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Abstract In this study, a theoretical method is proposed to solve shock relations coupled with

chemical equilibrium. Not only shock waves in dissociated flows but also detonation waves in com-

bustive mixtures can be solved. The global iterative solving process is specially designed to mimic

the physical and chemical process in reactive shock waves to ensure good stability and fast conver-

gence in the proposed method. Within each global step, the single-variable equations of normal and

oblique shock relations are derived and solved with the Newton iteration method to reduce the com-

plexity of the problems, and the minimization of free energy method of NASA (National Aeronau-

tics and Space Administration) is adopted to solve equilibrium compositions. It is demonstrated

that the convergent process is stable and very close to the real chemical-kinetic process, and high

accuracy is achieved in the solutions of normal and oblique reactive shock waves. Moreover, the

proposed theoretical method has also been applied to many problems associated with reactive

shocks, including the stability of oblique detonation wave, bow detonation over a sphere, and shock

reflection in dissociated air. The great importance of using chemical equilibrium to theoretically pre-

dict the theoretical range of the wedge angle for a standing oblique detonation wave (the standing

window of the oblique detonation wave), the stand-off distance of bow detonation wave and the

transition criterion of shock reflection in dissociated air with high accuracy have been addressed.
� 2021 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Shock waves, including normal shock waves and oblique shock
waves, are common physical phenomena in gas dynamics, and

also basic flow structures in supersonic gas flows. In some cir-
cumstances, chemical reactions will occur after the compres-
sion of a shock wave. Moreover, chemical reactions behind a

shock always have significant effects on the propagation of
the shock wave. For example, when a shock wave propagates
in a premixed combustible gas, such as the hydrogen-air mix-
ture, violent and fast combustion will be induced by the high-

temperature and high-pressure environment just behind the
shock, and the shock will be accelerated in turn by the chem-
ical heat release. Therefore, a shock wave strongly coupled

with combustion, called a detonation wave, is formed and
propagates in a self-sustaining way with a very high speed.1–3

Research on the detonation phenomenon is not only a scien-

tific issue, but also the base of development of the high effi-
ciency propulsion systems using detonation waves for air-
breathing hypersonic aircrafts.4–6

Coupling of shock waves and chemical reactions is also an
important mechanism in high-temperature real gas effects of
air and carbon dioxide, when the spacecraft return to the
earth7 and landers enter the Mars atmosphere,8 respectively.

Oxygen and nitrogen molecules in air will be dissociated into
atoms or recombined into oxynitrides by compression of the
strong shock wave formed ahead of the blunt body flying at

an extremely high speed. Thereafter, due to the change of
physical properties across the shock and the thermal effects
of chemical reactions, shock relations will become quite differ-

ent from the classical ones derived from the ideal-gas the-
ory.9,10 As a result, the aerodynamic performances of
spacecraft will be deviated from the predicted values in an

ideal-gas environment, which is important for the control
and safety of spacecraft.11,12

Researches of shock waves coupling with chemical reac-
tions have been carried out by experiments13,14 and numerical

simulations.15,16 However, despite the complexity of the prob-
lems, theoretical studies still play an important role in under-
standing the inherent mechanism, and in predicting shock

phenomena efficiently with a satisfactory accuracy, such as
shock reflections, shock interactions, etc. Problems of shock
waves coupled with chemical reactions can be solved mainly

by three approaches according to different physical hypotheses
and approximations. The most convenient approach is to
assume that mixture compositions and specific heat ratios
before and behind the shock wave are respectively known,

and the mixtures before and behind the shock wave can be
dealt with the ideal-gas theory.1,9 This method is simple and
can be solved analytically. However, it is not accurate enough

based on the following facts. Firstly, due to the excitation of
vibrational degrees of freedom under high-temperature condi-
tions behind the shock wave, many physical properties of the

mixture depend on the temperature. As a result, they are
unknown before solving. Secondly, the heat effects are also
unknown before solving due to forward and backward reac-

tions, which are dependent on the pressure and temperature
behind the shock. Thus, the choices of the values of fixed speci-
fic heat ratio and reaction heat are so subjective that the solu-
tion of shock wave coupled with chemical reactions by this
method is not reliable enough in the engineering applications,
when high precision is needed.

Another approach is the closest to the true physics by solv-

ing chemical kinetics (for example, Refs.17,18). Assuming finite
chemical reaction rates, the chemical non-equilibrium pro-
cesses are induced by the high-temperature conditions behind

the shock wave, which results in non-uniform flow properties
behind the shock. The mixture properties are determined by
the local mixture composition and temperature. Although it

is reasonable to adopt this chemical non-equilibrium method
to solve the problem, it is quite complex and difficult to
achieve fast solution, especially when solving the oblique shock
waves. Moreover, solution using this chemical non-equilibrium

method depends on the time scale of the problem (i.e., the ratio
of characteristic chemical reaction time to the characteristic
flow time) and it is not general enough. Nevertheless, as one

ultimate limit of chemical non-equilibrium processes, the
assumption of infinite chemical kinetics is widely used in previ-
ous theoretical analyses.19 Hence, the third approach is to

assume infinite chemical kinetics and solve the reactive shock
waves using chemical equilibrium. In many cases, such as gas
detonation, the time scale of chemical reaction is always far

smaller than that of flow, resulting in the reasonable assump-
tion of chemical equilibrium. Further, the theoretical solution
of chemical equilibrium can be obtained easier, not as complex
as chemical non-equilibrium, and preserves the advantage of

fast solution.
In the past decades, NASA (National Aeronautics and

Space Administration) has developed a chemical equilibrium

computer program, CEA (Chemical Equilibrium with Applica-
tions), to calculate chemical equilibrium compositions and
properties of complex mixtures and it has been extended to

many applications, including calculation of theoretical rocket
performances, Chapman-Jouguet detonation parameters,
shock tube parameters and so on.20 Another GUI (Graphical

User Interface) program used the same method of NASA,
called Gaseq, has been widely used by engineers.21 However,
the CEA program was initially designed to calculate the theo-
retical performances of the rocket engines. Only are normal

shock waves coupled with equilibrium chemical reactions
available. No solution of oblique shock waves is provided, that
are also common and important in engineering and more com-

plex. Last but not least, the CEA solution is obtained using of
the multidimensional Newton iteration method that solves
matrix equations. Hence, the derivatives of gas state variables

should be derived and calculated under the chemical equilib-
rium assumption. The solution still involves rather complex
iteration processes and its convergence is greatly dependent
on the choice of the set of initial values.

In this study, a two-steps iterative theoretical method, using
the single-variable Newton method to solve shock relations
and the minimization of free energy method of NASA to solve

equilibrium compositions, is proposed, which mimics the real
reacting process and is therefore robust in convergence. Based
on this method, several applications are discussed, including

the calculation of detonation polar and the theoretical range
of the wedge angle for a standing oblique detonation wave
(the standing window of the oblique detonation wave),

standing-off distance prediction for a bow detonation wave,
and prediction of transition criteria of shock reflection in dis-
sociated air.
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2. Theoretical method and mathematical formulation

2.1. Physical problems and hypotheses

A shock wave, either a normal shock wave (Fig. 1(a)) or an
oblique shock wave (Fig. 1(b)), coupled with thermal equilib-

rium and chemical equilibrium in multi-species gas mixtures
is theoretically solved in this study. Notably in Fig. 1, p, T,
q and u represent the pressure, temperature, density and veloc-

ity of the gas mixture, respectively; vi is the molar fraction of
species i (i= 1, 2, . . ., nsp, and nsp is the number of species con-
sidered in the mixture); h and b are the wedge angle and obli-
que shock angle, respectively; subscripts 1 and 2 represent the

flow states before and behind the shock wave, respectively; and
subscripts n and s denote the velocity components normal to
and tangential to the oblique shock front, respectively. For

example, for the detonation wave in hydrogen-air mixture,
11 species (H2, H, O2, O, OH, HO2, H2O2, H2O, N, N2 and
NO) can be considered, and for the strong shock in air, 6 spe-

cies (N2, O2, Ar, NO, N and O) can be considered. All param-
eters before the shock wave (Zone 1), including temperature,
pressure, velocity and composition, are assumed to be known,
and those behind the shock wave (Zone 2) are to be solved.

For each species, the perfect-gas equation of state is still
satisfied. However, the gas is always not a calorically perfect
one, due to the excitation of vibration degrees of freedom

under high-temperature conditions behind the shock wave.
As a result, the enthalpy of each species is a nonlinear function
of temperature under the assumption of thermal equilibrium,

and accordingly the specific heat ratio is a function of temper-
ature as well.

Taking these into account, the 9-coefficient NASA polyno-

mial representations are used to evaluate the thermodynamic
properties of each species.22 The molar heat capacity at con-

stant pressure C0
pi Tð Þ, molar enthalpy H0

i Tð Þ and molar

entropy S0
i Tð Þ of species i at temperature T, are expressed as

follows:

C0
pi Tð Þ
Ru
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1
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1
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Fig. 1 Shock waves in mu
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where the superscript 0 refer to the standard state and Ru is the
universal gas constant. The 9 coefficients ai1 to ai7, bi1 and bi2
are available tabularly in Ref. 22. Notably, H0

i Tð Þ and S0
i Tð Þ

are the two thermodynamic characteristic functions, with
which other thermodynamic functions can be evaluated easily,

such as the molar Gibbs energy G0
i Tð Þ:

G0
i ðTÞ ¼ H0

i ðTÞ � T � S0
i ðTÞ ð4Þ

Then, the thermodynamic properties of the mixture per

mole can be calculated with the molar fraction of each species
vi by

X ¼
Xnsp
i¼1

viXi ð5Þ

where X is just a representative symbol (the same as the follow-

ing x) and it can be the molar heat capacity C0
p, the molar

enthalpy H0, the molar molecular weight M and so on. And
the gas constant of the mixture and the thermodynamic prop-

erties expressed in per mass, such as the specific enthalpy h, can
be calculated by

R ¼ Ru

M
; x ¼ X

M
ð6Þ
2.2. Solving strategy

The problem of shock wave coupled with chemical equilibrium
is complicated. The properties of the flow behind the shock

wave, such as temperature, pressure, and velocity, are decided
by the shock relations, while the shock relations are relative to
the compositions behind the shock and the heat release of
chemical reactions. Reversely, the equilibrium compositions

of the mixture and the thermal effects of chemical reactions
are dependent on temperature and pressure because of reversi-
ble reactions. Therefore, it is a problem with coupling of a

large number of variables, including equilibrium compositions,
temperature, pressure, velocity, etc.

To solve this problem, a physically reasonable and stable

solving process is proposed in this paper based on the follow-
ing physical facts. In the classical ZND (Zel’dovich–von Neu-
mann–Döring) structure of the detonation wave (Fig. 223), the
lti-species gas mixtures.



Fig. 3 Diagram of solving process.
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high-speed reactants are first compressed non-reactively by the
shock wave. Then behind the shock, reactions are induced
under the high-temperature and high-pressure conditions.

With the mixture reacting gradually, the reactants are con-
sumed, the products are produced, the temperature rises and
the pressure drops gradually until chemical equilibrium. The

reaction process is very fast and hence the reaction zone is very
thin in the detonation wave. That is, the detonation wave is
constituted by a non-reactive shock wave and a thin reaction

zone. Therefore, the flow properties at an arbitrary position
within the reaction zone are the medium solution of the deto-
nation wave, and the flow properties behind the reaction zone
are just the chemical equilibrium solution of the detonation

wave. The solving process proposed in this paper is trying to
mimic above chemical reaction process to obtain the equilib-
rium solution of shock wave coupled with chemical reaction,

as shown in Fig. 3. Notably, superscripts (k) and (*) denote
the kth global iteration value and the intermediate value in glo-
bal iteration step, respectively.

In the solving process, the flow properties and the compo-
sitions (of reactants) before the shock are known at the begin-
ning. At first, by assuming non-reactive, the compositions

behind the shock are the same as those before the shock. Then,
the iteration process begins. Step 1: the shock relations can be
calculated iteratively with known compositions before and
behind the shock and hence the temperature and pressure

behind the shock can be determined. Step 2: with specific tem-
perature and pressure, new compositions behind the shock can
be calculated using the minimization of free energy method of

NASA. With the new compositions of the mixture behind the
shock, a new iteration can be processed until convergence is
achieved.

In Fig. 3, the convergence criteria for the problem can be
chosen as following,

Error ¼ max
p

kþ1ð Þ
2

�p
kð Þ
2j j

p
kþ1ð Þ
2

;
T

kþ1ð Þ
2

�T
kð Þ
2j j

T
kþ1ð Þ
2

; v �ð Þ
i2 � v kð Þ

i2

��� ���� �
< 10�7

ð7Þ
Also presented in Fig. 3 is a relaxation treatment adopted in

the global iteration step, when updating the new compositions
behind the shock, to avoid undesired oscillations in the solving
Fig. 2 ZND structure of detonation wave in hydrogen-air

mixture (before shock: 0.42H2 + 0.21O2 + 0.79N2, T1 = 300 K,

p1 = 1 atm (1 atm = 101325 Pa), u1 = 2500 m/s), calculated by a

detailed chemical reaction mechanism.23
process and to ensure stability and convergence. k is the relax-
ation factor and can be set as 0.4 empirically and conserva-

tively. A brief discussion on the effects of k value on the
convergence process will be given later in Section 2.6.1. It is
easy to know that above solving process cannot simulate the
exact ZND structure, but it is very close to the ZND structure

(this will be discussed detailedly in Section 2.6). Notably, it is
not necessary to reproduce the exact ZND structure, because
only the equilibrium solution of the shock wave is pursued.

Thus, the physical bases of the solving process in Fig. 3 ensure
that the iteration process is stable and easy to achieve the solu-
tion convergence.

2.3. Normal shock relations with known compositions

In the solving process of the problem, the shock relations with

known mixture compositions before and behind the shock
wave need to be calculated in each global iteration step,
namely the Step 1 in Fig. 3. In this section, the method for cal-
culation of normal shock relations is discussed first. All param-

eters of the mixture before the normal shock wave and the
composition behind the shock wave are assumed to be known,
and other parameters behind the shock wave are to be



Fig. 4 An example of function f (u2) in solving process of normal

shock wave problem in hydrogen-air mixture (before shock:

0.42H2 + 0.21O2 + 0.79N2, T1 = 300 K, p1 = 1 atm,

u1 = 2500 m/s; behind shock: 0.42H2 + 0.21O2 + 0.79N2).
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determined, such as pressure, temperature and velocity (see
Fig. 1(a)).

As the compositions before and after the shock wave are

known, the gas constants of the mixtures R1 and R2 are known
as well. From the gas dynamic theory, the governing equations
for this normal shock wave problem can be expressed as

follow.
Continuity equation:

q1u1 ¼ q2u2 ð8Þ
Momentum equation:

p1 þ q1u
2
1 ¼ p2 þ q2u

2
2 ð9Þ

Energy equation:

h1 T1ð Þ þ 1

2
u21 ¼ h2 T2ð Þ þ 1

2
u22 ð10Þ

Equations of state:

p1 ¼ q1R1T1 ; p2 ¼ q2R2T2 ð11Þ
It is easy to know that in Eqs. (8)–(11), the unknown vari-

ables are q2, p2, T2 and u2. There are four unknown variables
and four equations, thus the problem is well posed. Notably,
from Eqs. (2) and (6), the specific enthalpy h(T) in Eq. (10)

is a nonlinear function of T. Hence, Eqs. (8)–(11) cannot be
solved analytically. A direct way to solve this equation set is
to use the multidimensional Newton iteration method. How-

ever, it is still complex to solve the matrix equation and its con-
vergence is closely dependent on the choice of the set of initial
values. Consequently, to simplify the problem, an effort is

made to reduce the order of the problem and to simplify the
Newton iteration process in this paper.

Dividing Eq. (9) by Eq. (8) yields,

p1
q1u1

þ u1 ¼ p2
q2u2

þ u2 ð12Þ

With the help of Eq. (11), Eq. (12) has the form,

R1T1

u1
þ u1 ¼ R2T2

u2
þ u2 ð13Þ

which leads to the expression of T2 by u2,

T2 u2ð Þ ¼ 1

R2

R1T1

u1
þ u1 � u2

� �
u2 ð14Þ

Then, Eq. (10) can be written into a function of u2, that is,

f u2ð Þ ¼ f u2;T2ð Þ ¼ h2 T2ð Þ þ 1

2
u22 � h1 T1ð Þ � 1

2
u21 ¼ 0 ð15Þ

As a result, the four governing equations have been reduced

into one equation f(u2) = 0 with only one independent variable
u2.As function f isnonlinear, the solutionof f(u2)=0canbeeasily
calculated by the single-variable Newton iteration method,

u2;kþ1 ¼ u2;k � f u2;kð Þ
f0 u2;kð Þ ð16Þ

where u2,k is the result of kth iteration. And f0 u2ð Þ is the deriva-
tive of u2, which can be calculated by the derivative method for

compound function with Eqs. (14) and (15),

dT2

du2
¼ 1

R2

R1T1

u1
þ u1 � 2u2

� �
f0 u2ð Þ ¼ cp2 T2ð Þ

R2
� R1T1

u1
þ u1 � 2u2

� �
þ u2

8><
>: ð17Þ
where cp2(T2) = dh2/dT2 is the specific heat of the mixture at

constant pressure behind the shock and it can be evaluated by
Eqs. (1), (5) and (6). When u2 has been solved, it is easily to
solve T2 by Eq. (14), q2 by Eq. (8), and p2 by Eq. (11) with

T2 and q2.
In order to show the advantage of the iteration method pro-

posed in this section, an example of the function f(u2) in the
solving process of the normal shock wave problem with known

composition behind the shock is shown in Fig. 4. The mixture
before the shock is the equivalent hydrogen-air mixture:
0.42H2 + 0.21O2 + 0.79N2, and the mixture behind the shock

is assume frozen (i.e., the Step 1 in the first iteration of Fig. 3 in
the corresponding equilibrium solution). And the flow param-
eters before the shock are T1 = 300 K, p1 = 1 atm,

u1 = 2500 m/s (Ma = 6.12). As illustrated in Fig. 4, the func-
tion f concaves downward and there are two roots (Points A
and B) for the equation f(u2) = 0. It is easy to know that Point
A is the exact solution of the normal shock wave problem and

Point B corresponds to the equilibrium state before the shock
that is meaningless. Therefore, it is intuitive to set the initial
iteration value near u2 = 0, such as u20 = 10 m/s. Then, the

solution can be quickly approached by the Newton iteration
process along the function f to Point A. As a result, the solving
process is stable and the convergence can be easily achieved

due to the good properties of the Newton iteration function f.
Consequently, the success in reducing the four-variable

problem of Eqs. (8)–(11) into one equation with only one inde-

pendent variable and the use of single-variable Newton itera-
tion method, make the solving process of the normal shock
wave problem with thermal equilibrium easy and reliable.

2.4. Oblique shock relations with known compositions

The same treatment as in Section 2.3 can be used to reduce the
order of the oblique shock wave problem with known mixture

compositions before and behind the shock wave, and to sim-
plify and stabilize the solving process. Again, all parameters
of the mixture before the oblique shock wave and the compo-



Fig. 5 An example of function g(b) in solving process of oblique

shock wave problem in hydrogen-air mixture (h = 30�; before
shock: 0.42H2 + 0.21O2 + 0.79N2, T1 = 300 K, p1 = 0.4 atm,

u1 = 3270 m/s; behind shock: 0.42H2 + 0.21O2 + 0.79N2).
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sition behind the shock wave are assumed to be known as well
as the wedge angle h, and other parameters behind the shock
wave are to be determined, such as pressure, temperature

and velocity (see Fig. 1(b)). From the gas dynamic theory,
the governing equations for this oblique shock wave problem
can be expressed as follow.

Continuity equation:

q1u1n ¼ q2u2n ð18Þ

Momentum equations:

p1 þ q1u
2
1n ¼ p2 þ q2u

2
2n ð19Þ

u1s ¼ u2s ð20Þ
Energy equation:

h1 T1ð Þ þ 1

2
u21n ¼ h2 T2ð Þ þ 1

2
u22n ð21Þ

Geometrical relationship:

u1n ¼ u1sinb ; u2n ¼ u2sin b� hð Þ ð22Þ

It is easy to know that there are five unknown variables for

this problem: q2, p2, T2, u2 and b, and the set of equations is
well posed as well. To reduce the order of this oblique shock
wave problem, the corresponding single-variable Newton iter-

ation formulas are derived as follows, rather than using the
complicated multidimensional iteration method.

Dividing Eq. (19) by Eq. (18) yields,

p1
q1u1n

þ u1n ¼ p2
q2u2n

þ u2n ð23Þ

With the help of Eqs. (11) and (22), Eq. (23) has the form,

R1T1

u1sinb
þ u1sinb ¼ R2T2

u2n
þ u2n ð24Þ

Accordingly, T2 can be solved as a function of b and u2n,

T2 b; u2nð Þ ¼ 1

R2

R1T1

u1sinb
þ u1sinb� u2n

� �
� u2n ð25Þ

From Eqs. (20) and (22), an expression of u2n as a function
of b can be derived,

u2n bð Þ ¼ u1cosbtan b� hð Þ ð26Þ
Finally, Eq. (21) can be written into a function of b with the

help of Eqs. (25) and (26), that is,

g bð Þ ¼ g b; u2n;T2ð Þ
¼ h2 T2ð Þ þ 1

2
u22n � h1 T1ð Þ þ 1

2
u21sin

2b ¼ 0
ð27Þ

As a result, a single-variable nonlinear equation, g(b) = 0,
is obtained and can be easily solved by the Newton iteration

method, as

bkþ1 ¼ bk �
g bkð Þ
g0 bkð Þ ð28Þ

where bk is the result of the kth iteration. To complete the

solving process, the derivative of g can be easily derived by
the derivative method for a compound function with
Eqs. (25)–(27),
g0 bð Þ ¼ dg
db ¼ @g

@b þ @g
@u2n

� du2n
db þ @g

@T2
� @T2

@b þ @T2

@u2n
� du2n

db

� �
@g
@b ¼ �u21sinbcosb
@g
@u2n

¼ u2n

@g
@T2

¼ dh2 T2ð Þ
dT2

¼ cp2 T2ð Þ
du2n
db ¼ u1

cosb
cos2 b�hð Þ � sinbtan b� hð Þ
h i

@T2

@b ¼ u2n
R2

u1cosb� R1T1

u1
� cosb
sin2b

� �
@T2

@u2n
¼ 1

R2

R1T1

u1sinb
þ u1sinb� 2u2n

� �

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð29Þ

After b has been solved by Eqs. (25)–(29), the solutions of
u2n and u2 can be obtained by Eq. (26), q2 by Eq. (18), T2 by

Eq. (25), and p2 by Eq. (11) with T2 and q2. Apparently, the
derivation process is similar to that in Section 2.3, but more
compound functions are involved.

Similarly, an example of the function g(b) in the solving
process of the oblique shock wave problem with known com-
position behind the oblique shock is shown in Fig. 5. The mix-

ture before the shock is the equivalent hydrogen-air mixture:
0.42H2 + 0.21O2 + 0.79N2, and the mixture behind the shock
is assume frozen again (i.e., the Step 1 in the first iteration of
Fig. 3 in the corresponding equilibrium solution). The flow

parameters before the shock are T1 = 300 K, p1 = 0.4 atm,
u1 = 3270 m/s (Ma = 8), and the wedge angle is h = 30�.
As depicted in Fig. 5, the function g concaves downward again

and two roots (Points A and B) of the equation g(b) = 0 are
found. The Point A is the weak solution of oblique shock
wave, while the Point B is the strong solution. Generally, the

weak solution, namely the Point A, is the natural oblique
shock wave solution. Moreover, the shock angle b is always
larger than the wedge angle h. Thus, it is intuitive to set the ini-
tial iteration value b0 near h, such as b0 = h + 0.1�. The prob-
lem can be solved along the function g to Point A thereafter.
The solving process is stable again and the convergence can
be easily achieved due to the good properties of the Newton

iteration function g. Notably, the strong solution of oblique
shock wave may need to be solved in some specific problems,
such as the asymmetrical Mach reflection. In this case, the
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initial iteration value of b0 can be set near 90�, and then the
problem can be solved along the function curve of g to Point B.

2.5. Calculation of equilibrium compositions at specific p and T

Another key step in each global iteration step in the solving
process of the problem is to calculate the equilibrium compo-

sitions at a specified pressure and temperature, namely the Step
2 in Fig. 3. Given the initial compositions of the mixture (the
reactants), the equilibrium compositions need to be determined

under specified temperature and pressure. The minimization of
free energy method of NASA20 is adopted in this paper.

The Gibbs free energy G of the mixture at pressure p and

temperature T is given by,

G

RuT
¼
Xnsp
i¼1

xiG
0
i

RuT
þ xiln

xiP
xi

þ xilnp

� �
ð30Þ

where xi is the equilibrium number of moles of species i (i = 1,
2, . . ., nsp). When the mixture is at chemical equilibrium state,
G/(RuT) is at a minimum, subject to the condition of the ele-

mental composition being fixed, namely,

Xnsp
i¼1

aijxi � bj ¼ 0 for j ¼ 1; 2; � � � ; nel ð31Þ

where bj is the total moles of atoms of element j, which is set by
the reactant compositions. The aij is the number of atoms of

element j in species i, and nel is the number of elements
involved in the mixture. To solve this constrained minimiza-
tion problem, the Lagrangian multipliers kj (j = 1, 2, . . ., nel)
are introduced and a function F is defined as,

F ¼
Xnsp
i¼1

xiG
0
i

RuT
þ xiln

xiP
xi

þ xilnp

� �
�
Xnel
j¼1

kj

�
Xnsp
i¼1

aijxi � bj
	 
 ð32Þ

Then the constrained minimization problem (Eqs. (30)–
(31)) is reduced to the minimization problem of Eq. (32), which

leads to @F/@xi = 0 for all i from 1 to nsp, namely,

@F

@xi

¼ G0
i

RuT
þ ln

xiP
xi

þ lnp�
Xnel
j¼1

kjaij

for i ¼ 1; 2; � � � ; nsp ð33Þ
To solve these nonlinear equations of xi, an iteration

method is used. Let yi be an estimate of xi, @F/@xi can be eval-
uated approximately by the first order Taylor expansion of Eq.

(33) around yi,

@F
@xi

� di
yi
�Pnel

j¼1

kjaij þ xi
yi
�
P

xiP
yi

for i ¼ 1; 2; � � � ; nsp

di � yi
G0
i

RuT
þ ln yiP

yi
þ lnp

� �
8>>><
>>>:

ð34Þ

By setting @F/@xi = 0 in Eq. (34) for the minimum of F,
one can solve,

xi ¼ �di þ yi

P
xiP
yi
þ
Xnel
j¼1

kjaij

 !
for i ¼ 1; 2; � � � ; nsp ð35Þ

where the unknowns
P

xi/
P

yi and kj are the solutions of the
following linear equations,
Pnel
j¼1

kj
Pnsp
i¼1

yiaij ¼
Pnsp
i¼1

di

Pnsp
i¼1

�aijdi
	 
þPxiP

yi

Pnsp
i¼1

yiaijþ

Pnel
k¼1

kk
Pnsp
i¼1

aikaijyi � bj ¼ 0 for j ¼ 1; 2; � � � ; nel

8>>>>>>>><
>>>>>>>>:

ð36Þ

Notably, Eq. (36) can be easily derived from the summation

of Eq. (35) or substituting Eq. (35) into Eq. (31). When xi in
Eq. (35) is solved, it can be set to be the new yi for the next iter-
ation, until convergence.

2.6. Validations

2.6.1. Normal shock wave

In order to validate the proposed method in this paper, an
equilibrium normal shock problem is examined first. The mix-
ture before the shock is the equivalent hydrogen-air mixture

(0.42H2 + 0.21O2 + 0.79N2) with T1 = 300 K, p1 = 1 atm
and u1 = 2500 m/s, and 11 species (H2, H, O2, O, OH, HO2,
H2O2, H2O, N, N2 and NO) are considered in the chemical

equilibrium calculation. This kind of shock wave actually cor-
responds to an over-driven hydrogen-air detonation wave.
Parameters behind the shock and the iteration error defined

in Eq. (7) in the convergence process (k = 0.4) are presented
in Fig. 6. It is clearly observed that the convergence process
of this method is stable and the parameters change monoto-

nously to the convergent values. Further, the error decreases
exponentially in the convergence process and the 10–7 order
of error is achieved within 30 iterations. Consequently, it takes
less than 1 s to finish the iterations.

Notably, the relaxation factor k is an important control
parameter in the proposed method, and the convergence sta-
bility and speed are undoubtably affected by the chosen value

of k. To clarify this, the changes of post-shock temperature,
H2 mole fraction and iteration error defined in Eq. (7) during
the convergence process of the present normal shock problem

using different k values are depicted in Figs. 7(a)–(c), respec-
tively. Moreover, a summary of the iteration errors achieved
after 30 iterations with different k values is given in Fig. 7(d).
As seen, when the k value is too small (for example, k = 0.1

or 0.2), the post-shock parameters monotonously converge to
the corresponding equilibrium values, but the convergence
process is rather slow. After 30 iterations, the iteration errors

only reduce to about 10–3 and 7 � 10–5 for k = 0.1 and 0.2,
respectively, indicating a large number of iterations is needed
to achieve the desired convergence accuracy with a rather

small value of k. As the k value increases, the convergence
process becomes fast and the iteration error after 30 itera-
tions drops significantly. When the k value increases to 0.6,

an extremely small iteration error of about 10–12 can be
achieved via 30 iterations. However, if the k value increases
further, undesired oscillations of the post-shock parameters
appear in the convergence process. As a result, the conver-

gence process becomes slow again and tends to be unstable.
For example, for k = 0.8, the iteration error only reduces
to about 4 � 10–3 after 30 iterations. Taking both the conver-

gence stability and speed into consideration at the same time,
a range of k = 0.4–0.7 is favorable for the present normal
shock problem. Finally, a value of k = 0.4 is suggested

and used conservatively in this paper to ensure a good stabil-



Fig. 6 Convergence process of normal shock problem (before

shock: 0.42H2 + 0.21O2 + 0.79N2, T1 = 300 K, p1 = 1 atm,

u1 = 2500 m/s; k = 0.4).
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ity of the convergence process along with an acceptable con-
vergence speed.

The solutions of the final flow parameters and mixture com-

positions behind the shock are shown in Table 1 and Fig. 8,
respectively. The ZND solutions calculated by a finite chemical
kinetics are also presented for comparison. The detailed equa-
Fig. 7 Effects of k value on convergence error and speed for nor

T1 = 300 K, p1 = 1 atm, u1 = 2500 m/s).
tions for calculating the ZND solutions are briefly introduced
in the Appendix for clarity. The ZND solutions far behind the
shock can be considered as the exact solutions of chemical

equilibrium. The differences between the theoretical solutions
in this paper and the ZND solutions are defined as the errors
of the method proposed in this paper. Clearly seen, the errors

of all flow parameters and mixture compositions behind the
shock are less than 10–5, which means that for solving the nor-
mal shock problem coupled with chemical equilibrium, the

precision of the proposed theoretical method is very high.
Additionally, in order to show the physical bases of the

solving process described in Fig. 3, the convergence paths,
from the frozen shock solution to the equilibrium shock solu-

tion are demonstrated in Fig. 9 and compared with the ZND
solutions with a detailed chemical-kinetic process. It can be
seen that the current theoretical convergence process does

not exactly follow the ZND chemical-kinetic process (Fig. 9
(b)). Nevertheless, the similar trend of the chemical reactions
as the ZND solution is observed. The current p-T path

(Fig. 9(a)) match that of the ZND solution well. Notably,
the p-T path is important to the stability of the convergence
process. In summary, the proposed solving process is of certain

physical bases, which consequently ensures the good stability
and fast convergence of the proposed solving method. This is
also the initial intention to design such theoretical iteration
method in this work (as discussed in Section 2.2).
mal shock problem (before shock: 0.42H2 + 0.21O2 + 0.79N2,



Table 1 Comparison of flow parameters behind normal shock

wave in hydrogen-air mixture (before shock:

0.42H2 + 0.21O2 + 0.79N2, T1 = 300 K, p1 = 1 atm,

u1 = 2500 m/s).

Method p2 (atm) T2 (K) u2 (m/s)

ZND solutiona 39.861 3426.4 646.00

Theoretical solution 39.861 3426.4 646.00

Error <10–5 <10–5 <10–5

Notes: a—Equilibrium state far behind shock.

Fig. 8 Comparison of species compositions behind normal

shock wave in hydrogen-air mixture (before shock:

0.42H2 + 0.21O2 + 0.79N2, T1 = 300 K, p1 = 1 atm,

u1 = 2500 m/s).
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2.6.2. Oblique shock wave

The same validation process of the proposed theoretical
method can be illustrated to the equilibrium oblique shock
wave problem. An oblique shock wave in the hydrogen-air

mixture (0.42H2 + 0.21O2 + 0.79N2) with T1 = 300 K,
p1 = 0.4 atm, u1 = 3270 m/s (Ma= 8.0) and h = 30� is exam-
ined, and the same 11 species (H2, H, O2, O, OH, HO2, H2O2,

H2O, N, N2 and NO) are considered in the chemical equilib-
rium calculation. Obviously, this kind of oblique shock wave
is actually an oblique detonation wave. Convergent solutions

of flow parameters and mixture compositions behind the obli-
que shock are shown in Table 2 and Fig. 10, respectively. As it
is difficult to obtain the ZND solutions of oblique detonation
for comparison, the CFD (Computational Fluid Dynamics)

solutions with a detailed chemical reaction mechanism (via
our in-house CE/SE code16,18,24,25) are adopted and considered
as the nominal exact solution, and the differences between the

theoretical solution in this paper and the CFD solution are
hence the errors of the proposed method. From Table 2 and
Fig. 10, the maximum error of the proposed method is less

than 2‰. The comparison of shock angle is shown in
Fig. 11. Essentially, no difference between the theoretical
shock angle and that of CFD is observed. Notably, although

the CFD solution is extracted downstream the shock front as
far as possible, it is still slightly deviated from the truly exact
equilibrium solution with the limitation of the size of compu-
tational domain, leading to a slightly larger nominal relative

error in the present equilibrium oblique shock problem as
compared to that in the above equilibrium normal shock prob-
lem (<10–5). Nevertheless, high accuracy is demonstrated
when solving the oblique shock wave problem coupled with
chemical equilibrium once again.

3. Applications

3.1. Detonation polar and standing window for oblique
detonation

The shock polar analysis is a simple and effective tool in the-

oretical studies of shock wave reflection phenomena and other
shock/shock interaction problems.26,27 And it has been
extended to analyze shock waves in ideal dissociating gases

and in radiative gases.28,29 As for detonation waves, the shock
waves coupled with fast combustion, there is no doubt that the
polar analysis would play the same important role. Moreover,

the theoretical range of the wedge angle for a standing oblique
detonation wave, namely the standing window, can also be
obtained from the detonation polar, which is important in
applications of oblique detonation in hypersonic propulsion

systems, such as the oblique detonation engine. With the ben-
efit of simplicity of the proposed theoretical method, it is easy
to generate the detonation polar (coupled with chemical equi-

librium) with high accuracy.
The detonation polar diagrams of stoichiometric hydrogen-

air mixture for different Mach numbers are shown in Fig. 12.

Taking Ma = 10 as an example, the detonation polar is a
closed curve and is divided into three segments by critical
Points O, A and B. Point O is corresponding to the solution

of normal detonation wave, h = 0� and b = 90�. And Point
B corresponds to the maximum wedge angle hmax for the
attached oblique detonation wave. For h > hmax, the detona-
tion wave would be detached from the wedge, which is not

favorable in applications. Divided by Points O and B, Segment
OB is the strong shock solution, while Segment OAB is the
weak shock solution. In nature, the weak shock solution is

favored and usually occurs because the post-shock flow is
supersonic.9

Point A corresponds to the C-J oblique detonation wave

with the normal-shock component of the post-shock Mach
number Ma2n = 1, and hence the wedge angle for this point
is denoted as hCJ. Then, shock solutions on Segment OA are
the so-called under-driven oblique detonation waves since

Ma2n > 1, while shock solutions on Segment AB are the so-
called over-driven oblique detonation waves since Ma2n < 1.
However, under-driven oblique detonation waves have not

yet been observed in experiments, and some researchers con-
sidered they are abnormal in nature.30 As a result, only the
over-driven oblique detonation waves are applicable in

engineering.
From the above observation, the solution of a standing

oblique detonation wave is on the Segment AB in the detona-

tion polar, and hence the wedge angle must be hCJ < h< hmax.
That is, the standing window of oblique detonation waves is
enclosed by the hCJ line and the hmax line, as shown in
Fig. 13. For the Mach number 10 flow, it is

11.37�< h< 49.56�. With no doubt, the standing window will
narrow down to zero with the decreasing Mach number, and
no solution of standing oblique detonation waves exists below

about Mach number 5. This indicates that the oblique detona-
tion engine should work at high Mach numbers to gain a wide
standing window for the stable operation of the system.



Fig. 9 Convergence paths of proposed theoretical method compared with real chemical-kinetic process for solving normal shock

problem (before shock: 0.42H2 + 0.21O2 + 0.79N2, T1 = 300 K, p1 = 1 atm, u1 = 2500 m/s).

Table 2 Comparison of flow parameters behind oblique detonation wave in hydrogen-air mixture (h = 30�; before shock:

0.42H2 + 0.21O2 + 0.79N2, T1 = 300 K, p1 = 0.4 atm, u1 = 3270 m/s).

Method p2 (atm) T2 (K) u2 (m/s) b (�)

CFD solutiona 13.938 3248.7 2348.2 46.376

Theoretical solution 13.928 3242.6 2351.5 46.376

Error (‰) 0.71 1.9 1.4

Notes: aFar downstream oblique shock.

Fig. 10 Comparison of species compositions behind oblique

detonation wave in hydrogen-air mixture (h = 30�; before shock:

0.42H2 + 0.21O2 + 0.79N2, T1 = 300 K, p1 = 0.4 atm,

u1 = 3270 m/s).

Fig. 11 CFD pressure contours of oblique detonation wave in

hydrogen-air mixture (h = 30�; before shock:

0.42H2 + 0.21O2 + 0.79N2, T1 = 300 K, p1 = 0.4 atm,

u1 = 3270 m/s).

Fig. 12 Detonation polar diagrams of stoichiometric hydrogen-

air mixture (T1 = 300 K, p1 = 1 atm).

56 Z. ZHANG et al.
Summarily, to precisely predict the standing window of obli-

que detonation wave in engineering design, it is necessary to
use the shock relations coupled with chemical equilibrium.
The importance of the theoretical work in this paper is clearly
manifested.

Obviously, the accuracy in predicting the maximum wedge
angle hmax is important to determine the width of the standing
window of oblique detonation waves, since it changes signifi-

cantly with Mach number (Fig. 13). To further validate the
accuracy of the proposed theoretical method in predicting



Fig. 13 Standing window of oblique detonation wave in a

stoichiometric hydrogen-air mixture (T1 = 300 K, p1 = 1 atm).

Fig. 15 Schematic of stagnation flow.
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hmax, numerical simulations are conducted near the theoreti-

cally predicted hmax (±1�) to determine the specific flow pat-
terns (attached or detached) of oblique detonation waves at
different Mach numbers, and are summarized in Fig. 13. An

example of the flow fields of oblique detonation waves near
hmax = 38.22� at Ma = 7 is shown in Fig. 14. As indicated
in Figs. 13 and 14, the predictions of hmax by CFD and the pro-
posed theoretical method are in good agreement.

3.2. Stand-off distance prediction for detonation wave

When a sphere is placed in a supersonic flow, a bow shock is

formed before the sphere,14,19 and the distance between the
shock and the sphere along the stagnation streamline is so
called the stand-off distance D, as shown in Fig. 15. It is one

of the important design parameters in supersonic vehicles,
especially the hypersonic vehicles. Moreover, it is often used
as one parameter to validate numerical methods, especially

in high-enthalpy dissociating air.16 As the same phenomena
occur in detonation waves, the detonation stand-off distance
is of the same importance. Limited by experimental facilities
Fig. 14 Flow fields of oblique detonation waves in a stoichiometric

38.22�).
and measurement instruments, the experimental determination
of detonation stand-off distance is difficult and large errors are
generally encountered. In this paper, with the help of the pro-
posed method to solve detonation wave coupled with chemical

equilibrium, the theoretical predictions of detonation stand-off
distance with high accuracy may become possible.

A well-known relation of the shock stand-off distance for a

non-reactive air flow is given by Lobb,31

D
D

¼ 0:41
q1
qs

ð37Þ

where qs/q1 is the density ratio across the shock. A similar

relation can be derived for the equilibrium limit with infinite
chemical reaction rates,14,32 by replacing qs with the
chemical-equilibrium density qe, that is,

D
D

¼ 0:41
q1
qe

ð38Þ

Assuming that Eq. (38) is also satisfied in the theoretical
prediction of detonation stand-off distance. Then, by given
the sphere diameter D, the detonation stand-off distance D is

only determined by the parameter qe/q1 of the equilibrium
detonation wave that can be easily calculated by the proposed
method in this paper.
hydrogen-air mixture of Ma = 7 (the predicted hmax in Fig. 13 is



Fig. 17 Pressure and temperature contours of detonation flow

field around a 10 cm sphere (freestream:

0.42H2 + 0.21O2 + 0.79N2, T1 = 300 K, p1 = 1 atm, Ma = 8).
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Fig. 16 shows detonation stand-off distances predicted by
the proposed method for a D = 10 cm sphere placed in the
high-speed stoichiometric hydrogen-air mixture. It can be seen

that the stand-off distance D decreases exponentially as Mach
number increases for different freestream temperature T1. And
it decreases with the increasing of T1. There exists a limit value

of D at D/D = 0.04, if continually increasing the Mach num-
ber. With Eq. (38), it is obviously a result of the existence of
limit value of qe/q1 across detonation waves. The ‘‘Mach

number independence” is achieved.9 Therefore, the difference
of D with varying T1 at high Mach number would be smaller
than that at low Mach number, which is clearly shown in
Fig. 16(b).

In order to validate the theoretical predictions of the deto-
nation stand-off distances, numerical simulations are carried
out, using our in-house CE/SE code, to provide the so called

‘‘exact” values. Fig. 17 shows an example of the simulated det-
onation flow field around a 10 cm sphere. The measurement
values of the detonation stand-off distances at different Mach

numbers and freestream temperatures in the simulated flow
fields are summarized and shown in Fig. 16. It can be seen that
the theoretical predictions of the detonation stand-off dis-

tances agree well with the simulated ones in CFD, and the
maximum relative error is about 4.5%. The proposed theoret-
ical method shows good accuracy in predictions of equilibrium
detonation stand-off distances.

It should be note that detonation waves are always charac-
terized by characteristic lengths of chemical reactions. When
the Mach number and freestream temperature are relatively

low, which would result in a relatively long reaction zone, or
the diameter of the sphere is relatively small, which would lead
to a relatively short detonation stand-off distance, the flow

between the leading shock front and the sphere surface may
not reach the fully chemical equilibrium state and hence Eq.
(38) may cause a relatively large error. Under such non-

equilibrium occasions, a characteristic chemical reaction rate
parameter should be introduced, and the coefficient in Eq.
(38) is no longer a constant of 0.41 but a function of this char-
acteristic chemical reaction rate parameter.14,32
Fig. 16 Detonation stand-off distance as a function of Mach numbe

high-speed stoichiometric hydrogen-air mixture (p1 = 1 atm).
3.3. Transition criteria of shock reflection in dissociated air

Steady shock reflections include regular reflection and Mach
reflection,26,27 as shown in Fig. 18, where h and Ma are the
wedge angle and freestream Mach number, respectively. The

regular reflection flow field (Fig. 18(a)) consists of an incident
shock and a reflected shock, while the Mach reflection flow
field (Fig. 18(b)) consists of an incident shock, a reflected

shock, a Mach stem and a slip line, and these four discontinu-
ities intersect at the so-called triple point. Shock polar analysis
is a simple and effective tool in theoretical studies of shock

reflection phenomena.33,34 As shown in Fig. 19, Mach reflec-
tion occurs at h > hⅠ, while regular reflection occurs at
h < hⅡ, where hⅠ and hⅡ are the so-called von Neumann crite-
rion for Mach reflection transiting to regular reflection and
r and freestream temperature T1 for a D = 10 cm sphere placed in



Fig. 18 Steady shock reflections.

Fig. 19 Shock polars of Regular Reflection (RR) and Mach

Reflection (MR) and their transition criteria.
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detachment criterion for regular reflection transiting to Mach
reflection, respectively. At high Mach numbers, hⅠ and hⅡ are

not equal and hⅡ is greater than hⅠ. At hⅠ < h < hⅡ, both
regular reflection and Mach reflection can exist, resulting in
hysteresis in shock reflection transition. Studies of shock reflec-

tion phenomena and their transition are not only conducive in
Fig. 20 Shock polar analyses of regular reflection and Mach reflec

p1 = 1197 Pa, Ma = 20).
understanding the supersonic flow physics, but also have a

great importance in engineering applications.35–37

As for hypersonic flows, oxygen and nitrogen molecules in
air will be dissociated into atoms or recombined into oxyni-
trides in the high-temperature environment behind a strong

shock wave. Hence, the shock relation in dissociated air will
be quite different from that of the frozen flow due to the
change of mixture compositions and physical properties across

the shock and the accompanying thermal effects of chemical
reactions, resulting in discrepancy in shock reflection transi-
tion criterion predictions. With the proposed theoretical

method in this paper, the chemical-equilibrium oblique shock
solutions of multiple reflections with high accuracy can be
obtained readily and the chemical-equilibrium shock polars
for determining the transition criteria of shock reflections sim-

ilar to Fig. 19 can be generated accordingly. In this section, 6
species (N2, O2, Ar, NO, N and O) are considered for the air
dissociation, and the undissociated freestream air is composed

of 0.78 N2 + 0.21O2 + 0.01Ar. Flow parameters in the free-
stream are T1 = 226.51 K and p1 = 1197 Pa, which corre-
spond to the static temperature and pressure of hypersonic

flight in the atmosphere at an altitude of 30 km.38

The incident shock polar and reflected shock polar in disso-
ciated air for Ma = 20 and h = 35� or 45�, corresponding to

the regular reflection or Mach reflection, are shown in Fig. 20.
Shock polars with frozen chemistry are also available in
Fig. 20 for comparisons. In addition, as an example, mixture
tion (freestream: 0.78N2 + 0.21O2 + 0.01Ar, T1 = 226.51 K,
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compositions across the incident and reflected shock waves in
the regular reflection of Fig. 20(a) are compared in Fig. 21.
Notably, since Eqs. (1)–(3) are used to evaluate the thermody-

namic properties of each species, vibrational equilibrium has
been already considered in both frozen and dissociated cases,
and the differences between them only arise from the inclusion

of dissociated reactions of air. It can be revealed that, due to
the existence of dissociation and recombination reactions in
the dissociated air, shock polar profiles are greater than those

with frozen chemistry. Consequently, the value of maximum
wedge angle that is related to the detachment criterion of
shock reflection increases. Moreover, shock polar profiles
between the equilibrium and frozen cases are more differen-

tiable in reflected shocks. In summary, the transition criteria
of shock reflection in the equilibrium dissociated air are
expected to be very different from those predicted by frozen

chemistry.
Fig. 22 shows the predicted transition wedge angles as a

function of Ma between regular reflections and Mach reflec-

tions coupled with chemical equilibrium, comparing with the
predicted values by frozen chemistry. It can be seen that at
low Mach number where chemical reactions do not occur in

air, frozen chemistry predicts the same values of transition
wedge angle with chemical equilibrium. However, with the
increasing of Mach number, effect of air dissociation on shock
Fig. 21 Compositions of air in regular reflection case in Fig. 20

(a).

Fig. 22 Transition criteria between Regular Reflection (RR) and

Mach Reflection (MR).
reflection and hence difference of transition wedge angles pre-
dicted by chemical equilibrium and frozen chemistry begin to
emerge at about Ma = 6. Both transition criteria (i.e., von

Neumann criterion and detachment criterion) are under-
predicted when shock relations with frozen chemistry are used
at Ma > 6, particular in the prediction of detachment crite-

rion. Taking Ma = 20 as an example, the predicted wedge
angles of von Neumann criterion by chemical equilibrium
and frozen chemistry are hⅠ = 19.05� and 18.53�, respectively,
and the prediction by frozen chemistry is only 2.7% lower than
that by equilibrium counterpart. Comparatively, they are
respectively hⅡ = 41.20� and 37.21� for the detachment crite-
rion and the under-prediction of frozen chemistry increases

to 9.6%. Therefore, the shock relation coupled with chemical
equilibrium must be used at high Mach number to obtain
accurate prediction of shock reflection regimes. The impor-

tance of this work is again manifested.

4. Conclusions

Reactive shock waves are common in nature and engineering
applications. Fast predictions of reactive shock waves via the-
oretical solutions are of great importance in the understanding

of supersonic flows and engineering preliminary designs. In
this study, a theoretical method is proposed to solve shock
relations coupled with chemical equilibrium. Some conclusive

remarks are summarized as follows:

(1) The proposed method can be used in various reactive
shock waves, including detonation waves in combustive

mixtures, shock waves in dissociated air, etc. To ensure
good stability and fast convergence, the global iterative
solving process is specially designed to follow a virtual

physical and chemical process mimicking the ZND pro-
cess in reactive shock waves. The global iterative process
is implemented through alternatively solving the shock

relations with known compositions and the chemical
equilibrium compositions at a specific temperature and
pressure from the compressive states of non-reactive

shocks. The shock relations with known compositions
are solved using the derived single-variable Newton iter-
ation formulas rather than the conventional multidimen-
sional Newton method to reduce the complexity of the

problems. Additionally, the equilibrium compositions
at a specific temperature and pressure are solved via
the classic minimization of free energy method of

NASA.
(2) Comparisons of the normal detonation wave solution

with the exact ZND solution and the oblique detonation

wave solution with numerical simulation results are used
to validate the convergence and accuracy of the pro-
posed method. It is demonstrated that the convergent
process is stable and very close to the real chemical-

kinetic process. High accuracy is achieved as well.
(3) Based on this theoretical method, serval applications

have been demonstrated, including calculations of deto-

nation polar and standing windows for oblique detona-
tions, standing-off distance predictions for bow
detonation waves, and predictions of transition criteria

of shock reflection in dissociated air. Significant discrep-
ancies of the predicted results between chemical equilib-
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rium and frozen chemistry have been revealed, which

shows the great importance of using chemical equilib-
rium in theoretically predictions of reactive shock waves
with high accuracy.
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Appendix A.

The detailed equations for calculating the one-dimensional

ZND solution of the steady reactive normal shock are given
as follows. Assume that the shock front is located at x = 0,
and the high-speed reactive mixture flows from left (x < 0)

to right (x > 0). Therefore, the ZND profile of the reactive
normal shock starts fromx =0.As forx<0, it is the freestream
state before the shock. The one-dimensional steady reactive

Euler equation governing the flow within the ZND profile
(x � 0) is
dF

dx
¼ S for x P 0 ðA1Þ

where
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ðA2Þ

In Eq. (A2), the specific enthalpy of the mixture h is a func-

tion of the temperature T and chemical compositions Yi (i= 1,
2, . . ., nsp) of the mixture. Recalling the equation of state of the
mixture (Eq. (11)), the density of mixture q can be calculated

from p, T and Yi. Hence, F is a function of the parameter
set of {p, T, u, Yi}. On the other hand, the parameter set of
{p, T, u, Yi} can also be uniquely solved by a given F. The mass

production rate of each species _xi in S can be calculated from
the pressure p, temperature T and chemical compositions of
mixture Yi via a specific chemical reaction mechanism. There-
fore, S is a function of F, that is, S= f(F). Obviously, Eq. (A1)

is an ordinary differential equation, with the initial value con-
dition of

Fjx¼0 ¼ Fjs;frozen ðA3Þ
where the F values at the right-hand side can be calculated

from the flow parameter set of {p, T, u, Yi} right behind the
corresponding frozen normal shock. Finally, Eqs. (A1) and
(A3) compose an initial value problem for calculating the

ZND solution, which can then be integrated explicitly via a
Runge-Kutta method, such as the fourth-order scheme as
below,

Fjxnþ1
¼ Fjxn þ 1

6
Dx � S1 þ 2S2 þ 2S3 þ S4ð Þ
S1 ¼ f Fjxn

	 

S2 ¼ f Fjxn þ 1

2
Dx � S1

	 

S3 ¼ f Fjxn þ 1
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Dx � S2

	 

S4 ¼ f Fjxn þ Dx � S3
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