in predicting aerodynamic forces of
high-speed trains. Using the proposed model, the pre-
diction efficiency and accuracy could be both achieved.
As demonstrated in this work, we adopted the idea of
step-by-step modeling, and proposed a general three-
dimensional parameterization method for head shape.
Combining with the inverse design concept, the rapid
extraction of the values of the design variables were real-
ized. Using data from numerical simulations and wind
tunnel tests as the initial training data, and adopting
the SVM model to construct a nonlinear implicit func-
tion between design variables and aerodynamic forces of

high-speed train, the data-driven rapid prediction model
was finally proposed. Taking aerodynamic drag as the
prediction objective, the effectiveness of the model was
verified. When the number of training samples reaches
a certain amount, the accuracy of the rapid prediction
model can be basically the same as numerical simula-
tions. Remarkably, although only aerodynamic drag is
used to verify the effectiveness of the prediction model,
by changing the objective of the training samples, it
can be directly applied to the rapid prediction of other
aerodynamic indicators such as aerodynamic lift, aero-
dynamic noise, and tunnel pressure waves.

The proposed data-driven rapid prediction model
can be used for performance evaluation of engineer-
ing design and aerodynamic optimization of high-speed
trains. Compared with wind tunnel tests and numeri-
cal simulations, the prediction efficiency is improved by
more than 90%, which significantly shortens the eval-
uation period of the aerodynamic force of high-speed
trains. More notably, with the continuous enrichment of
wind tunnel test data and numerical simulation data, the
prediction accuracy of the rapid predictionmodel will be
continuously improved, which makes this method more
promising and suitable for companies and research insti-
tutions that have long been engaged in the development
and design of high-speed trains to evaluate and optimize
the aerodynamic force of high-speed trains.

One possible limitation of the current study is that
compared with wind tunnel tests and numerical simu-
lations, the data-driven rapid prediction model can only
obtain the aerodynamic force of the high-speed train and
is difficult to obtain the flow details around high-speed
trains. Besides, with the change in the shape of wind-
shields, pantographs and bogies, it is necessary to take
more detailed consideration about the influences of these
factors on the accuracy of the rapid prediction model,
which is a subject that we will further work on. Continu-
ously enriching the information of training samples and
continuously optimizing the modeling ideas of the rapid
prediction model will also be the future target to be car-
ried out. Meanwhile, considering different aerodynamic
loads such as aerodynamic lift and tunnel pressure wave,
future work will be exerted to extend the rapid prediction
model to more application scenarios.
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