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ABSTRACT

Birds and bats frequently reconfigure their wing planform through a combination of flapping and local sweep morphing, suggesting a
possible approach for improving the performance of micro aerial vehicles. We explore the effects of combined flapping and local sweep
morphing on aerodynamic performance by employing a bio-inspired two-jointed flapping wing with local sweep morphing. The bio-inspired
wing consists of inner and outer sections, which flap around the root joint (shoulder) and the midspan joint (wrist), respectively. The aerody-
namic forces and the unsteady vortex structures are evaluated by numerically solving the incompressible Navier–Stokes equations. The
results show that combined flapping and local sweep morphing can significantly enhance the aerodynamic performance. In particular, the
average lift coefficient is 1.50 times greater than that of simple gliding with single local sweep morphing. Combined flapping and local sweep
morphing also have a relatively high pitch moment and shift the aerodynamic center position backward, producing advantages in terms of
maneuverability/agility and stability. We find that the vortex structures associated with the combined motion feature midspan vortices, which
arise from the leading-edge vortices of the inner wing and contribute to the enhanced aerodynamic performance. We show that the kinemat-
ics of combined flapping and local sweep morphing can be further optimized if the midspan vortices are captured by the outer wing.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0090718

I. INTRODUCTION

There has been rising attention to the development of morphing
drones for fixed-wing and flapping-wing flights.1–4 Morphing drones
enable radical geometry changes that would improve system capabili-
ties in multiple flight conditions. Morphing wings (part of any morph-
ing drone) are of particular interest because the morphing operation
tends to produce nontrivial performance enhancements. The aerody-
namic design of morphing wings requires an innovative reconfigura-
tion of the internal structure and external flow.2 It is equally important
to explore the mechanism by which the novel morphing drives the
flow toward the optimal aerodynamic performance.

The inspiration for morphing wings comes from natural flyers.
According to the constitution of the wing geometry, the morphing can
be categorized as two-dimensional airfoil-level morphing or three-
dimensional wing-level morphing.1,5 The airfoil-level morphing refers
to alterations to the thickness and camber of the cross-sectional profile,
while the wing-level morphing involves spanning, twisting, bending,
and sweeping transformations.1 The morphing of the wing might
notably increase the strength and stability of the attached vortex

structures, such as the leading-edge vortex (LEV),6,7 especially when
the drone requires high levels of maneuverability and agility. LEVs
have been shown to enhance performance under diverse aspect
ratios8,9 and kinematics.10–13

Changes to both the thickness and the camber have a significant
influence on the aerodynamic characteristics of the airfoil. Thin wings
can create more lift and less drag at low Reynolds numbers,14 and the
location of maximum relative thickness affects the balance among the
drag, lift-to-drag ratio, and stall features.15 In addition, the increased
camber elevates the lift coefficient slope and the maximal lift-to-drag
ratio of rectangular wings at Reynolds numbers from 103 to 104.16 As
well as global camber variations,17–20 local camber adjustments at the
leading and/or trailing edge are also effective. Menshchikov and
Somov21 assessed the performance of a morphing airfoil with compliant
ailerons and slats through numerical simulations and experimental
measurements. Their results show that local camber morphing enhan-
ces the lift-to-drag ratio, thereby increasing the operation range and
maneuverability. Global camber morphing benefits the lift generation
during the delayed stall and wake capture stages by regulating the
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development of LEVs.22 Span morphing has been systematically exam-
ined through flat-plate wings with variable span lengths or spanwise
oscillations.23–25 Spanwise morphing or oscillations can enhance the lift
by stabilizing the LEVs. Joshi et al.26 measured the lift histories of pure
twist and pure bend morphing wings under accelerating glide condi-
tions. They found that the peak lift can be improved by increasing the
local angle of attack and relative speed. Jia et al.27 found that controlled
spanwise bending away from the incoming flow can delay the growth of
LEVs by reducing the advection speed of the leading-edge shear layer.

Sweep morphing reconfigures the flow to improve performance,
possibly in combination with the other morphing modes described
above.28 Lentink et al.29 experimentally investigated the glide perfor-
mance of swifts with long and slender wings (i.e., the hand wing is much
longer than the arm wing along the wingspan30). Small swept
(extended) wings are suitable for slow gliding, while large swept (tucked)
wings are superior for fast gliding. Zhang et al.31 employed direct
numerical simulations of separated flows around finite-aspect-ratio
swept wings to analyze the wake dynamics under a variety of aspect
ratios, angles of attack, and sweep angles. The complexity of the
dynamic features of vortex structures was observed to be higher in swept
conditions than in unswept conditions. The three-dimensional midspan
effects appear and interact with the tip effects, allowing the formation of
stationary vortex structures near the wing roots. Additionally, the wake
dynamics and aerodynamic characteristics of forward swept wings have
been studied32 with the streamwise vortices in the wake found to stabi-
lize the flow at large forward sweeping angles. Zangeneh33 utilized the
large-eddy simulation framework to reveal the sweep effects on the sta-
bility of LEVs over finite-aspect-ratio wings in various pitch motions.
The LEV growth was found to be moderated by spanwise vorticity con-
vection and vortex stretching. The sweeping of the wing not only
changes the direction of vorticity convection but also prominently
increases the magnitude of vorticity convection toward the wingtip.
Moreover, sweeping causes a compacted LEV by vortex stretching.

The above investigations have focused on global sweeping, where
changes in the leading-edge sweeping angle occupy the total wing
from root to tip. Different from global sweeping, local sweeping only
modifies the leading-edge sweeping angle over part of the wing span,
which is closer to the real planform of natural flyers. Biologically, fly-
ing vertebrates morph their wings by moving the forelimbs under
musculoskeletal control.34 The wrist and finger motions drive the
sweep morphing in the outboard part of the wings, rather than
throughout the total span.35 Matching this biological structure, multi-
jointed flapping is observed and modeled.36,37 A two-jointed flapping
system used to reconstruct the actual kinematics of avian wings is pro-
posed by Liu et al.38 and then investigated numerically or experimen-
tally by different researchers.39–41 Local sweep morphing wings with
simple kinematics, such as gliding, have inspired the design of new
drones that are skilled in maneuverable and efficient flight. The work
of Hui et al.42 shows that pigeon-like drones can employ symmetrical
wing morphing to maintain the optimal lift-to-drag ratio under three
different Reynolds numbers. Chang et al.35 developed the PigeonBot
drone with soft biohybrid morphing wings, where the real feathers are
underactuated by wrist and finger motions. They found that the asym-
metric local sweep morphing generated by the asymmetric wrist and/
or finger motions can achieve turning maneuvers. Ajanic et al.43 mim-
icked the northern goshawk in developing the LisHawk drone. Their
flight tests show that local sweep morphing coupled with tail morphing

can enhance maneuverability and agility, modify pitch stability, and
reduce power requirements. However, existing research does not pro-
vide any insights into local sweep morphing wings under actual kine-
matics, such as two-jointed flapping and body oscillations. Flying
animals flap with the body oscillations, especially those with heavy
wings.44–46 Undulations in lift during flapping flight can produce rapid
changes in vertical acceleration, resulting in the vertical oscillating dis-
placement of the body. The effects of such compound motion on aero-
dynamic performance need to be evaluated to improve our
understanding of the vortex dynamics and enable the design of bio-
inspired drones (i.e., flapping micro aerial vehicles).

The objective of this study is to investigate local sweep morphing
combined with two-jointed flapping and to clarify their effects on
aerodynamic performance under the background of vertical body
oscillation. In this work, the dynamic sweep morphing of the outer
wing is prescribed, accompanied by two-jointed flapping. The vertical
oscillating effects of the body are considered by imparting a heaving
motion at the wing root. For the aforementioned compound motion, a
robust Bayesian optimization method is adopted to determine the
kinematic parameters that maximize performance. The remainder of
this paper is organized as follows. The flapping and morphing wing
model, unsteady flow simulator, and aerodynamic optimization
method are described in Sec. II. The effects of two-jointed flapping in
local sweep morphing on performance are reported and discussed in
Sec. III. Finally, the conclusions of this study are presented in Sec. IV.

II. NUMERICAL MODEL ANDMETHOD
A. Two-jointed flapping wing with local
sweepmorphing

The LisHawk drone has an avian-inspired morphing wing and
was developed to research the flight capabilities of the northern gos-
hawk.43 The morphing wing changes the leading-edge sweeping angle
of the outboard part by up to 1.48 rad, enabling a maximum span
length of 1.05m. In this work, a morphing wing is modeled to investi-
gate the aerodynamic performance of a two-jointed flapping wing
according to the work of Liu et al.38 The avian wing model is a flat
plate consisting of an invariable inner wing ABDC and a variable outer
wing CDFHE, as shown in Fig. 1(a). The inner wing has a parallelo-
gram outline with a streamwise length of c, spanwise width of b1, and
sweep angle of K1. The baseline shape of the outer wing is formed by a
rectangle CDFE and a semi-ellipse FHE. The center of the ellipse R is
at the midpoint of line EF, which has a distance of 0:15c from the edge
CD. The morphing of the outer wing is achieved by changing the
sweep angle K2. The span width b2 of the outer wing is constant dur-
ing morphing. For a point K on the outer wing, the morphing of the
outer wing causes a streamwise displacement. The streamwise dis-
placement is DxðtÞ ¼ yr tanK2ðtÞ, where yr is the distance from the
point K to the line CD. The length of the chord at any spanwise posi-
tion is constant during the local sweep morphing. Here, the sweep
angle of the inner wingK1 is fixed at�0.35 rad and the sweep angle of
the outer wing K2 varies in a reasonable range (see Table I) according
to the design of LisHawk.43 For simplicity, we set b1 ¼ b2 ¼ c, leading
to an aspect ratio (defined as the ratio of the square of the span length
to the area of the wing) of 4.40.

The wing model flaps in a flow with velocity U1þ along the x
direction. The flapping of the total wing is described by the inner wing
elevating angle w1 and the outer wing elevating angle w2 (see Fig. 1),
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for which the positive directions are counterclockwise and clockwise,
respectively. The elevating motions with respect to time are specified
in sinusoidal form as follows:

w1 tð Þ ¼ w10 þ w1m sin 2pftð Þ; (1)

w2 tð Þ ¼ w20 þ w2m sin 2pft þ /að Þ; (2)

where w10ðw20Þ is the average elevating angle of the inner (outer)
wing, w1mðw2mÞ is the elevating amplitude of the inner (outer) wing,
and /a is the phase difference between the elevating of the inner and
outer wings. f is the dimensionless flapping frequency, as normalized
by the reference frequency U1þ=c.

The vertical body oscillation induced by the flapping44 is repre-
sented as the heaving motion of the wing root. In the current study,
the heaving equation is

dðtÞ ¼ dm sin w1ðtÞ½ �; (3)

where dm ¼ c is the heaving amplitude. This heaving motion makes
the midspan joint remain at a constant vertical position, as shown in
Fig. 1.

Two-jointed flapping also couples with the sweep morphing of
the outer wing, which is conducted by manipulating the sweep angle
of the outer wing as

K2 tð Þ ¼ K20 þ K2m sin 2pft þ /bð Þ; (4)

where K20 is the average sweep angle of the outer wing, K2m is the
sweep amplitude of the outer wing, and /b reflects the phase difference
between the elevating and sweeping of the outer wing. In summary, the
motion of the two-jointed flapping wing can be determined by nine
dimensionless parameters, ðw10;w20;K20;w1m;w2m;K2m;/a;/b; f Þ.
The Strouhal number for the flapping flight in this work is computed by
St ¼ fAm=U1, where U1 ¼ 1 is the normalized upstream flow and
Am ¼ ½ðb1 þ b2Þ=c�½sin ðw10 þ w1mÞ � sin ðw10 � w1mÞ� is the nor-
malized vertical height swept by the tip of an extended inner wing of
length b1 þ b2.

The kinematic parameters are taken from the work of Liu et al.,38

Taylor et al.,47 and Ajanic et al.43 In this study, we estimate the values of
the kinematic parameters ðw10;w20;w1m;w2mÞ by considering the
mean value and the first harmonic component in the Fourier series
according to the work of Liu et al.38 The Strouhal number in the range
0:16 < St < 0:62, including the preferred range of 0:20 < St < 0:40,47

is used to bound the elevating and sweeping frequencies
f ¼ St � U1=Am. The morphing of the wing is limited by anatomical or
physiological constraints. Here, the sweeping angle of the outer wing
satisfies �0.60< K2ðtÞ < 0.60 rad, namely, K2m þ jK20j < 0.60 rad.
To simplify the sampling in the subsequent optimization, we introduce
a normalized transformation for the sweeping amplitude. The normal-
ized sweeping amplitude K�

2m is equal to K2m=ð0:60� jK20jÞ.
Consequently, the sweeping parameter space is transformed to be rect-
angular, as shown in Fig. 2. The baseline and constraints of the

FIG. 1. Schematic diagram of the two-jointed flapping wing in local sweep morphing. (a) Morphing wing model with sweep angles K1 and K2 (for the cases without elevating,
w1 ¼ w2 ¼ 0). The local sweep morphing is conducted by changing the sweep angle K2. (b) Two-jointed flapping characterized by elevating angles w1 and w2 (zero angle
of attack). For the global coordinate system o – xyz, the coordinate plane o – xz passes through the root chord AB vertically, and the y-axis crosses the midpoint G of the
chord CD.

TABLE I. Setup of the flapping and morphing parameters for the wing model.

Variable Description Baseline Min Max

w10ðradÞ Elevating mean of inner wing 0.20 � � � � � �
w20ðradÞ Elevating mean of outer wing 0.35 � � � � � �
w1mðradÞ Elevating amplitude of inner wing 0.40 0.35 0.45
w2mðradÞ Elevating amplitude of outer wing 0.30 0.25 0.35
/aðradÞ Phase difference of elevating 0.00 �3.14 3.14
K20ðradÞ Sweeping mean of outer wing 0.00 �0.30 0.30
K�

2m½1� Normalized sweeping
amplitude of outer wing

0.50 0.00 1.00

/bðradÞ Phase difference of sweeping 0.00 �3.14 3.14
f ½1� Elevating/sweeping frequency 0.24 0.12 0.36
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independent kinematic parameters are listed in Table I. The geometric
angle of attack (AoA) is fixed at 0.44 rad to form the beneficial separated
flow structures observed widely in biological flight.24

B. Flow around the two-jointed flapping wing

The flow around the flapping and morphing wing is simulated by
numerically solving the time-dependent three-dimensional incom-
pressible Navier–Stokes equations,

r � u ¼ 0; (5)

@u
@t

þ u � ru ¼ �rpþ 1
Re

r2uþ f IB; (6)

where u is the dimensionless velocity vector, normalized by the refer-
ence velocity U1þ, p is the dimensionless pressure, normalized by the
product of the density q and the squared freestream velocity Uþ

1
2. The

Eulerian force density f IB represents the effects of the wing model
upon the fluid in the immersed boundary method. The Reynolds
number is defined as Re ¼ Uþ

1c=�, where � is the fluid kinematic vis-
cosity. The simulations in the current study were performed at
Re ¼ 300, as in previous studies,23–25 because the unsteady flow inves-
tigated in this work is dominated by the Strouhal number.

We utilize the semi-implicit immersed boundary method in the
discrete stream function formulation48,49 to solve the Navier–Stokes
equations on an Eulerian mesh. The spatial discretization is handled
by the second-order finite volume method. The time advancement is
implemented by the three-step, second-order and low-storage
Runge–Kutta scheme. The divergence-free condition is exactly met to
machine precision. The convection term and the diffusion term in the
momentum equation are solved explicitly and implicitly in each sub-
step, respectively.

The force density f IB in Eq. (6) is computed by a Lagrangian
direct-forcing approach, where a set of Lagrangian points are
employed to represent the geometry and kinematics of the flapping
wing. The relation between the force densities on the Eulerian and
Lagrangian meshes is given by

f IBðx; tÞ ¼
ð
S
FIBðX; tÞdðx � XÞdS; (7)

where X is the spatial coordinates of the Lagrangian mesh. FIB is the
force density on the Lagrangian mesh. dðx � XÞ is a Dirac delta func-
tion in the three-dimensional space. In numerical simulations, the
Dirac delta function dðx � XÞ is approximated by a regularized delta
function dhðx � XÞ as follows:

dh x � Xð Þ ¼ 1
h3

/
x � X
h

� �
/

y � Y
h

� �
/

z � Z
h

� �
; (8)

where h is the minimum grid width of the Eulerian mesh. (x, y, z) and
(X, Y, Z) are the components of the Eulerian position vector x and
Lagrangian position vector X in the streamwise, spanwise, and vertical
directions, respectively. / is a piecewise function,

/ rð Þ ¼

1
8

3� 2jrj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jrj � 4r2

p� �
; jrj � 1;

1
8

5� 2jrj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�7þ 12jrj � 4r2

p� �
; 1 � jrj � 2;

0; jrj � 2:

8>>>>><
>>>>>:

(9)

For a Lagrangian mesh consisting of M points, the force density
FIBðXjÞ (j ¼ 1;…;M) on the Lagrangian mesh is computed by

XM
j¼1

X
dh x � Xjð Þdh �Xkð ÞDSh3

� �
FIB Xjð Þ ¼ DU Xkð Þ

Dt
; (10)

where DS is the surface area associated with each Lagrangian point.
DUðXkÞ is the difference between the specified velocity boundary con-
dition and the predicted velocity on the Lagrangian point Xk.
The force density FIB on the Lagrangian mesh is zero when the pre-
dicted velocity satisfies the specified boundary condition (DU ¼ 0).
Otherwise, the force density on the Lagrangian mesh FIB is spread
onto the Eulerian mesh for correcting the predicted velocity according
to the discretized form of Eq. (7),

f IB xð Þ ¼
XM
j¼1

FIB Xjð Þdh x � Xjð ÞDS: (11)

The details of the numerical method can be found in our previous
works.24,48,49 We have validated the numerical method by considering
similar moving boundary problems in terms of geometry, kinematics,
and Reynolds number.8,25,50

The background mesh domain is a large rectangular box with a
dimensionless size of ½�6; 12� � ½�9; 9� � ½�9; 9� in the streamwise,
spanwise, and vertical directions, respectively. The mesh is locally
refined to the minimum grid width of c=40 to match the average spac-
ing of the mesh modeling the morphing wing. The mesh settings were
tested by multiple bio-locomotion cases, and differences in the mesh
resolution and domain size were found to have little influence on the
average lift and drag coefficients.24 The boundary conditions of the

FIG. 2. Sweeping parameter space trans-
formation from ðK20;K2mÞ to ðK20;K

�
2mÞ.
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computational domain are the uniform freestream condition at the
inlet, the free convection condition at the outlet, and the zero-shear
free-slip condition on the other four sides. In addition, the non-slip
boundary condition is applied on the surface of the flapping and
morphing wing. The solution is initialized with a uniform unit stream-
wise velocity within the computational domain.

The upward lift L and backward drag D are the primary aerody-
namic forces determining the flight performance. The force coeffi-
cients are defined as

CL;s ¼
X
s

clð Þi ¼
Ls

1=2qUþ1
2S�

; (12)

CD;s ¼
X
s

cdð Þi ¼
Ds

1=2qUþ1
2S�

; (13)

where clðcdÞ is the dimensionless lift (drag) of the ith Lagrange ele-
ment, S� is the area of a single wing, and the subscript s denotes the
integral domain. Specifically, “iw” and “ow” denote the domains of the
inner wing and the outer wing, respectively. s is represented as “tw”
for the total wing, i.e., the sum of “iw” and “ow.”

The pitch moment coefficient My and the average position
ðxac ; zacÞ of the aerodynamic center are used to measure the longitudi-
nal control performance of the flight. These quantities are expressed as

My;s ¼
X
s

cdzr � clxrð Þi; (14)

xac; s ¼

ð
T

X
s

clxrð Þidtð
T
CL;sdt

; (15)

zac; s ¼

ð
T

X
s

cdzrð Þidtð
T
CD;sdt

; (16)

where xr (zr) is the streamwise (vertical) coordinate of the ith Lagrange
element in the integral domain s with respect to the reference line
(dashed–dotted line) in Fig. 1. The reference line of the pitch moment
and the aerodynamic center is parallel to the y-axis and has a stream-
wise position, c, and a vertical position, h. The integral time T is the
dimensionless flapping and morphing period. The average quantities
are marked by overlines.

C. Aerodynamic optimization

The current work explores the performance enhancement mech-
anism underlying the flapping andmorphing motion using an efficient
global optimization method. The lift is closely related to important
performance indicators.51,52 The aerodynamic optimization problem
can be formulated in terms of an objective function and the design
vector. In this work, the objective function is taken as the mean lift act-
ing on the total wing (combination of the inner wing and outer wing)
CL;tw as that in Ref. 53. The design vector is taken as n ¼ ½w1m;w2m;
K20;K

�
2m;/a;/b; f �T , which consists of the elevating amplitude of the

inner wing w1m, the elevating amplitude of the outer wing w2m, the
sweeping mean of the outer wingK20, the normalized sweeping ampli-
tude of the outer wing K�

2m, the phase difference of elevating /a, the

phase difference of sweeping /b, and the elevating/sweeping frequency
f. We adopt the Bayesian optimization method54,55 with a hybrid
acquisition strategy to maximize the average lift coefficient of the total
wing CL;tw . Here, the Gaussian process is used as the probabilistic sur-
rogate model to provide the best evaluation of the objective function
and the uncertainty of this evaluation. The generation of the Gaussian
process depends on the initial dataset sampled by the optimal Latin
hypercube technique.56

The process of searching for the optimum conditions and refining
the surrogate model is driven by maximizing the acquisition function
aðnÞ. The acquisition functions are the probability of improvement
aPIðnÞ, expected improvement aEIðnÞ, and upper confidence bound
aUCBðnÞ. To improve the robustness of the optimization method, we

utilize the portfolio AðnÞ ¼ fajPIðnÞ; ajEIðnÞ; ajUCBðnÞgðj ¼ 1; 2; 3Þ,
reflecting the hybrid acquisition strategy. Specifically, three acquisition
functions are involved, and each is assigned three different balance
parameters. According to the accumulated gains regulated by thememory
factor, the best infill point is suggested from nine candidates during the
iteration phase. Additionally, the infill process can be toggled to manual
mode to introduce problem-specific expert knowledge.57 More details of
the Bayesian optimization method are given in Refs. 25 and 55.

III. RESULTS AND DISCUSSION

Typical parameter configurations of the two-jointed flapping
wing with local sweep morphing are summarized in Table II. The
kinematics of the flight depends on the elevating amplitudes w1m and
w2m. The zero amplitude corresponds to gliding flights, while nonzero
amplitudes lead to flapping flights. The baseline configuration is used
to compare the gliding (Baseline-GM) and two-jointed flapping
(Baseline-FM) of the morphing wing. Moreover, the advantages of
two-jointed flapping with local sweep morphing are elucidated
through the optimal configuration (Optimum-FM).

A. Enhanced performance of two-jointed flapping
over gliding

Figure 3 shows the angular parameters and aerodynamic perfor-
mance over a flapping and morphing period for the baseline configu-
ration (Baseline-FM) of the two-jointed flapping wing with local
sweep morphing. The white and gray backgrounds denote the
upstroke and downstroke of the inner wing, respectively. The local
sweeping has an amplitude of 0.30 rad. For the two-jointed flapping,
the amplitude of the inner wing is 30% larger than that of the outer
wing. There is no phase difference between the flapping of the inner
and outer wings, or between the sweep morphing and flapping of the
outer wing. In Fig. 3(b), the lift coefficient of the total wing undulates
over the range (0.30, 0.50) in the first half-period, except in the initial

TABLE II. Flapping and morphing parameters of baseline and optimum
configurations.

Configuration
w1m
ðradÞ

w2m
ðradÞ

/a
ðradÞ

K20

ðradÞ
K�

2m
½1�

/b
ðradÞ

f
½1�

Baseline-FM 0.40 0.30 0.00 0.00 0.50 0.00 0.24
Baseline-GM 0.00 0.00 0.00 0.00 0.50 0.00 0.24
Optimum-FM 0.45 0.35 2.71 �0.05 0.41 �0.16 0.36
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stage. The lift coefficient CL;tw increases gradually to a maximum of
1.33 at the end of the second half-period and then decreases rapidly.
The lift of the total wing can be decomposed into the contributions of
the inner and outer wings, i.e., CL;tw ¼ CL;ow þ CL;iw. In the baseline
configuration, the undulation of the lift coefficient CL;ow is weak, and
its maximum is only 0.45 in the upstroke of the outer wing. The lift
coefficient of the inner wing exhibits a similar trend to that of the total
wing, with a maximum of 1.04. The maximal instantaneous lifts of the
inner wing and the total wing appear at almost equal moments.
Therefore, the inner wing plays a dominant role in the evolution of
lift.

The histories of the drag and lift on the same surface display sim-
ilar features, as shown in Fig. 3(c), except that the drag coefficient has
a smaller magnitude and weaker fluctuations than the lift coefficient.

The maximal drag coefficients of the total wing and the inner wing are
0.83 and 0.56, respectively. In Fig. 3(d), the magnitude of the pitch
moment coefficient changes with time in a similar manner to the lift
and drag coefficients. The magnitude of the moment coefficient
jMy;twj decreases from 0.82 to 0.13 over 0:15T and then remains at
approximately 0.15 for most of the first half-period. As the flapping
motion continues, the magnitude of the moment coefficient jMy;twj
grows significantly, reaching a peak of 1.41. This indicates that two-
jointed flapping can promote a remarkable change in the pitch
moment. The two-jointed flapping motion further extends the margin
of maneuverability based on the high maneuverability introduced by
pure sweep morphing.43

Figure 4 presents the time-dependent kinematic and aerody-
namic parameters over a flapping and morphing period for the

FIG. 3. Angular parameters and aerodynamic performance in a flapping and morphing period for the baseline configuration (Baseline-FM) of the two-jointed flapping wing in
local sweep morphing. (a) Angular parameters. (b) Lift coefficient. (c) Drag coefficient. (d) Pitch moment coefficient. The white and gray blocks denote the upstroke and down-
stroke of the inner wing, respectively.
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baseline configuration (Baseline-GM) of the gliding wing with local
sweep morphing. The gliding wing undergoes the same change of
sweep morphing angle as the two-jointed flapping wing. The elevating
angles of the inner and outer wings are fixed at the mean values of the
two-jointed flapping wing, i.e., w1ðtÞ 	 w10 and w2ðtÞ 	 w20. After
removing the flapping motion, the aerodynamic forces and moment
for both the total wing and the inner/outer wing are almost invariable
with respect to time. The lift coefficient of the total wing is about 0.50.
The lift coefficients of the inner and outer wings contribute almost
equally to the total lift coefficient. The drag coefficient of the total
wing is almost equal to the lift coefficient under the gliding condition.
Unlike the relationship between lift coefficients, the drag coefficient of
the inner wing is greater than that of the outer wing, i.e., CD;iwðtÞ

 0:30 and CD;owðtÞ 
 0:20. The pitch moment coefficient of the total

wing is about –0.35, and the inner and outer wings make almost equal
contributions, namely,My;iwðtÞ 
 My;owðtÞ.

Table III summarizes the average aerodynamic performance of
two-jointed flapping (Baseline-FM) and gliding (Baseline-GM) under

FIG. 4. Angular parameters and aerodynamic performance over a flapping and morphing period for the baseline configuration (Baseline-GM) of the gliding wing with local
sweep morphing. (a) Angular parameters. (b) Lift coefficient. (c) Drag coefficient. (d) Pitch moment coefficient. The white and gray blocks denote the backward and forward
sweep of the outer wing, respectively.

TABLE III. Average aerodynamic performance of baseline and optimum
configurations.

Configuration CL;tw CD;tw
CL;tw

CD;tw
My;tw xac;tw zac;tw

Baseline-FM 0.72 0.56 1.29 �0.62 0.93 0.08
Baseline-GM 0.48 0.50 0.96 �0.35 0.84 0.09
Optimum-FM 1.40 0.63 2.22 �1.27 1.00 0.21
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the baseline configuration. The average lift coefficient of two-jointed
flapping is 50% larger than that of gliding. However, there is no signifi-
cant difference in the average drag coefficients between the two kinds
of flight. Accordingly, the average lift-to-drag ratio is 34% higher in
the case of two-jointed flapping. We would like to mention that the
lift-to-drag ratio here is not used to directly measure the efficiency of
the flight, because the “gliding mode” in this work is the gliding of a
morphing wing (dynamically changing the sweep angle of the outer
wing during the gliding). Additional power is required to account for
the morphing wing in the “gliding mode.” The “gliding mode” is
obtained by turning off the elevating motion from the “flapping
mode.” The elevating motion of the wing increases both lift and drag.
However, the increment of the average lift coefficient is larger than
that of the average drag coefficient for the flapping wing model. Here,
we employ the lift-to-drag ratio to measure the difference between the
increase of lift and drag.

We computed the lift-to-drag ratios for the conventional “gliding
mode,” where both the elevating motion and sweeping motion are
turned off from the “flapping mode.” The sweep angle of the conven-
tional “gliding mode” is fixed atK2 ¼ 0:00, which is the average sweep
angle of the corresponding “flapping mode.” As shown in Table IV,
two conventional gliding configurations are set with different angles of
attack of 0.17 and 0.44 rad, respectively. The setup of the angle of
attack AoA¼ 0.44 rad inherits from that in the “flapping mode,” where
the geometric angle of attack AoA¼ 0.44 rad corresponds to a stroke
angle of 1.13 rad that falls within the scope of animal flapping
flight.58–60 The setup of the angle of attack AoA¼ 0.17 rad is close to
the moderate angle of attack in animal gliding flight.20 The lift-to-drag
ratio of the conventional “gliding mode” at the angle of attack of
AoA¼ 0.44 rad is 0.94, which is a little lower than that of the “gliding
mode” with dynamically changing the sweep angle of the outer wing.
The difference in the lift-to-drag ratio between the two configurations
means that the dynamically changing sweep angle of the outer wing
during the gliding helps to slightly enhance the lift-to-drag ratio. The
lift-to-drag ratio of the conventional “gliding mode” at the angle of
attack of AoA¼ 0.17 rad is 1.13, which is higher than that of the con-
ventional “gliding mode” at the angle of attack of AoA¼ 0.44 rad. The
lift-to-drag ratio increases as the angle of attack decreases from 0.44 to
0.17 rad, which is consistent with the results of Taira and Colonius8

The lift-to-drag ratios for all the configurations investigated in this
work are of the order of O(1), which is close to the results reported in
the work at similar Reynolds numbers.8,31,32,61 The low lift-to-drag
ratio indicates the inferior gliding performance for the configurations
investigated in this work. The inferior gliding performance might be
caused by the low Reynolds number since a low Reynolds number of
300 is used in this work to ensure the resolution for the flows near the

wing. The Reynolds number used in this work falls in the low
Reynolds number region according to the work of Lissaman,62 where
the maximum lift-to-drag ratio of airfoils varies from O(1) to O(100)
when the Reynolds number varies from the low Reynolds number
region to high Reynolds number region. The effect of the Reynolds
number should be carefully investigated when the conclusions on the
lift-to-drag ratio are applied to the flight at high Reynolds numbers.

Additionally, the pitch moment coefficient of two-jointed flap-
ping increases by 77% in magnitude compared with that of gliding.
These results show that the maneuverability and agility of two-jointed
flapping are greater than the corresponding gliding performance for
the same local sweep morphing wing. The average position of the
aerodynamic center can be computed using Eqs. (15) and (16). The
streamwise position xac;tw of the aerodynamic center is 0.93 for two-
jointed flapping and 0.84 for gliding. Because of the more downstream
position, two-jointed flapping has an advantage over gliding in terms
of flight stability.

B. Optimal two-jointed flapping with local sweep
morphing

For the local sweep morphing wing, two-jointed flapping enhan-
ces longitudinal maneuverability, agility, and stability. The perfor-
mance can be further improved with reasonable manipulation of the
motion parameters. In this subsection, we optimize the flapping and
morphing parameters to enhance the average lift of the total wing.

The time dependence of the optimal angular parameters and
aerodynamic performance is shown in Fig. 5. Under the optimal con-
figuration (Optimum-FM), the elevating amplitudes of the inner wing
and the outer wing are 0.45 and 0.35 rad, respectively. The outer wing
leads the inner wing by 0:43T in terms of the elevating phase. The
sweeping amplitude of the outer wing is 0.23 rad. The sweep morphing
of the outer wing lags the elevating of the inner wing by 0:03T . As
exhibited in Fig. 5(b), the lift coefficient of the total wing reaches a
minimum of –0.59 at t ¼ 3:10T . The lift coefficient CL;tw increases
continuously to its maximum of 2.89 at t ¼ 3:56T . There is a local
maximum of 1.71 at t ¼ 3:91T in the second half-period. The lift
coefficient CL;iw of the inner wing remains at a lower level of approxi-
mately zero in the first half-period and then grows to a maximum of
1.88 at a similar time to that of the baseline configuration. Overall, the
lift coefficient CL;iw exhibits similar trends before and after optimiza-
tion, which implies that there may be a similar interaction between the
inner wing and its surrounding flow. In contrast, the outer wing is sub-
jected to different lift phenomena. The lift coefficient CL;ow is positive
in the wide interval from t ¼ 3:15T to t ¼ 3:72T . The maximum lift
coefficient CL;ow is 2.38 at t ¼ 3:46T . The lift enhancement of the
outer wing dominates the optimal effect of the total wing.

The smaller drag coefficient CD;tw of the total wing reaches its
peak of 1.10 in advance, i.e., at t ¼ 3:31T in the first half-period. This
occurs in the interval when CD;ow has a greater effect than CD;iw, as
shown in Fig. 5(c). The pitch moment coefficient My;tw presents obvi-
ous variations under the optimal configuration. Its magnitude has two
distinct peaks. The peak jMy;twj ¼ 2:50 at t ¼ 3:61T is attributed to the
component jMy;owj of the outer wing, while the peak jMy;twj ¼ 2:06 at
t ¼ 3:90T is mainly due to the component jMy;iwj of the inner wing.

The average aerodynamic performance between the baseline and
optimal configurations is compared in Table III. The optimized aver-
age lift coefficient CL;tw and average pitch moment coefficient My;tw

TABLE IV. Average aerodynamic performance of conventional gliding.

Configuration CL;tw CD;tw
CL;tw

CD;tw

Conventional gliding
(K2 ¼ 0:00, AoA¼ 0.44)

0.48 0.51 0.94

Conventional gliding
(K2 ¼ 0:00, AoA¼ 0.17)

0.33 0.30 1.13
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are approximately twice as large as under the baseline configuration.
There is a slight increase by 0.07 in the average drag coefficient CD;tw .
The average lift-to-drag ratio is 1.72 times larger than that of the base-
line configuration. The mean streamwise and vertical positions of the
aerodynamic center move backward by 0.07 and upward by 0.13,
respectively. The increased magnitude of pitch moment coefficient
and the shifted aerodynamic center are conducive to flight control.
Hence, the optimized two-jointed flapping wing with local sweep
morphing achieves improved aerodynamic performance.

C. Vortex structures and vortex force

The combination of two-jointed flapping and local sweep morph-
ing produces a complex flow pattern characterized by the interaction

between the inner and outer wings, as shown in Fig. 6. LEVs, trailing-
edge vortices (TEVs), and tip vortices (TVs) attach to the edges of the
wing, as in many common flapping motions. The two-jointed flapping
modifies the vortex structures under the static forward sweep of the
inner wing and the dynamic sweep morphing of the outer wing. For
convenience, the subscripts “iw” and “ow” represent the vortex struc-
tures formed on the inner and outer wings, respectively. The flapping
of the inner wing produces LEViw, which are not uniformly distributed
along the spanwise direction. The size of the vortices in the outer sec-
tion is larger than that in the inner section. Specifically, the complex
motion of the outer wing splits the mature LEVs of the outer wing
into LEVow and one unique vortex (riding the chord line near the mid-
span), which is referred to as the midspan vortex (MSV). Overall,
LEViw; LEVow, and the MSV constitute a T-shaped branched

FIG. 5. Angular parameters and aerodynamic performance over a flapping and morphing period for the optimal configuration (Optimum-FM) of the two-jointed flapping wing
with local sweep morphing. (a) Angular parameters. (b) Lift coefficient. (c) Drag coefficient. (d) Pitch moment coefficient. The white and gray blocks denote the upstroke and
downstroke of the inner wing, respectively.
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structure, which is the main feature of the two-jointed flapping wing
with local sweep morphing. A similar branched structure exists at the
trailing edge, as shown in Fig. 6(b). The new branch is small and is
positioned closer to the wing root. The spanwise vorticity above the
outer wing is released through the shedding of the MSV. In contrast,
the spanwise vorticity over the inner wing is released through the for-
mation of a hairpin-shaped sub-vortex, as shown in Fig. 7. The
hairpin-shaped sub-vortex originates from the detached LEVs from
the inner wing. The LEVs detach from the inner wings at the end of
the downstroke (t=T ¼ 2þ 3=4 in Fig. 7). The detached LEVs are
stretched along the streamwise direction as they are advected down-
stream (t=T ¼ 3 to 3þ 1=2 in Fig. 7). The stretching of the detached
LEVs along the streamwise direction turns the spanwise vortices to

streamwise vorticity, which produces two streamwise vortices in the
form of hairpin “legs” (t=T ¼ 3þ 1=2 in Fig. 7).

Figure 8 shows a schematic of the attached vortex system on the
two-jointed flapping wing with local sweep morphing, qualitatively
describing the distribution of the vortex system. Because of the relative
motion between the inner wing and the outer wing, the MSV carries
part of the spanwise vorticity away from the original LEV and turns its
axis line downstream. The MSV and the TV on the same side have
identical vorticity directions. Nevertheless, the directions of their axis
lines are different.

Figure 9 shows the evolution of the vortex system around the
flapping and morphing wing over a flapping period. At the initial
moment of the period, there is sufficient accumulation of spanwise

FIG. 6. Three-dimensional flow structures around the flapping and morphing wing under the baseline configuration (Baseline-FM). (a) Top view. (b) Bottom view. The vortex
structures are identified with the Q-criterion8 of 0.75. The isosurface is colored by the streamwise velocity.

FIG. 7. Evolution of the hairpin-shaped vortex during ð2þ 3=4ÞT < t < ð3þ 2=4ÞT in the baseline configuration (Baseline-FM). The isosurface of Q¼ 0.75 is colored by
the streamwise velocity.
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vorticity in the LEV of the inner wing, and vortex shedding can be
observed. The LEV of the outer wing attaches to the upper surface
with a flat shape. In the first half-period, from 3T to ð3þ 1=2ÞT , the
LEV is gradually shed from the inner wing. The new LEV of the inner
wing, which carries a small amount of spanwise vorticity, absorbs
energy from the mainstream and grows continuously with the flap-
ping. The LEV of the outer wing is stretched along the streamwise
direction and becomes flatter with the forward sweep morphing of the
outer wing. The LEV is torn because it cannot follow the rapidly
morphing outer wing. At the same time, another new LEV begins to
be generated on the leading-edge line of the outer wing, and the vortic-
ity required to form the MSV is laid on the wing surface. In the second
half-period after ð3þ 1=2ÞT , the LEV of the inner wing continues to
strengthen. In addition, the LEV of the outer wing also grows, while
the MSV moves along the spanwise direction toward the wing root
and merges with the LEV of the inner wing. This process further
strengthens the LEV of the inner wing. The MSV plays an auxiliary
role in stabilizing the LEV of the inner wing. This is due to the fact
that the current inner wing can be considered a low-aspect-ratio wing,
and the MSV serves as its TV.8 Therefore, the LEV of the inner wing

FIG. 8. Schematic of the attached vortex system on the two-jointed flapping wing
with local sweep morphing.

FIG. 9. Evolution of vortex structures
around the two-jointed flapping wing over
a flapping period under the baseline con-
figuration (Baseline-FM). The isosurface
of Q¼ 0.75 is colored by the streamwise
velocity.
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becomes much stronger and generates higher lift around the end of
the period, which is consistent with the lift characteristics in Fig. 3(b).

The vortex force created by the vortex system can be evaluated
by the integral of the Lamb vector,24,25

k ¼ u� x; (17)

where x ¼ r� u is a dimensionless vorticity vector normalized
with U1þ=c. The vertical component kz of the Lamb vector is
uxxy � uyxx , measuring the vortex lift. Figure 10 shows the distribu-
tions of the Lamb vector component kz and its decomposed variables
in four sections at different spanwise positions. The component kz

consists of the variable uxxy and the variable �uyxx . The variable
uxxy dominates the component kz because the variable �uyxx

has much smaller values, as shown in Fig. 10(b). Furthermore, the
variable uxxy expresses the contribution of the spanwise vorticity xy

[see Fig. 10(d)], representing the LEV, to the vortex lift. Similar
distributions of uxxy and the Lamb vector component kz indicate
that the LEV dominates the vortex lift. It can be observed that the
LEV of the inner wing attaches to the upper surface closer to the LEV
of the outer wing in Fig. 10(d).

As shown in Fig. 11(a), gliding leads to a different attached vortex
system from two-jointed flapping. The LEVs of the inner and outer
wings are flat sheets stretching along the flow direction, with no

FIG. 10. Lamb vector component kz ¼ uxxy � uyxx and its decomposition in four sections at t=T ¼ 3þ 5=8 under the baseline configuration of the two-jointed flapping
wing. (a) uxxy . (b) �uyxx . (c) uxxy � uyxx . (d) Spanwise vorticity xy. Each subplot includes four sections at spanwise positions of y¼ 0.0, y¼ 0.5, y¼ 1.0, and y¼ 1.5.
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obvious spiral shape. There is a spatial boundary between the LEVs, and
no effective MSV appears at the boundary. The slightly fluctuating
curves in Figs. 4(b)–4(d) indicate that the forces on the gliding and
morphing wing are not sensitive to changes in the vortices. In Fig. 11(b),
the flow pattern under the optimum configuration is similar to that in
the baseline configuration, albeit with greater unsteadiness. In partic-
ular, the LEV of the outer wing produces a secondary bifurcation due
to the faster morphing rate of the outer wing later in the period.
Additionally, the increase in flapping frequency compared with the
baseline configuration increases the relative velocity between the
incoming flow and the wing tip by a factor of 1.40. In this work,
the cross section of the wing is a thin flat plate, where flow separation
occurs at the leading-edge point of the wing. The separation point is
independent of the Reynolds number. Therefore, we assume that the
aerodynamic forces are dominated by the Strouhal number and wing
morphology. However, the Reynolds number effect might affects the

forces in flapping flight. It is worth investigating the effects of the
Reynolds number in future work.

Figure 12(a) shows the distributions of the spanwise vorticity xy

and the Lamb vector component kz under the baseline configuration
for gliding (Baseline-GM). The spanwise vorticity is concentrated in a
slender region at the four spanwise positions, which indicates that the
LEV on the gliding wing has a thin layered structure. The LEV and the
surface fail to enclose the recirculation zone. The Lamb vector compo-
nent kz has a similar distribution to the spanwise vorticity. These fea-
tures exist throughout the period. The lack of LEV attachment results
in the low lift.

As exhibited in Fig. 12(b), the optimal configuration for two-
jointed flapping makes the LEVs of the inner and outer wings attach
more tightly to the upper surface than the baseline configuration.
In addition, the spanwise vorticity has a larger magnitude and wider
distribution, which indicates stronger LEVs under the optimal

FIG. 11. Evolution of vortex structures in
a flapping period under (a) baseline con-
figuration (Baseline-GM) for gliding and
(b) optimum configuration (Optimum-FM)
for two-jointed flapping. The isosurface of
Q¼ 0.75 is colored by the streamwise
velocity.
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configuration. These characteristics are also demonstrated in the
Lamb vector component kz . Therefore, the strength and stability of
the LEVs have been optimized to generate higher vortex lift.

Figure 13 displays the attached vortex system and the vortex lift
concentration zone, clarifying the generation of the maximum instanta-
neous lift under the optimal configuration. The lift peaks of the outer
wing and the total wing occur at around t=T ¼ 3þ 1=2 [see Fig. 5(b)].
The MSV has just formed on the outer wing and its end intersects with
the TV. The main part of the MSV becomes attached to the upper
surface of the outer wing, and there is a large angle between the MSV
axis and the flow direction. The large inclination of the MSV means
that it enhances the lift in a similar way to the LEV of the outer wing.

The combination of the MSV and the LEV of the outer wing allows
the outer wing to gain much higher vortex lift, as can be seen from the
vortex lift concentration zone in Fig. 13(b).

IV. CONCLUSION

The aerodynamic performance of a bio-inspired two-jointed flap-
ping wing with local sweep morphing has been investigated by numer-
ically solving the incompressible Navier–Stokes equations. We
compared the lift coefficient, drag coefficient, pitch moment coeffi-
cient, and average aerodynamic center position of the two-jointed flap-
ping wing and a counterpart gliding wing. The average lift coefficient
of the two-jointed flapping wing was found to be 1.50 times that of the

FIG. 12. Spanwise vorticity xy (left) and Lamb vector component kz (right) in four sections at t=T ¼ 3þ 5=8. (a) Baseline configuration for gliding (Baseline-GM).
(b) Optimum configuration for two-jointed flapping. Each subplot includes four sections at spanwise positions of y¼ 0.0, y¼ 0.5, y¼ 1.0, and y¼ 1.5.
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gliding wing under the same local sweep morphing. Two-jointed flap-
ping enhances the average lift-to-drag ratio by a factor of 1.34, which
indicates that the increase in the average lift coefficient is larger than
that in the average drag coefficient. The magnitude of the pitch moment
coefficient increases by 77%, and the aerodynamic center moves back-
ward by 0.09 chord length, which indicates that two-jointed flapping
also has significant advantages over gliding in terms of the maneuver-
ability/agility and stability of flight. The unique vortex structures around
the two-jointed flapping wing are MSVs, which originate from the LEV
of the inner wing. The MSVs interact with the LEVs on the inner and
outer wings. Specifically, the MSVs stabilize the LEVs on the inner
wing. The high lift of the total wing in two-jointed flapping flight results
from the strong LEV attached to the inner wing. We also optimized the
kinematics of combined two-jointed flapping and local sweep morph-
ing. The optimal kinematics allows the outer wing to capture the MSV.
Consequently, the average lift coefficient of the optimized combined
motion is approximately twice that under the baseline configuration.
The results presented in this paper reveal the vortex structures and
physics underlying the enhanced performance of a combined two-
jointed flapping wing and local sweep morphing, shedding light onto
the dynamics of such configurations.
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