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Abstract. A coupling framework that leverages the advantages of the diffuse and
sharp interface immersed boundary (IB) methods is presented for handling the in-
teraction among particles and particles with the static complex geometries of the envi-
ronment. In the proposed coupling approach, the curvilinear IB method is employed
to represent the static complex geometries, a variant of the direct forcing IB method
is proposed for simulating particles, and the discrete element method is employed for
particle-particle and particle-wall collisions. The proposed approach is validated using
several classical benchmark problems, which include flow around a sphere, sedimen-
tation of a sphere, collision of two sedimenting spheres, and collision between a par-
ticle and a flat wall, with the present predictions showing an overall good agreement
with the results reported in the literature. The capability of the proposed framework is
further demonstrated by simulating the interaction between multiple particles and a
wall-mounted cylinder, and the particle-laden turbulent flow over periodic hills. The
proposed method provides an efficient way to simulate particle-laden turbulent flows
in environments with complex boundaries.
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1 Introduction

Particle transport in a carrier fluid is often encountered in engineering and environmental
applications. Examples of such flows include transmission of droplets during a cough [1,
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2], suspension and sedimentation of aspherical particles [3, 4], sediment transport [5]
and dispersion of contaminants [6]. Approaches for simulating particle-fluid interaction
can be classified into two categories according to whether the particles are modeled or
resolved. The particle-modeled methods include the fully Eulerian method in which only
one-way interaction is considered [4, 5], the Eulerian-Eulerian method [7, 8] in which the
governing equations of the fluid phase and the particle phase are both solved by using
the Eulerian approach, the point-particle Eulerian-Lagrangian method [9] in which the
particles are treated as point sources to the fluid momentum and are evolved via a given
drag law. The immersed boundary (IB) method [10], which can resolve the geometry of
particles, belongs to the particle-resolved category.

The classic IB method was proposed by Peskin to simulate blood flows [10]. Up to
date, various IB methods have been proposed [11–13], which can be classified into the dif-
fuse interface and the sharp interface IB methods. The diffuse interface IB methods reg-
ularize the discontinuous across the fluid-structure interface by using kernel functions,
which include the regularized Dirac delta functions [10, 14–18], the reproducing kernel
particle method delta function [19] and the moving-least-squares reconstructions [20,21].
Different variants of the diffuse interface IB method also differ in how the forces on the
IB are computed. In the classical IB method [10], the IB forces on the flexible boundary
are computed via the constitutive law, e.g., Hook’s law. When applying such methods to
rigid boundaries, spring constants of very high magnitudes have to be employed, causing
issues of numerical instability. To solve this problem, the diffuse interface direct forcing
IB method [14], which calculates the forces on the boundary by satisfying the no-slip
boundary conditions, was then proposed and developed [17]. As an alternative to the
diffuse interface IB methods, the sharp interface IB methods include the curvilinear im-
mersed boundary (CURVIB) method [22], the immersed interface method [23–26], the
Lagrange-multiplier based fictitious domain methods [27], the cut cell methods [28, 29],
and the embedded boundary methods [30, 31], which differ in the ways of applying the
boundary conditions. In the cut cell method, the cells cut by the boundary are reshaped
according the actual geometry, where the boundary conditions are directly imposed. In
the immersed interface method, the boundary conditions are applied based on stress dis-
continuities via jump conditions for the velocity, the pressure and their derivatives, which
enables simulating also interface problems not restricted to fluid-solid boundaries. In the
CURVIB method and others, the boundary conditions are imposed by reconstructing the
velocity (and pressure) field near the boundary.

Different approaches have been developed to satisfy the no-slip boundary condition
on the IB more accurately for the diffuse interface IB method. Su et al. [32] proposed to
take into account the effect of force distribution process in the determination of forces on
the IB by solving a linear equation with coefficients forming a banded matrix so that the
no-slip boundary condition can be completely satisfied. Wang and Zhang [33] extended
the matrix inversion idea to the discrete stream function flow solver. Wang et al. [34]
introduced an iterative direct forcing IB method to avoid the penetration of streamlines
across the boundary. To minimize the effect of the Dirac delta function on the simulated
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results, Breugem [35] used an inward retraction technique to improve the accuracy near
the IB. In the present work, a variant of the direct forcing IB method with subiterations
is proposed to satisfy the no-slip boundary conditions more accurately. The proposed
approach can be employed for discrete delta functions of any widths, without the need
to construct the banded matrix as in Su et al. [32], which can be cumbersome for discrete
delta functions other than the two-point hat function.

There are two advantages of the diffuse interface IB method: 1) a smooth represen-
tation of the boundary relieves the requirement on background grid resolution in order
to model the boundary smoothly; (2) no pre-process is required for classifying the back-
ground grid nodes, making it naturally suitable for moving boundary problems. How-
ever, one drawback of the diffuse interface IB method is the relatively lower accuracy
near the IB boundary caused by the smear effect of the distributed force. In cases where
the flow near the boundary matters, the diffuse interface IB method might not be the
ideal choice. The key advantage of the sharp interface IB method is the sharp represen-
tation of the IB, which enables approximately the same accuracy of the predicted flow
near the IB when compared with that away from it. In the sharp interface IB method, the
background grid nodes need to be classified as fluid nodes, solid nodes and those nodes
near the interface. For the IB method based on the velocity reconstruction, the fluid nodes
and nodes on the boundary, which are employed for the velocity interpolation, need to
be identified. This process can be time-consuming for large-scale simulations with im-
mersed boundaries with a large number of discrete points. Such pre-process needs to
be performed for every time steps, making it undesirable for moving boundary prob-
lems with many bodies, e.g., particulate flows. Furthermore, for moving boundary prob-
lems, some types of sharp interface IB methods often show nonphysical force oscillations
caused by the change of types of the background grid nodes. Methods for suppressing
these oscillations can be found in these references [24, 26, 36, 37].

For moving boundaries problems where contact between boundaries exists, body-
fitted methods like the arbitrary-Lagrangian-Eulerian method is cumbersome. For the
IB methods, three workarounds have been proven to be effective. One simple solution
is to resolve the fluids near the contact region with sufficient high resolution using the
adaptive mesh refinement (AMR) technique [25]. The so called lubricated IB method, on
the other hand, employs the jump conditions based on the lubrication theory to simu-
late the contact between a vesicle and a narrow channel [38]. The above two approaches,
which is either relied on complicated programming for the AMR technique or compli-
cated formulations for the IB method, cannot be easily applied to particle-laden flows
with arbitrarily complex boundaries. The third treatment of the contact, which was pro-
posed by Biegert et al. [39] and dubbed as the ‘dry’ contact approach, excludes the near
wall Lagrangian points to prevent the non-physical adhesion of the solid body on the
wall. The third approach is easier to implement when compared with the other two.
However, it is yet to be extended to particle-laden flows when the particles collide with
the complex boundaries of the environment.

The objective of this work is to develop a framework of hybrid diffuse interface and
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Figure 1: Schematic for particulate flows in environments with complex boundaries. In the proposed method,
the complex bathymetry and marine structures are solved using the sharp interface immersed boundary method,
while the particles are simulated using the diffuse interface immersed boundary method.

sharp interface IB methods, which takes advantages of both methods, for simulating fluid
transportation of rigid particles in environments with complex boundaries. A typical sce-
nario is demonstrated in Fig. 1, where sand particles collide on a cylinder mounted on
a complex bathymetry. Other scenarios include particle-wall interactions with complex
geometries existing in the transport gasifier, the fluidized bed, and the process of inhaled
drug delivery. In this paper, we propose to simulate the stationary complex boundaries
(e.g., the bathymetry and the wall-mounted cylinder) and the particles using the sharp
interface CURVIB method [22] and the diffuse interface direct forcing IB method, respec-
tively. When combining the diffuse interface direct forcing IB method and the CURVIB
method, the ‘dry’ contact approach of Biegert et al. [39] is employed to prevent the non-
physical adhesion of particles on the complex geometry. Because of the large number of
particles in some applications with particulate flows and the low particle Reynolds num-
ber, the employed background grid might be relatively coarse in terms of resolving the
particle. Because of this low resolution, the no-slip boundary conditions cannot be satis-
fied as desired. To enforce the no-slip boundary conditions on the IBs more accurately, we
use the above mentioned variant of the direct forcing IB method with subiterations that is
developed in this work. In comparison with previous approaches, the proposed frame-
work is advantageous in the following two aspects: 1) arbitrarily complex boundaries
of the environment can be handled easily with the CURVIB method [40], which is cum-
bersome or even impossible for the methods based on body-fitted grids, and is smeared
for the diffuse interface IB methods, respectively; 2) particle transport can be simulated
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accurately and efficiently with the diffuse interface direct forcing IB method with itera-
tions, which requires complicated mesh techniques for the methods based on body-fitted
grids, and may suffer from non-physical force oscillations and requires computationally
expensive preprocessing (e.g., for the classification of the background grid nodes) for
the sharp interface IB methods, respectively. With the above two advantages, particle-
resolved simulations of particulate flows in the presence of complex boundaries, which
are rarely reported in the literature, can be easily handled with the proposed method
(which is arduous for the conventional approaches).

The rest of the paper is structured as follows. In Section 2 we introduce the hybrid
diffuse interface and sharp interface IB method followed by the validation using classic
benchmark problems in Section 3. Then the proposed approach is applied to simulate
flow past a wall-mounted circular cylinder with multiple particles. In Section 4 we simu-
late and analyze particle-laden turbulent flows around periodic hills. At last, conclusions
are drawn in Section 5.

2 Hybrid diffuse and sharp interface IB methods

In this section, we present the framework of hybrid diffuse and sharp interface immersed
boundary methods. A schematic for this hybrid framework is shown in Fig. 2, where a
particle collides with a structure. The structure is represented using the CURVIB method,
which is proposed by Ge and Sotiropoulos [22] and will be briefly described in Subsec-
tion 2.1 together with the flow solver. The particle is simulated using the direct forcing
IB method with subiterations, which will be introduced in Subsection 2.2. The collision
among particles, and the collision between the particles and the wall are handled us-
ing the discrete element method (DEM), which will be described in Subsection 2.3. The
present framework is an extension of the VWiS code [41], which has been successfully ap-
plied to turbulent flows in wind energy applications [42, 43]. Apart from the well-tested
CURVIB module that includes the flow solver, the new development of the present work
includes the module of the diffuse interface IB method with subiterations and the cou-
pling with the DEM library.

Before detailed descriptions for different components of the proposed framework, its
overall computational procedure is introduced in the following, where the subscripts n
and n+1 denote the previous and current time steps, respectively.

1. Enforce the boundary conditions on the complex boundaries of the environment
using the CURVIB method based on the flow at step n.

2. Compute the forces on the surface of the particles using the diffuse interface IB
method presented in Section 2.2.

3. Advance the discretized Navier-Stokes equations to obtain the flow field at step
n+1, with the boundary conditions enforced in the first step and the Eulerian forces
distributed from the surface of the particles in the second step.
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Figure 2: Schematic of the coupling of the sharp interface (zoomed part in the right part) and diffuse interface
(zoomed part in the left part) IB methods implemented in two spatial dimensions. The particle is represented
by a circle and simulated by the diffuse IB method. The active and inactive Lagrangian points of the diffuse IB
are represented by open and filled circles, respectively. The fluid variables are interpolated to cell centers before
they are used in IB calculations.

4. Advance the governing equations for the motion of the particles to step n+1 using
the discrete element method described in Section 2.3.

5. Go to the next time step.

It is noted that although the loose coupling approach is adopted in this study as demon-
strated by the above procedure, a strong coupling approach with subiterations within
each time step can be directly implemented if necessary.

2.1 Flow solver and the curvilinear immersed boundary method

The governing equations for the flow are the three-dimensional, incompressible Navier-
Stokes equations in non-orthogonal, generalized, curvilinear coordinates, which read in
compact tensor notation (repeated indices imply summation) as follows (i, j,l=1,2 and 3
representing x,y and z directions, respectively):
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J
∂U j

∂ξ j
=0, (2.2)

where J is the Jacobian of the geometric transformation, xi and ξ i are the Cartesian and
curvilinear coordinates, respectively, ξ i

l =∂ξ i/∂xl are the transformation metrics, ui is the
ith component of the velocity vector in Cartesian coordinates, Ui =(ξ i

m/J)um is the con-

travariant volume flux, gjk = ξ
j
l ξ

k
l are the components of the contravariant metric tensor,

ρf is the density of the fluid, µf is the dynamic viscosity of the fluid, p is the pressure, and
fl are the body forces introduced by the direct forcing IB method for particles.
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The governing equations are discretized using a second-order central difference scheme
and advanced in time using a second order fractional step method with the second-order
Crank-Nicholson scheme. Steps for solving the governing equations to facilitate the de-
scription of the IB methods are listed as follows (variables on the Cartesian coordinate
system are employed for simplifying the notation):

1. Solve Eq. (2.1) for the intermediate velocity as follows

u∗i −un
i

∆t
= rhs∗i + f

n+ 1
2

i , (2.3)

in which u∗i is the intermediate velocity, and

rhs∗=−u∗i +un
i

2
Grad

(

u∗i +un
i

2

)

+Grad

(

pn

ρ f

)

+
µf

ρf
Lap

(

u∗i +un

2

)

(2.4)

denotes the collection of the convection term, the viscous term, and the pressure
gradient term. Here, Lap and Grad are discretizations of the Laplacian operator
(∆=∇2) and the gradient operator (∇). In this step, the velocity reconstruction and

computation of f
n+ 1

2
i for enforcing boundary conditions for the CURVIB method

and the direct forcing IB method, respectively, are carried out, in which the latter
will be explained in detail in Section 2.2. In the expression for the volume force, i.e.,

f n+1/2
i , the superscript is to denote the fact that it is computed in the direct forc-

ing IB method by explicitly advancing the momentum equation for one time step,
which will be explained in Section 2.2. When actually solving the fluid flow, the
momentum equation is advanced in time via the Crank-Nicholson scheme, except
for the pressure gradient term, which is computed using the values from the pre-
vious time step. The discretized momentum equation is solved using a matrix-free
Newton-Krylov method [22, 41].

2. Solve the following Poisson equation for satisfying the continuity equation.

Lap(φ)=
2ρf

∆t
Grad(u∗i ), (2.5)

where φ is the pressure increment. In this step, the boundary condition for the pres-
sure is then enforced on cells with neighbors of IB nodes for the CURVIB method.
In the present work, the above Poisson equation is solved using the Generalized
Minimal Residual (GMRES) method with an algebraic multi-grid acceleration.

3. The velocity and pressure at time step n+1 are finally obtained as follows

un+1
i =u∗i +

∆t

ρf
Grad(φ), (2.6)

pn+1= pn+φ. (2.7)
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In the CURVIB method, the background grid nodes are classified as fluid nodes, solid
nodes and IB nodes, in which the IB node is identified as the fluid node with neighbors
in the solid. The ray tracing method [44] is employed for the classification of background
grid nodes. The velocity at the IB node is reconstructed in the wall normal direction
using the velocity at the boundary and the velocity at the reconstruction point [41]. For
instance, the velocity at the reconstruction point R can be interpolated using the velocities
at points P and Q as shown in Fig. 2. The boundary condition for the gradient of the
pressure is applied at the face center between the IB node and the fluid node.

2.2 The diffuse interface direct forcing IB method with subiterations

In the diffuse interface direct forcing IB method, the forces on the Lagrangian points,
which represent the geometry of the particle, are computed by directly satisfying the
boundary conditions. When the particle collides with the complex geometry, certain La-
grangian points enter/move close to the region of the static structure. In these scenario,
we use the ‘dry’ contact approach of Biegert et al. [39] so that these Lagrangian points are
free of calculating the Lagrangian forces and distributing the force to their surrounding
Eulerian points. As shown in Fig. 2, the Lagrangian point is set as inactive when its dis-
tance to wall is smaller than the band width of the employed discrete Dirac delta function
(i.e., 2.5∆x for the simulated cases)

un+1
i (x)−un

i (x)

∆t
= rhsn

i + ∑
X∈gL

Fn+1/2
i (X)δh(x−X)VL(X), (2.8)

where gL denotes the collection of the Lagrangian points, X denotes the coordinates of the
Lagrangian points, δh is the discrete delta function, VL(X) is the volume of the Lagrangian
point. The upper script n+1/2 for F indicates the fact that the forces are obtained by
advancing the momentum equation explicitly for one step (Eq. (2.11)). The rhsn

i term
collects the convection, viscous and pressure gradient terms at time step n. In the above
equation, the force distribution process for computing fi reads as follows

f n+1/2
i (x)= ∑

X∈gL

Fn+1/2
i δh(x−X)VL(X). (2.9)

Eq. (2.8) is then re-organized as follows

un+1
i (x)−ũi(x)

∆t
= ∑

X∈gL

Fn+1/2
i (X)δh(x−X)VL(X), (2.10)

where the estimated velocity is computed by

ũi=un
i +rhsn

i ∆t. (2.11)
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Interpolating the Eq. (2.10) to the Lagrangian points, the following equation is obtained,

Ud
i (X)−Ũi(X)

∆t
= ∑

x∈gb

∑
X∈gL

Fn+1/2
i (X)δh(x−X)δh(x−X)VL(X)Vb(x), (2.12)

where Ud
i are the desired velocity on the boundary, Vb(x) is the volume of the background

grid node, and Ũ is obtained via the velocity interpolation as follows

Ũi(X)= ∑
x∈gb

ũi(x)δh(x−X)Vb(x). (2.13)

Eq. (2.12) for Fi can be solved easily in a direct way when the two-point hat function
is employed for force interpolation. However, banded matrix cannot be formed easily
for discrete delta functions in three spatial dimensions. In this work, we employ the
smoothed 4-point discrete delta function proposed by Yang et al. [15] for force distribu-
tion and velocity interpolation with a better conservation of the force and the torque and
their derivatives, which are of vital importance for moving boundary simulations in or-
der to reduce the non-physical force oscillations. We propose to solve Eq. (2.12) in an
iterative way as follows

1. Give an initial guess (k=0) of the Lagrangian Force as

Fk
i =

Ud
i (X)−Ũi(X)

∆t
, (2.14)

in which the coupling between the force distribution (for computing velocity on the
background grid nodes) and the velocity interpolation (for computing forces on the
Lagrangian points) is neglected.

2. Distribute forces from the Lagrangian points to the background grid nodes via

f k
i (x)= ∑

X∈gL

Fk
i δh(x−X)VL(X). (2.15)

3. Compute the estimated velocity on the background grid nodes via

ũk+1
i =un

i +rhsn
i ∆t+ f k

i ∆t. (2.16)

4. Compute the estimated velocity on the Lagrangian points via

Ũk+1
i (X)= ∑

x∈gb

ũk+1
i (x)δh(x−X)Vb(x). (2.17)

5. Compute the error via

error=MaxX∈gL
|Ũd

i (X)−Ũk+1
i (X)|. (2.18)
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6. If the error is less than a threshold or the allowed maximum number of iteration
(which is 6 for the present cases) is achieved, stop the subiteration; otherwise, com-
pute the Lagrangian forces via

Fk+1
i =

Ud
i (X)−Ũk+1

i (X)

∆t
, (2.19)

and go to step 2.

With the Lagrangian forces at each point, the total force and torque on the particle are
computed as follows

FIB =−ρ f ∑
x∈gL

F(X)VL(X)+ρfVs
Un−Un−1

∆t
, (2.20)

and

T IB=−ρf ∑
x∈gL

(X−Xc)×F(X)VL(X)+
ρf

ρs
Is

ωn−ωn−1

∆t
, (2.21)

which will be employed in the discrete element simulations, where the second terms on
the right-hand-side of the above equations are correction terms for minimizing the effect
of non-physical motion inside the particle [45], which may appear for diffuse interface IB
methods.

It is noticed that the explicit Euler scheme employed in the above formulation is not
consistent with the temporal scheme for solving the flow in Eq. (2.3), with the objective
to reduce the computational cost of solving the momentum equation in each subitera-
tion when computing the Lagrangian force. As will be shown in the validation cases,
the proposed approach can predict well the quantities of interest. This approach can
also be modified to be consistent with the temporal scheme of the flow solver when ex-
plicit schemes are employed for different non-boundary-conforming methods [17,34,35].
Compared with the methods using matrix inversion [32,33], the proposed method has an
advantage of no need to carefully distribute the boundary points.

The ‘master-to-slave’ approach proposed by Uhlmann et al. [46] is adopted for the
parallelization of the particle-related calculations. The data of the spheres including the
position, velocity of the particles are stored on all processors. The ‘master’ processor is
the processor where the particle centered at gathers the Lagrangian velocity from all slave
processors. Then the Lagrangian velocities are distributed to the ‘slave’ processors from
the ‘master’ processor. We then calculate the Lagrangian forces in each ‘slave’ processor
and use the Dirac delta function to distribute the Lagrangian forces to local background
nodes. Note that the ‘slave’ processors should contain at least one Lagrangian node be-
longing to the specific particle. When the particle is only within one processor, there are
no ‘slave’ processors. In the cases considered in this work, only Cartesian grids are con-
sidered to discretize the fluid domain and the whole domain is partitioned into multiple
cuboids.
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2.3 Discrete element method for particle motion and collision

The motion of the particle is governed by Newton’s second law and the collision be-
tween particles is handled by using the discrete element method implemented in the
open source code Yade [47].

2.3.1 Damping

During particle-wall collision (the gap distance between the particle and the wall is within
[0,∆x], in which ∆x is the smallest space step of the fluid solver), numerical damping is
added to dissipate the kinetic energy.

F̃all=Fc+Fl+FIB, (2.22)

Fall=

(

1−ηdsgn

(

F̃all

(

U+
a∆t

2

)))

F̃all, (2.23)

in which ηd is the coefficient of damping.

2.3.2 Solid motion

The governing equations for the motion of the particle are

dU

dt
=a, (2.24)

dX

dt
=U, (2.25)

dw◦

dt
=w, (2.26)

W =R(w◦)W , (2.27)

in which R, w◦, w and W are the rotation matrix, the angular velocity, the angular ac-
celeration and the orientation angle, respectively. The translational acceleration can be
obtained via

a=
Fall

ms
+

ρs−ρf

ρf
g, (2.28)

where g is the gravity acceleration, ms is the mass of the particle, and Fc is the force due
to the contact of particles. For rotational motions of a particle,

Iw=Tc+T IB, (2.29)

in which I is a diagonal moment of inertial tensor with Ixx=Iyy=Izz and T is the torque.
The “leapfrog” method is employed for advancing the translational motion of the

particle, such that the displacement and the translational velocity are updated via

U←−n +
←−
1
2

=U←−n −
←−
1
2

+a←−n
←−
∆t, (2.30)

X←−n +
←−
1
=X←−n +U←−n +

←−
1
2

←−
∆t, (2.31)
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where the← symbol over the variables represent the time scale used in DEM calculations.
Typically, ∆t←−

∆t
∼O(100). Then the angular velocity is updated by

ω
◦=ω

◦
←−n +
←−
1
2

=ω
◦
←−n −
←−
1
2

+
←−
∆tw←−n . (2.32)

Therefore we can define a quaternion with four components

∆W =cos(∆W)+
sin(∆W)√

3
i+

sin(∆W)√
3

j+
sin(∆W)√

3
k, (2.33)

in which ∆W = ||ω◦∆t
2 || and i, j and k are unit vectors in three spatial axes. Finally the

quaternion can be updated as

W←−n +
←−
1
=∆W←−n +

←−
1

W←−n . (2.34)

It should be noted that there is a half time step mismatch for the “leapfrog” algorithm
described above. However, the time step for the particle motion is about two orders of
magnitude smaller than the fluid. Therefore, the effect of the mismatch in time can be
considered to be negligible. At the initial fluid time step, U←−n −

←−
1
2

is either prescribed or

set to be zero for the particle at rest.

2.3.3 Contact model

The detection of the collision of spheres and bounding boxes employs the ‘sweep and
prune’ algorithm of O(N logN) complexity with the collision model proposed by Cun-
dall and Strack [48]. The normal force is calculated by

Fc
N =KNX

pq
N , (2.35)

where KN is the normal stiffness, X
pq
N = −δpq(Xq−X p)/||Xq−X p|| is the relative dis-

placement between particle p and particle q in the normal direction of contact with δpq=
||Xq−X p||−D. Here, D represents the diameter of the sphere.

To obtain the tangential force, we need to calculate the trial shear force first by

Ft
T =KSX

pq
T , (2.36)

where KS is the shear stiffness, which is related with the normal stiffness by KS =
KN

2(1+µs)
,

in which µs is Poisson’s ratio and is chosen to be 0.45 in this study. Then the tangential
force is calculated by

Fc
T =

{

Ft
T
|FN |tanφ

|F t
T|

, if |Ft
T|> |FN |tanφ,

Ft
T, otherwise,

(2.37)

in which φ is the friction angle. As the contact force (Fc=Fc
N+Fc

T) acts at the contact point,
torques generated by the contact forces should be considered, leading to

Tc=dc(−n)×Fc, (2.38)

in which dc is the distance between the sphere center and the contact point.
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3 Benchmark simulations

In this section, the accuracy and robustness of the numerical methods presented in Sec-
tion 2 are validated by simulating several benchmark problems. We first verify the vari-
ant of the diffuse interface IB method in simulating problems involving static and moving
boundaries in Sections 3.1-3.2. Then the capability of the coupling of the diffuse interface
IB method and the DEM method in simulating particle to particle collision is shown in
Section 3.3. In Section 3.4, the accuracy of the coupling between the CURVIB, the diffuse
IB and the DEM methods are verified. As the forces are distributed to the Eulerian grid
nodes close to the immersed boundaries in the diffuse interface IB method, the effective
radius of the spherical particle is larger than the actual one. For the cases presented in
Sections 3.2-3.4, the input diameter used for discretizing the surface of the particle is cho-
sen as Dinput =D−∆x (which is similar to the treatment in the literature [35]), where ∆x
is the grid spacing of the Eulerian grid. Note that in Section 3.1 the actual diameter is
employed, i.e., Dinput =D, is used in order to examine the order of accuracy of the pro-
posed diffuse interface IB method, where the number of grid nodes for discretizing the
diameter is large for the fine grid case that the above effect is not significant.

3.1 Flow around a sphere

Flow around a sphere is a typical benchmark problem for testing numerical methods
designed to simulate immersed boundaries in fluids. To validate the proposed diffuse in-
terface IB method, we consider a sphere with diameter D=1 centered at (15D,15D,10D).
The physical domain is chosen as [0,30D]×[0,30D]×[0,30D]. A uniform inflow velocity
U = (0,0,1) is imposed on z = 0, and the convective boundary condition is imposed at
z=15 as an outflow condition. Along the other boundaries, the freeslip boundary condi-
tion is specified. We set ρf=1 and use the inflow velocity U as the characteristic velocity

so that the Reynolds number is defined as Re= ρfUD
µf

. After discretization, the sphere di-

ameter is D=40∆x and the surface of the sphere is discretized via triangular mesh with
∆X≈∆x, where ∆x is the smallest background mesh size. The computational domain is
discretized by using a nonuniform orthogonal mesh of 281×281×421. We use a fine re-
gion of 3D×3D×1.25D by uniformly distributed meshes of ∆x= D

40 . The CFL number is
chosen as 0.8. The drag coefficient, lift coefficient and the Strouhal number are defined as

CD= Fz

0.5ρU2A
, CL=

Fy

0.5ρU2A
and St= f D

U , respectively, where A= πD2

4 and f is the frequency

of the drag coefficient.

Two cases with Reynolds numbers of Re=100 and Re=300 are considered. At Re=100,
the flow field ends in a steady state, a comparison of the drag coefficients obtained by
the proposed variant of the direct forcing IB method and the reference values from the
literature are shown in Table 1. It is seen that the present prediction agrees well with
those published results. An instantaneous vorticity field and streamline for the case of
unsteady flow at Re= 300 is shown in Fig. 3, where the vorticity field is represented by
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Table 1: Comparison of CD, CL and St with reference values at Re=100 and 300.

References Re=100

CD

Johnson and Patel [49] 1.10

Fadlun et al. [50] 1.08

Wang and Zhang [33] 1.13

Present 1.136

Re=300

CD CL St

Johnson and Patel [49] 0.656 0.069 0.137

Kim et al. [51] 0.657 0.067 0.134

Wang and Zhang [33] 0.680 0.071 0.135

Present 0.678 0.062 0.131

Table 2: List of the drag coefficient and the order of accuracy of the diffuse interface IB method for simulating
flow around a circular cylinder.

D CD Ors

20∆x 1.163

30∆x 1.140 4.35

40∆x 1.136

the Q criterion. The Q value is defined as Q= 1
2(Ω : Ω−S : S), where Ω= 1

2(∇u+∇uT)

and S= 1
2(∇u−∇uT) are the rate of strain and the rate of rotation tensors. This criterion

implies that the vortex core is the region where the strength of rotation overcomes the
strain. The evolution of CD against time is shown in Fig. 4. We also present the average
drag and lift coefficients and the Strouhal number (St) in Table 1. Again, the present
results are in good agreement with the results reported in the literature. The order of
accuracy is defined as [52]

Ors= logDc/Df

(

ec

ef

)

, (3.1)

in which Dc and Df corresponds to the number of Eulerian grid points per diameter of the
sphere for the coarse and the fine meshes, respectively, ec and ef are the errors from the
coarse and the fine meshes. Here, the errors are calculated with reference to the solution
from the finest mesh case using the Richardson extrapolation method. From Table 2, it is
seen that the order of accuracy for the drag coefficient is 4.35. Because CD is quadratic to
the velocity, the error of the velocity should be approximately 2.09. Therefore, the spatial
order of accuracy of the proposed diffuse IB method is “formal” second-order.
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Figure 3: Instantaneous vorticity fields for flow around a sphere by means of isosurface of the Q-criterion at
Re=300. The isosurface is colored by the magnitude of the velocity (Umag).

Figure 4: Evolution of the drag coefficient against time for flow around a sphere at Re=300.

3.2 Sedimentation of a sphere in a quiescent viscous fluid

The sedimentation of a sphere particle in an initially quiescent fluid region is simulated
by using the proposed variant of the diffuse interface IB method. At t = 0, the sphere
is centered at [5D, 5D, 8D] with the fluid domain of [0,10D]×[0,10D]×[−0.5D,11.5D],
where D= 1 is the diameter of the sphere. In the simulation, we use ∆X =∆x = D/16.
The parameters that govern the system are shown in Table 3. The CFL number is 0.6 for
Re = 32.2 and is decreased when the Reynolds number becomes smaller. As shown in
Fig. 5(a) for the displacement of the center of the sphere, the time consumed from the
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Table 3: Dimensionless parameters for the sedimenting sphere.

Re ρs µf ρf g

1.5 1.155 0.067 1 -1

4.1 1.161 0.038 1 -1

11.6 1.164 0.020 1 -1

32.2 1.167 0.011 1 -1

(a) (b)

Figure 5: Comparison of the velocity and displacement of the particle during sedimentation for various Reynolds
numbers for our present simulation and the results of Cate et al. [53].

initial release position to the bottom of the domain becomes less as the Reynolds number
increases. From Fig. 5(b), the sphere reaches the terminal velocity for Re= 1.5, 4.1 and
11.6 while the magnitude of the velocity in the z direction still grows for Re=32.2. It can
also be concluded from Fig. 5 that the present numerical results are in good agreement
with the experimental results of Cate et al. [53].

3.3 Collision of two sedimenting spheres in a confined channel

When multiple particles move in the same fluid domain, collision between the particles
are common. In this section, we study the collision of two sedimenting spheres in a
confined channel.

The dimensionless variables are given as follows. The computational domain is a box
of [0,6D]×[0,6D]×[0,24D] with rigid walls on all the boundaries of the domain. The
gravity is g=−1. The densities of the sphere and the fluid are 1.14 and 1, respectively.
The dynamic viscosity of the fluid is ν = 4.68×10−3. In this simulation, the stiffness is

chosen as KN = 100ms ||g||
D . The initial positions of the leading and trailing particles are lo-

cated (2.97D,2.97D,18.96D) and (3.03D,3.03D,21D), respectively, with the initial vertical
distance between the two particles being equal to 2.04D, and the initial distances in the
x and y directions 0.06D to trigger the drafting−kissing−tumbling (DKT) process. The
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Figure 6: Trajectories of two sedimenting spheres undergoing the DKT process. The numbers in the square are
added to identify the order of the sedimentation process.

CFL number is chosen as 0.5. The sedimentation process of the two spheres are shown in
Fig. 6, where the leading and trailing particles are colored in red and blue, respectively.
We compare the obtained results with Breugem [35] in Fig. 7. As seen, the curves of the
velocity and the displacement for the three different meshes of ∆x = D/10, D/13 and
D/16 are similar to each other, and the results for the latter two meshes are very close.
Here, ∆x is the smallest background mesh size. For ∆x=D/16, after an initial drafting
period, the two particles come close to each other and “kiss” at around t=28 when their
velocities become almost identical. Then the two spheres separate and “tumble” in their
own paths without further colliding.

3.4 Collision between a particle and a flat wall

In Section 3.3, the proposed diffuse IB method with DEM is verified for particle-particle
collisions. In this part, the experiment by Gondret et al. [54] is chosen to examine the ac-
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(a) (b)

Figure 7: Comparison of the velocity and displacement of the leading particle and the trailing particle during
the DKT sedimentation process obtained by our present simulation and the numerical results of Breugem [35].

Table 4: Dimensionless parameters for the bouncing particle case.

Case Stc =27 Stc=152

Uin 1 1

D 1 1

ρs/ρf 8.083 8.342

g -0.219 -0.086

ρf 1 1

νf 0.033 0.0061

Domain size 12D×12D×24D 6D×6D×48D

curacy of the present method in predicting particle-wall collision, in which the flat wall
and the particle are simulated using the CURVIB method and the diffuse IB method, re-
spectively. In this simulation, the gravity is assumed to be in the z direction. The velocity
of the particle is prescribed to be (0,0,−Uin(e−2tUin/D−1)) before the particle is released to
move freely at zc=D, in which D is the diameter of the particle and Uin is the impact ve-

locity. The impact Stokes number is defined as Stc=
ρsUinD

9µf f , in which f is the vortex shed-

ding frequency. Here, the cases of Stc = 27 and 152 are simulated. The normal stiffness

KN is chosen as
1000ms ||g||

D for these two cases. The other parameters are listed in Table 4.
Fig. 8 presents both the trajectories of the particle obtained by Gondret et al. in laboratory
experiments and our present numerical simulations with ∆x=D/10, D/13 and D/16 for
the above mentioned two Stokes numbers, in which the reference time scale is defined as
tref=

√

D/||g||. For St=27 and St=152, the coefficient of damping is set to ηd =0.2 and
0, respectively. As the mesh is refined, the result obtained by using the present coupling
framework becomes closer to the experimental result of Gondret et al. [54]. As expected,
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(a) (b)

Figure 8: Comparison of the displacements obtained by using the present method with different meshes and
the experimental results of Gondret et al. [54]. (a) Stc=27; (b) Stc=152.

for the greater Stokes number case, the particle motion is less affected by the fluid, re-
sulting in a relative longer bouncing back distance from the wall. In addition, the results
shown in the figure indicate that the experimental and numerical results agree with each
other.

4 Interaction between multiple particles and a wall-mounted

cylinder

This section demonstrates that the methods used in this paper are suitable for simulating
the collision between multiple particles and complex geometries. We apply the proposed
method to simulate uniform flow around a vertical cylinder in the presence of multiple
particles. The schematic of this case is shown in Fig. 9(a). The initial velocity of the flow
field (U) is set to be 1. The diameter of the particle and the base of the vertical cylinder are
defined as d and D, respectively. In this study, we choose d=1 and D=10. The density
of the fluid and the particle are 1 and 2.3, respectively. The kinematic viscosity (νf) of the
fluid is 0.05 so that the Reynolds number defined as Re= UD

νf
is 200. In the simulation,

we use d = 20∆x, where ∆x is the smallest background mesh size. The computational
domain is a [0,40d]×[0,25d]×[0,50d] box. On the left boundary, we apply an uniform
flow as inlet, and on the right boundary, we impose an outflow boundary condition.
At the front and back faces, the free-slip boundary condition is applied. The bottom
boundary is set as the no-slip wall, and the top boundary is set as free-slip boundary.
The vertical cylinder is centered at (20d,12.5d,20d). The height of the cylinder is 25d.
The mesh used for this problem is displayed in Fig. 9(b) and the arrangement of the
initial positions for the particles are shown in Fig. 9(c). We refine the mesh in a region
of [10d,30d]×[0,5d]×[10d,30d] where the interaction among particles, and the collision
between the particle and the cylinder appear. Fig. 10 shows four typical snapshots of
the simulated instantaneous flow structures, which are identified using the Q criterion
with Q=0.005 iso-surface. As shown in Fig. 10(a) when the simulation starts for a short
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(a)

(b)

(c)

Figure 9: (a) Schematic of the computational setup, (b) mesh of the cylinder and the fluid domain, and (c)
initial position of the particles for the case of uniform flow around a vertical cylinder in the presence of multiple
particles. The mesh in the figure shows every 4th grid lines.
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(a) (b)

(c) (d)

Figure 10: Flow structures identified using the Q criterion for the case of uniform flow around a vertical cylinder
in the presence of multiple particles, where the particles are colored using the magnitude of the velocity. (a)
tU/d=2.5; (b) tU/d=7.5; (c) tU/d=17.5; (d) tU/d=65.0.

period, a portion of the particles have not touched the bottom boundary. The particles
are moving in the position z direction due to the convection of the surrounding fluid.
Furthermore, the particles are sedimenting in the y direction due to the gravity force,
which is stronger than the buoyancy force. At tU/D = 7.5 in Fig. 10(b), some particles
collide with the cylinder demonstrating the capability of the present code to simulate the
interaction between the particle and the marine structure with complicated geometry. As
can be seen in Fig. 10(c), the particles move along the cylinder and collide with each other.
At the same time, the horseshoe vortex forms in the front of the cylinder. Fig. 10(d) shows
the flow structure after particles left the cylinder. As seen, the wake and vorticity fields
around the particles complicate the flow fields near the bottom wall.

Fig. 11 shows the trajectories of particles. When the particles move towards the cylin-
der, some particles collide with other particles instead of interacting with the cylinder.
For the trajectories behind the cylinder, the particles move towards the center of the do-
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(a) (b)

(c) (d)

Figure 11: Trajectories of the particles for the case of uniform flow around a vertical cylinder in the presence of
multiple particles. (a) Trajectories in three spatial dimensions; (b) trajectories in the x-y plane; (c) trajectories
in the x-z plane; (d) trajectories in the y-z plane.

main in the x direction. This is because there exists a low pressure zone behind the cylin-
der. Due to the collision between the particles, the trajectories of the cylinder ‘diverge’
for z>40.

5 Particle-laden turbulent flows over periodic hills

Particle-laden turbulent flows involve rich mechanism to explore [55, 56] and are ben-
eficial to obtain the drag law for turbulence models [9]. In this section, we apply the
proposed method to simulate particle-laden turbulent flows over periodic hills.

A schematic of the simulated case is shown in Fig. 12, for which the setup is the same
that in the literature [57,58]. As shown in the figure, two half parts of a hill of height h are
placed at two ends in the x direction of the computational domain. The distance between
the crests of two hills is Lx=9h, and a flat wall is placed at 2.036h above the crest of the hill
so that the extent in the y direction is Ly=3.036h. In the spanwise direction, the extent of
the computational domain is Lz=4.5h. Periodic boundary conditions are imposed along
the streamwise and spanwise directions. The no-slip boundary conditions are applied
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Figure 12: Schematic of particle-laden flow over periodic hills.

along the top wall and the surface of the hill. The Reynolds number defined using the

height of the hill, the dynamic viscosity (ν) and the bulk velocity Ub is Reh=
ρfUbh

µf
=700, in

which Ub =
Qm

ρf Lz(Ly−h)
with Qm the mass flux. To maintain a constant mass flux, the flow

is driven by a mean pressure gradient in the streamwise direction, which is uniformly
applied in the whole domain. Neutrally buoyant particles with their densities the same
as the fluid are considered. The diameter of the particle is set as D= 0.1h, such that the

particle Reynolds number is Rep =
ρfUbD

µf
= 70. The volume fraction of the particle to the

fluid is φs = 0.5%, resulting in a total number of 1088 particles. The numbers of grid
nodes are uniformly distributed with Nx×Ny×Nz=901×302×451 in all three directions,
which means that there are 10 grid cells resolving the diameter of the particle. Two cases
with/without particles are carried out.

Comparisons between the results from the present simulation using the CURVIB
method and the results of Breuer et al. [57] using a body-fitted mesh are presented in
the Appendix A, which show the capability of the CURVIB method and the employed
setup in predicting the key flow characteristics of the flow over periodic hills.

The instantaneous vorticity field showing the complicated flow structures and
particle-vortex interaction is presented in Fig. 13. Fig. 14 gives the time-averaged stream-
wise velocity field with the streamline. Fig. 15 compares the vertical profiles of different
flow statistics from the case with particles with that without particles at different stream-
wise locations, i.e., x/h = 0.05,0.5,1,2,3,4,5,6,7 and 8. It is seen from Fig. 15(a) that the
streamwise velocities from the cases with/without particles are nearly the same at all
considered streamwise locations except for x/h=4. In the lower half region of this loca-
tion, the magnitudes of the negative streamwise velocity from the case with particles are
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Figure 13: Instantaneous vorticity fields colored by the velocity magnitude (Umag) for particle-laden flow over
periodic hills.

Figure 14: Time-averaged streamlines for flow over periodic hills with multiple particles.

smaller than those without particles. The above observation indicates that the neutrally
buoyant particles decrease the mean convection in the streamwise direction in this critical
region, which results a somewhat longer recirculation bubble for the case with particles.
As shown in Fig. 15(b, c) for the vertical velocity and the primary Reynolds shear stress,
the particle has minor effect on these two properties. Comparisons of the turbulence ki-
netic energy (TKE) are shown in Fig. 15(d). Differences for the TKE between cases with
and without particles are observed especially at x/h= 3,4. It is seen that the TKE is in
general decreased in the presence of particles. Detailed analysis on the mechanism of
particle-laden turbulence in flows over periodic hills will be carried out in our future
study.
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(a) (b)

(c) (d)

Figure 15: Comparison of vertical profiles from flow over periodic hills without and with particles. (a) Time-
averaged streamwise velocity 〈u〉; (b) time-averaged vertical velocity 〈v〉; (c) primary Reynolds shear stress
〈u′v′〉; (d) turbulent kinetic energy k=0.5〈u′u′+v′v′+w′w′〉.

6 Conclusions

In this work, a framework for simulating particle-resolved particle-laden flows consid-
ering particle-particle and particle-wall collisions is proposed, in which the curvilinear
immersed boundary (IB) method is employed for the stationary complex boundaries, a
variant of the direct forcing IB method is developed for simulating the boundary of the
rigid particle, and the particle-particle collision and the particle-wall collision are han-
dled with the discrete element method. The main advantage of the present framework is
that it is capable of handling the collision between the particle and the complex bound-
aries of the environment conveniently without the need for the fluid mesh to conform
to the complex geometry. Furthermore, the so called ‘dry’ contact approach is involved
in the proposed framework to avoid the cohesion of the particle to the boundary. In the
proposed diffuse interface direct forcing IB method, an interactive approach is employed
to take into account the coupling between the velocity interpolation and the force distri-
bution processes in order to satisfy the no-slip boundary conditions in a more accurate
way.

We first validate the proposed direct forcing IB method with iteration by simulating
the flow around a sphere at Reynolds number of 100 and 300 and sedimentation of a
sphere in a quiescent fluid. We then evaluate the capability of the proposed method in
predicting the particle-particle and particle-wall collisions using two benchmark prob-
lems including the drafting-kissing-tumbling of two particles during sedimentation, and
the collision between a particle and a flat wall, with good accuracy for both cases. In addi-
tion, we demonstrate the capability of the proposed method in simulating the flow with



J. Qin, X. Yang and Z. Li / Commun. Comput. Phys., 31 (2022), pp. 1242-1271 1267

multiple particles and their interaction with a wall-mounted cylinder. At last, the pro-
posed framework is used to simulate particle-laden turbulent flows over periodic hills.
The simulation results show that the recirculation bubble, the time-averaged streamwise
velocity and the turbulent kinetic energy are affected by neutrally buoyant particles with
a volume fraction of 0.5%.

The present work was focused on relatively simple cases to demonstrate the capa-
bility of the proposed framework. It is still quite challenging to apply particle-resolved
methods to real-life applications (e.g., bed formation under the influence of arrays of hy-
drokinetic turbines), where the scale of particles is orders of magnitude smaller than the
scale of the environment. Cases representing the key mechanism in real-life applications
will be explored in the future work.
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A CURVIB simulation of turbulent flows over periodic hills

Turbulent flow over periodic hills is a classical benchmark problem for testing the
flow solver for simulating complicated turbulent flows with separation and reattach-
ment [57,58]. In this appendix, we compare the predictions from the CURVIB simulation
with those in literature for the case without particles. Fig. 16 shows the time-averaged
streamlines and the contours of the time-averaged streamwise velocity simulated using
the CURVIB method. Fig. 17 presents the comparison between the present results and the
results of Breuer et al. [57]. For all the flow statistics considered, the present predictions
are in good agreement with those of Breuer et al.

Figure 16: Time-averaged streamlines for the flow over periodic hills without particles.
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(a) (b)

(c) (d)

Figure 17: Comparison of vertical profiles for flow over periodic hills from Breuer et al. [57] and present CURVIB
simulations for (a) Time-averaged streamwise velocity 〈u〉; (b) time-averaged vertical velocity 〈v〉; (c) primary
Reynolds shear stress 〈u′v′〉; (d) turbulent kinetic energy k=0.5〈u′u′+v′v′+w′w′〉.
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