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A B S T R A C T

The Poisson’s ratio and the Young’s modulus play an important role in the characterization of nanomaterial
mechanical properties. They are the vital parameters of understanding nanoscale material behavior. Here we
report a method of quantitatively determining the values of the Poisson’s ratio and the Young’s modulus
with a T-shape contact resonance atomic force microscopy. Unlike the cantilever of a traditional atomic force
microscopy, the flexural and torsional modes of the T-shape cantilever are simultaneously excited and coupled
in the contact mode. Through the analysis, the bifurcation of the coupled contact resonance frequencies is
found in higher modes with the increasing contact stiffness. More importantly, the frequency bifurcation point
can be used to decouple the Poisson’s ratio and the Young’s modulus, which leads to the determination of their
separate values. In contrast to the previous methods, in which the Poisson’s ratio and the Young’s modulus
are intrinsically coupled and there is no effective way of decoupling, the method presented in this study offers
a new way of decoupling and determining these two parameters. This efficient and accurate method can be
of significant help to the characterization of various nanomaterials.
. Introduction

With the rapid development of nanomaterials, the characterization
f the nanoscale material properties, such as the friction [1], mod-
lus [2], adhesion [3], is indispensable. The sample properties can
hange dramatically with the decrease of size and the increase of
urface to volume ratio [4,5]. Therefore, a method which can quanti-
atively characterize the small-scale material properties is crucial. The
oisson’s ratio and the Young’s modulus are important parameters of
haracterizing the nanomaterial mechanical properties. They provide
nsights into the behavior of nanoscale material. For example, Poisson’s
atio is a crucial parameter in the wrinkling behavior of a uniaxially
tretched thin sheet [6].

The bulge/blister tests [7] and nanoindentation (NI) technology [8–
1] are extensively used because of their easiness and effectiveness.
he bulge/blister tests are frequently used to extract thin film mechan-

cal properties. On the other hand, the mechanical properties, such
s hardness, modulus, fracture toughness, can be obtained from the
ndentation force-distance curve [8]. However, the static NI technology
s not applicable for many soft materials due to its destructiveness. A
olution is to use the dynamic NI, which can nondestructively measure
he continuous stiffness of a soft sample [12]. However, these technolo-
ies have a major deficiency that Poisson’s ratio and Young’s modulus
annot be individually obtained [13].

∗ Corresponding author at: State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
E-mail address: zhangyin@lnm.imech.ac.cn (Y. Zhang).

The technology based on atomic force microscopy (AFM) [14]
is another common method to character the properties of nanoscale
material. The high spatial resolution and imaging capabilities of AFM
are more suitable for the nanoscale materials characterization [4]. The
contact resonance technology is one of the AFM methods that provide
mechanical property information. Compared with the tapping mode,
the contact resonance technology is more suitable for characterizing
various materials, typically with the modulus ranging from 1 GPa to
300 GPa [4]. Various models have been developed to understand the
cantilever motion in contact resonance force microscope (CRFM) [15–
18]. Many significant results are also achieved by CRFM, for example,
the quantitative characterization of the mechanical properties of the
various materials [19–22], and the subsurface structure [23–27]. Using
CRFM, Hurley et al. detected the subsurface particles and the sub-
strate/film adhesion [3]. The local internal friction and the beginning of
plasticity were also observed by CRFM [1]. However, there still remains
a major challenge in obtaining the separate values of the Poisson’s ratio
and the Young’s modulus.

In the previous studies on contact resonance technology, both the
theoretical and experimental researches, mainly focus on the flexu-
ral/bending mode of a CRFM cantilever [1–4,15,19,21–23]. The role of
the torsional mode in obtaining the separate Poisson’s ratio and Young’s
modulus is not fully explored or even overlooked. In a wide frequency
https://doi.org/10.1016/j.ijnonlinmec.2020.103595
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range, the torsional vibration is larger than the flexural one [28],
i.e., the torsional vibration is more sensitive. Hurley et al. obtained
the Poisson’s ratio by an experiment that simultaneously measures the
flexural and torsional contact resonance frequencies under the same ex-
perimental conditions [2], but the experiment is rather complicated. A
torsional harmonic cantilever (THC) was proposed by Sahin et al. [28].
In THC, the flexural and torsional modes can be excited at the same
time because the tip is off the center axis of the cantilever. A torque is
generated due to the tip–sample interactions together with the above
off-center geometric configuration. The THC in Sahin’s study works in
tapping mode, the flexural and torsional vibrations can be separately
extracted. However, in the contact mode the flexural and the torsional
vibrations are coupled, which still poses a significant challenge for
analysis.

In this study, we present an inverse problem-solving method to ob-
tain the separate values of the Poisson’s ratio and the Young’s modulus
by designing a T-shape contact resonance atomic force microscopy.
Similar to the THC [28], the tip is off the center axis of the T-shape
cantilever. The flexural and torsional modes are simultaneously excited
when the tip is in contact with a sample. And a coupled mode of the
flexural and torsional vibrations is obtained, which leads to a resonance
frequency bifurcation in higher modes with the increasing contact
stiffness. The inverse problem-solving method presented here in essence
is to determine the Poisson’s ratio and Young’s modulus separately by
the bifurcation point. This efficient and accurate method provides an
insight into the characterization of various nanomaterials.

2. Model development

As shown in Fig. 1, the T-shape cantilever consists of two parts,
which have different lengths and widths of 𝑏𝑖 and 𝐿𝑖 (𝑖 = 1 and 2).
Subscript 1 denotes the parameters of the narrow part connected with
the fixed end, and subscript 2 denotes the parameters of the wider part
connected with the free end. The two parts are with the same thickness
h. The total length is 𝐿 = 𝐿1 +𝐿2. The tip is at the free end and off the
cantilever center axis with the distance of d. The height of the tip is H.
Here, 𝜃(𝑥, 𝑡) denotes the twist angle of the cantilever.

For the T-shape cantilever, because the tip is off the center axis, the
flexural and torsional modes are excited at the same time when tip is in
contact with sample. Here the Euler–Bernoulli beam theory is used [4].
The vibration of a T-shape cantilever is described by the following
equations, which is derived by applying the Hamilton’s principle [29].

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑚1
𝜕2𝑤1

𝜕𝑡2
+ 𝐸𝐼1

𝜕4𝑤1

𝜕𝑥4
= 0, 0 ≤ 𝑥 ≤ 𝐿1,

𝑚2
𝜕2𝑤2

𝜕𝑡2
+ 𝐸𝐼2

𝜕4𝑤2

𝜕𝑥4
= 0, 𝐿1 ≤ 𝑥 ≤ 𝐿.

(1)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜌𝐼𝑃 1
𝜕2𝜃1
𝜕𝑡2

= 𝐺𝐽1
𝜕2𝜃1
𝜕𝑥2

, 0 ≤ 𝑥 ≤ 𝐿1,

𝜌𝐼𝑃2
𝜕2𝜃2
𝜕𝑡2

= 𝐺𝐽2
𝜕2𝜃2
𝜕𝑥2

, 𝐿1 ≤ 𝑥 ≤ 𝐿.
(2)

where 𝑤𝑖, 𝜃𝑖, 𝑚𝑖, 𝐸𝐼𝑖, 𝜌, 𝐼𝑃 𝑖, 𝐺𝐽𝑖 (𝑖 = 1 and 2) are the cantilever
deflection, angle of twist, mass per unit length, flexural stiffness,
density, polar area moment of the inertia and torsional stiffness of
the two parts, respectively. The polar area moment of the inertia
𝐼𝑃 𝑖 = (𝑏𝑖ℎ3 + 𝑏3𝑖 ℎ)∕12 (𝑖 = 1 and 2), and the torsional stiffness 𝐺𝐽𝑖 =
1
3𝐺𝑏𝑖ℎ

3
[

1 − 0.63 ℎ𝑏𝑖
+ 0.052

(

ℎ
𝑏𝑖

)3
]

(𝑖 = 1 and 2) [30].

Here, the discussion is limited to isotropic materials. By applying
Hamilton’s principle, the boundary conditions at (𝑥 = 0 and 𝐿) in Fig. 1
are derived as follows:

𝑤 (0, 𝑡) = 𝑤′ (0, 𝑡) = 0, 𝐸𝐼 𝑤′′(𝐿, 𝑡) = 0, 𝜃 (0, 𝑡) = 0. (3)
1 1 2 2 1

2

The coupled boundary conditions at 𝑥 = 𝐿 are now derived as
follows:
𝐸𝐼2𝑤

′′′
2 (𝐿, 𝑡) = 𝑘𝑛

[

𝑤2(𝐿, 𝑡) − 𝜃2(𝐿, 𝑡)𝑑
]

,

𝐺𝐽2𝜃
′
2(𝐿, 𝑡) = −𝑘𝑛𝑑𝑤2(𝐿, 𝑡) − 𝑘𝐿𝐻2𝜃2(𝐿, 𝑡).

(4)

where the vertical contact stiffness 𝑘𝑛 and the tangential contact stiff-
ness 𝑘𝐿 are given by 𝑘𝑛 = 2𝐸∗𝑎 [31] and 𝑘𝐿 = 8𝐺∗𝑎 [32], respectively.
For isotropic materials, the reduced system modulus 𝐸∗ is defined as
1
𝐸∗ = 1−𝜐2𝑡

𝐸𝑡
+ 1−𝜐2𝑠

𝐸𝑠
[2,31] and 𝐺∗ is defined as 1

𝐺∗ = 2−𝜐𝑡
𝐺𝑡

+ 2−𝜐𝑠
𝐺𝑠

[2,32],

he subscripts ‘‘t’’ and ‘‘s’’ denote tip and sample, respectively. In the
ertzian contact, the contact radius 𝑎 is given by 𝑎 = (3𝑅𝐹𝑁∕4𝐸∗)1∕3 [2,
1]. Here R is the tip radius curvatures and 𝐹𝑁 is the applied force
ormal to the surface.

Besides the boundary conditions of Eqs. (3) and (4), the following
quations at 𝑥 = 𝐿1 are also derived:

1(𝐿1, 𝑡) = 𝑤2(𝐿1, 𝑡) 𝑤′
1(𝐿1, 𝑡) = 𝑤′

2(𝐿1, 𝑡) 𝐸𝐼1𝑤
′′
1 (𝐿1, 𝑡) = 𝐸𝐼2𝑤

′′
2 (𝐿1, 𝑡),

𝐼1𝑤′′′
1 (𝐿1, 𝑡) = 𝐸𝐼2𝑤′′′

2 (𝐿1, 𝑡), 𝜃1(𝐿1, 𝑡) = 𝜃2(𝐿1, 𝑡),

𝐽1𝜃′1(𝐿1, 𝑡) = 𝐺𝐽2𝜃′2(𝐿1, 𝑡).
(5)

Physically, these equations are to ensure the continuity of the dis-
lacement, slope, bending moment, shear, angle and torsional moment
t 𝑥 = 𝐿1.

The following quantities are introduced to nondimensionalize Eqs.
1) and (2)

= 𝑥∕𝐿, 𝜉𝑜 = 𝐿1∕𝐿, 𝑊1 = 𝑤1∕𝐿, 𝑊2 = 𝑤2∕𝐿, 𝜏 =
√

𝐸𝐼1∕𝑚1𝐿4𝑡.

(6)

where
√

𝐸𝐼1∕𝑚1𝐿4 is with the unit of Hertz and it is the same order of
the first natural frequency of a uniform and undamped cantilever [33].
Eqs. (1) and (2) now become the following dimensionless ones:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕2𝑊1

𝜕𝜏2
+
𝜕4𝑊1

𝜕𝜉4
= 0,

𝜕2𝜃1
𝜕𝜉2

= 𝛽1
𝜕2𝜃1
𝜕𝜏2

, 0 ≤ 𝜉 ≤ 𝜉𝑜,

𝜕2𝑊2

𝜕𝜏2
+
𝜕4𝑊2

𝜕𝜉4
= 0,

𝜕2𝜃2
𝜕𝜉2

= 𝛽1𝛽2
𝜕2𝜃2
𝜕𝜏2

, 𝜉𝑜 ≤ 𝜉 ≤ 1.
(7)

Here 𝛽1 = 𝐸𝐼1∕𝐿3

𝜌𝐴1𝐿
𝜌𝐼𝑃1𝐿
𝐺𝐽1∕𝐿

. The flexural and torsional wave numbers,
𝛾 and 𝜂, are related with the following dispersion relations 𝜔2 =
𝛾4 𝐸𝐼1∕𝐿

3

𝜌𝐴1𝐿
= 𝜂2 𝐺𝐽1∕𝐿𝜌𝐼𝑃1𝐿

[5]. 𝜔 is the angular frequency. Therefore, 𝜂 =
√

𝛽1𝛾2, and parameter
√

𝛽1 determines the likelihood of the mode
coupling. Here 𝛽2 is the ratio of the polar area moment of the inertia
o the torsional stiffness defined as 𝛽2 =

𝐼𝑃2
𝐼𝑃1

𝐺𝐽1
𝐺𝐽2

.
The solution forms of Eq. (7) are assumed as follows:

𝑖(𝜉, 𝜏) = 𝑌𝑖(𝜉)𝑒𝑖𝜔𝜏 , 𝜃𝑖(𝜉, 𝜏) = 𝜓𝑖(𝜉)𝑒𝑖𝜔𝜏 , (𝑖 = 1 and 2). (8)

The following mode shapes of the T-shape cantilever are obtained
y substituting Eq. (8) into Eq. (7).

𝑌1(𝜉) = 𝐴1 cos(𝜆𝑓 𝜉) + 𝐵1 sin(𝜆𝑓 𝜉) + 𝐶1 cosh(𝜆𝑓 𝜉)
+𝐷1 sinh(𝜆𝑓 𝜉),

0 ≤ 𝜉 ≤ 𝜉𝑜,

𝑌2(𝜉) = 𝐴2 cos(𝜆𝑓 𝜉) + 𝐵2 sin(𝜆𝑓 𝜉) + 𝐶2 cosh(𝜆𝑓 𝜉)
+𝐷2 sinh(𝜆𝑓 𝜉),

𝜉𝑜 ≤ 𝜉 ≤ 1,

𝜓1(𝜉) = 𝐴3 cos(𝜆𝑡𝜉) + 𝐵3 sin(𝜆𝑡𝜉), 0 ≤ 𝜉 ≤ 𝜉𝑜,

𝜓2(𝜉) = 𝐴4 cos(
√

𝛽2𝜆𝑡𝜉) + 𝐵4 sin(
√

𝛽2𝜆𝑡𝜉), 𝜉𝑜 ≤ 𝜉 ≤ 1.

(9)

Here 𝜆𝑓 =
√

𝜔, 𝜆𝑡 =
√

𝛽1𝜔, and they are related with 𝜆𝑡 =
𝛽1𝜆2𝑓 . And, 𝐴𝑖, 𝐵𝑖, 𝐶𝑖, 𝐷𝑖 are the constants to be determined. The

orresponding dimensionless equations of Eqs. (3)–(5) are

𝑌1(0) = 𝑌 ′
1 (0) = 𝑌 ′′

2 (1) = 0, 𝜓1(0) = 0, 𝑌2(1) = 𝛼1
[

𝑌2(1) − 𝛼2𝜓2(1)
]

,

𝜓2(1) = −𝛼1𝛼2𝛽3𝑌2(1) − 𝛼23𝛼4𝜓2(1), 𝑌1(𝜉𝑜) = 𝑌2(𝜉𝑜), 𝑌 ′
1 (𝜉𝑜) = 𝑌 ′

2 (𝜉𝑜),

𝑌 ′′
1 (𝜉𝑜) = 𝜁𝑌 ′′

2 (𝜉𝑜), 𝑌 ′′′
1 (𝜉𝑜) = 𝜁𝑌 ′′′

2 (𝜉𝑜), 𝜓1(𝜉𝑜) = 𝜓2(𝜉𝑜),
′ ′

(10)
𝜓1(𝜉𝑜) = 𝜅𝜓2(𝜉𝑜).
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Fig. 1. Schematic diagram of the AFM T-shape cantilever dimensions.
Here 𝜁 is a width ratio of the two parts defined as 𝜁 = 𝑏2∕𝑏1.
𝛽3 = 𝐸𝐼2∕𝐺𝐽2 indicates the ratio of the flexural stiffness to the torsional
stiffness. 𝜅 = 𝐺𝐽2∕𝐺𝐽1 is the torsional stiffness ratio of the two parts.
And dimensionless 𝛼′𝑖 s (𝑖 = 1 to 4) are defined as

𝛼1 = 𝑘𝑛𝐿
3∕𝐸𝐼2, 𝛼2 = 𝑑∕𝐿, 𝛼3 = 𝐻∕𝐿, 𝛼4 = 𝑘𝐿𝐿

3∕𝐺𝐽2. (11)

Physically 𝛼1 is the ratio of the vertical contact stiffness to the
cantilever flexural stiffness and 𝛼4 is the ratio of the tangential contact
stiffness to the cantilever torsional stiffness. Here 𝛼2 is the ratio of the
off-center distance to the total cantilever length. And 𝛼3 is the ratio of
the tip height to the total cantilever length.

Substituting Eq. (10) into Eq. (9), we obtain twelve equations.
These twelve equations can be rewritten as 𝐀𝐕 = 0. Here 𝐀 is a 12 × 12
matrix, and 𝐕 =

[

𝐴1 𝐵1 𝐶1 𝐷1 𝐴2 𝐵2 𝐶2 𝐷2 𝐴3 𝐵3 𝐴4
𝐵4

]𝑇 . The resonance frequencies of the T-shape cantilever are obtained
by setting the determinant of matrix 𝐀 to be zero, i.e., |𝐀| = 0 [34].

The above matrix 𝐀 can be rewritten as 𝐀 =
(

𝐁 𝐂
𝐃 𝐄

)

. 𝐁, 𝐂, 𝐃 and

𝐄 are sub-matrices defined in Appendix A. As shown in Appendix A,
the |𝐀| = 0 is equivalent to the |

|

|

𝐄 − 𝐃𝐁−𝟏𝐂||
|

= 0, which leads to the
following equation

𝑓1(𝛼1, 𝜆𝑓 ) − 𝑓2(𝜆𝑓 ) = 0 (12)

Here the 𝑓1(𝛼1, 𝜆𝑓 ) is a function of both the contact stiffness and
the contact resonance frequency, and the 𝑓2(𝜆𝑓 ) is a function of contact
resonance frequency. The expressions of 𝑓1(𝛼1, 𝜆𝑓 ) and 𝑓2(𝜆𝑓 ) are given
in Appendix A.

3. Results and discussion

In the contact mode, the flexural and torsional modes are coupled.
The contact resonance frequencies are influenced by many variable
parameters, such as the contact stiffness, tip position, geometrical
parameters of cantilever, properties of sample. And 𝛼1 and 𝛼4 are two
parameters related with the Poisson’s ratio and the Young’s modulus.
Therefore, we aim to obtain the separate values of the Poisson’s ra-
tio and the Young’s modulus by examining the relation between the
resonance frequency and these two parameters. Here 𝛼1 = 𝑘𝑛𝐿3∕𝐸𝐼2,
𝛼4 = 𝑘𝐿𝐿3∕𝐺𝐽2. The following figures were calculated by assuming the
total length 𝐿 = 300 μm, the width 𝑏2 = 50 μm, the thickness ℎ = 3
μm, the offset distance 𝑑 = 24 μm and the length ratio 𝜉𝑜 = 0.9. The
width ratio 𝜁 of the cantilever is 2.5 except Fig. 6. The tip is silicon
with 𝐸𝑡 = 160.5 GPa and 𝜐𝑡 = 0.168 [2].

A geometric analysis method is used to qualitatively analyze the
relation between the contact resonance frequency (𝜔 = 𝜆2𝑓 ) and the 𝛼1
from Eq. (12). Fig. 2 shows the contact resonance frequency (𝜔 = 𝜆2𝑓 )
is as a function of 𝛼1. Here 𝛼1 = 𝑘𝑛𝐿3∕𝐸𝐼2, 𝑘𝑛 = 2𝐸∗𝑎, as defined
in Eq. (4), ∗ is the vertical contact stiffness, which is proportional to
the square root of the indentation depth. In Fig. 2, each intersection of
𝑓1(𝛼1, 𝜆𝑓 ) and 𝑓2(𝜆𝑓 ) corresponds to a resonance frequency as indicated
by Eq. (12). The first two resonance frequencies increase continuously
with the increasing 𝛼1. However, the resonance frequency loses stability
from the third mode, which suddenly reaches a higher value at a certain
𝛼1. As seen in Fig. 2, when 𝛼1 is less than 60, the third intersection of

√

𝜔)
𝑓1(𝛼1, 𝜆𝑓 ) and 𝑓2(𝜆𝑓 ) corresponds to the resonance frequency (𝜆𝑓 =

3

Fig. 2. Variation of the function 𝑓𝑖 with frequency for different 𝛼1. Where the function
𝑓1(𝛼1 , 𝜆𝑓 ) and 𝑓2(𝜆𝑓 ) are given by Eq. (12), and the intersection points of 𝑓1(𝛼1 , 𝜆𝑓 ) and
𝑓2(𝜆𝑓 ) indicate the contact resonance frequencies (𝜔 = 𝜆2𝑓 ) of the T - shape cantilever.
The figure is obtained by a geometric analysis, and shows the contact resonance
frequency of the T – shape cantilever.

Fig. 3. Contact resonance frequencies (𝜔 = 𝜆2𝑓 ) as a function of 𝛼1. The insets are the
corresponding mode shapes at different 𝛼1s.

ranging from 6 to 9. In comparison, the resonance frequency is higher
than 10 when 𝛼1 is larger than 70. This sudden change of behavior is
more straightforwardly shown in Fig. 3 as the relation of the resonance
frequency 𝜔 (𝜆2𝑓 ) versus 𝛼1.

The numerical solutions to the resonance frequencies of the T-shape
cantilever as a function of 𝛼1 are presented in Fig. 3. The curves are
the resonance frequencies of the first to the fourth modes from the
bottom up. As seen in Fig. 3, the third resonance frequency of the
T-shape cantilever increases continuously with the increasing 𝛼 until
1
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Fig. 4. The first four mode shapes with 𝛼1 = 20 ((a) the first mode, (b) the second mode, (c) the third mode, (d) the fourth mode). The large diagrams are the contact resonance
mode shapes, the orange insets are the flexural mode shapes, and the green insets are the torsional mode shapes.

Fig. 5. The first four mode shapes with 𝛼1 = 80 ((a) the first mode, (b) the second mode, (c) the third mode, (d) the fourth mode). The large diagrams are the contact resonance
mode shapes, the orange insets are the flexural mode shapes, and the green insets are the torsional mode shapes. . (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

4
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Fig. 6. Contact resonance frequencies (𝜔) as a function of the coupled factor
√

𝛽1.

the bifurcation point O. There is a sudden change of the 3rd and 4th
eigenfrequencies before and after point O. A similar variation is ob-
tained in the finite element analysis, and the details of which are given
in Appendix C. When 𝛼1 is low, the resonance frequencies gradually
increase with the increasing 𝛼1. For a larger value of 𝛼1, the frequencies
change little with the increasing 𝛼1 [2]. The instability of the resonance
frequency at point O is a result of the competition between the flexural
and the torsional modes. In the contact mode, the flexural and torsional
modes are coupled. These two types of vibrational modes compete
with each other, and one of them dominates the coupled mode. The
bifurcation occurs in higher coupled mode (3rd and 4th modes), and
the lower order coupled modes (1st and 2nd modes) are stable. One
reason is that the eigenfrequency of the first torsional mode is much
higher than that of the first flexural mode [28]. Therefore, the first
two contact resonance frequencies are stable due to less coupling. The
insets in Fig. 3 are the mode shapes of the cantilever with different 𝛼1s.
Through the mode shapes, the dominant mode of the contact resonance
frequency is easy to be identified, which is illustrated in the subsequent
Figs. 4 and 5.

The first four mode shapes are shown in Figs. 4 and 5 with 𝛼1 = 20
and 𝛼1 = 80, respectively. In Figs. 4 and 5, the large diagrams are
the coupled vibrational mode shapes, the orange insets are the flexural
mode shapes, and the green insets are the torsional mode shapes. To
better demonstrate the dominant vibrational mode in a coupled mode,
the parameter 𝐾2∕𝐾1 is introduced to quantify the contribution of
the torsional mode and the flexural mode to the coupled mode. Here
𝐾1 = ∫ 1

0 𝑌
2
𝑖 (𝜉)𝑑𝜉 and 𝐾2 = ∫ 1

0 𝜓
2
𝑖 (𝜉)𝑑𝜉, (𝑖 = 1 and 2). When the

value of 𝐾2∕𝐾1 ≪ 1, the contact resonance frequency is dominated
by the flexural vibration. While the value of 𝐾2∕𝐾1 ≫ 1, the contact
resonance frequency is dominated by the torsional vibration. As seen
in Fig. 4(c), 𝐾2∕𝐾1 is 82.210, much larger than 1, the third contact
resonance frequency is dominated by the torsional vibration when 𝛼1
is 20. Whereas in Fig. 5(c), 𝐾2∕𝐾1 is 0.00824, much less than 1,
the third contact resonance frequency is dominated by the flexural
vibration when 𝛼1 is 80. Therefore, in Fig. 3, in the region before point
O, the third contact resonance frequency of the T-shape cantilever is
dominated by the first torsional mode. And it is dominated by the
fourth flexural mode in the region after point O. A strong coupling
occurs at the bifurcation point O. A transformation of the dominant
mechanism is completed at point O.

In Figs. 4 and 5, the dominance of a mode can be easily seen by
showing the coupled mode together with the flexural and torsional
5

modes. The parameter
√

𝛽1 is introduced in Fig. 6 to indicate the
oupling relation between the flexural and the torsional modes. Here

𝛽1 =
√

𝐸𝐼1∕𝐿3

𝜌𝐴1𝐿
𝜌𝐼𝑃1𝐿
𝐺𝐽1∕𝐿

and
√

𝛽1 determines the likelihood of mode cou-

ling. As the cantilever design, which is embodied in
√

𝛽1, determines
this mode
coupling behavior [35], the contact resonance frequency 𝜔 as a func-
ion of

√

𝛽1 is shown in Fig. 6. Here the 𝜔𝑛 on the curve represents
the nth resonance frequency. As seen in Fig. 6, the frequencies of
the fourth mode and the fifth mode rapidly approach each other and
then diverge without crossing around

√

𝛽1 = 0.018, which is the so-
called eigenvalue curve veering phenomenon [36,37]. The same thing
occurs for the frequencies of the third mode and the fourth mode
around

√

𝛽1 = 0.031. Similarly, Reinstädler et al. demonstrated with
xperiments that ‘‘the frequencies of the third flexural mode and the
irst torsional mode lie within 5% of each other’’ at

√

𝛽1 = 0.025 [35],
hich is also theoretically confirmed by Hurley et al. [5]. The loci
ifference of the eigenvalue curve veering, i.e.,

√

𝛽1, between this
study and the study of Reinstädler et al. is caused by the difference
of cantilever geometrical parameter. The occurrence of the eigenvalue
curve veering suggests that at certain areas the system is very sensitive
to

√

𝛽1. The eigenvalue curve veering is due to (strong) coupling, which
sually results in the rapid and even violent changes in mode shape
nd eigenfrequency [36,37]. In summary, the eigenvalue curve veerings
ccur in 𝜔3∕𝜔4 and 𝜔4∕𝜔5 but not in 𝜔1∕𝜔2 in Fig. 6. As there is

no eigenvalue curve veering in 𝜔1∕𝜔2 and thus indicates little mode
coupling/interaction, this is (partly) responsible for that there is no
bifurcation for the first two contact resonance frequencies as shown
in Fig. 3.

For simplicity, damping is not considered in our model of Eqs. (1)
and (2). The damping influence on the contact resonance frequency 𝜔
(𝜆2𝑓 ) as a function of 𝛼1 is examined in Fig. 7. The detailed computation
procedures of the damped cantilever model are given in Appendix B.
The influence of damping is little with the moderate damping parame-
ters, which are taken from the experiment [1] and given in Appendix B.
As seen in Fig. 7, the two curves almost overlap, the curves of the first
two modes change continuously, and the 𝛼1 value for the third mode
bifurcation point is (almost) the same. Stan et al. found that the contact
resonance frequency depends almost entirely on elastic modulus [38].
Therefore, the previous theoretical analysis based on an undamped
T-shaped cantilever is applicable in practice.

As shown Eq. (11), the elastic properties of sample are contained
in the parameters of 𝛼1 and 𝛼4. These two parameters have the fol-
owing relation: 𝛼4∕𝛼1 = (𝑘𝐿∕𝑘𝑛)(𝐸𝐼2∕𝐺𝐽2). Here 𝑘𝐿∕𝑘𝑛 ≈ 2(1 −
𝑠)∕

(

2 − 𝜐𝑠
)

[39]. Fig. 8 shows the Poisson’s ratio 𝜐𝑠 of sample as a
unction of 𝛼1 with different geometrical parameters of the T-shaped
antilever. Here 𝛼1 is the value at the corresponding bifurcation point.
he 𝛼1-𝜐𝑠 plots in Fig. 8 are obtained by solving for the determinant of
he matrix 𝐀 to be zero and combining the relation between the 𝛼1 and
4 as follows: 𝛼4∕𝛼1 ≈

[

2(1 − 𝜐𝑠)∕
(

2 − 𝜐𝑠
)]

(𝐸𝐼2∕𝐺𝐽2). As seen in Fig. 8,
here is a one-to-one relation between the 𝜐𝑠 and the 𝛼1 for a known
antilever. That is, for a T-shape cantilever with known geometrical
arameters, the value of 𝛼1 at the bifurcation point is only affected
y the Poisson’s ratio of sample. Once the 𝛼1 of bifurcation point is
btained in experiment, the Poisson’s ratio of sample can be derived.
hen Young’s modulus and Poisson’s ratio of sample can be decoupled.
he Young’s modulus of sample is derived. In Fig. 8, for a T-shape
antilever with the length ratio of 𝜉𝑜 = 0.9 and width ratio of 𝜁 = 2.5,
he 𝛼1 values of bifurcation point are between 65 and 70. The results
ere match those in Fig. 3.

The bifurcation point is vital in this study, an issue remains: How
o identify this bifurcation point in an experiment? As discussed above,
he eigenfrequency and mode shape experience dramatic changes
round the bifurcation point. As the result, the AFM response will also
xperience a dramatic change, which is a benchmark characteristics for
n experiment to catch. This is the similar scenario to that by Albrecht
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Fig. 7. Influence of damping on the contact resonance frequency 𝜔
(

𝜆𝑓 =
√

𝜔
)

as the 𝛼1 value increases. (a) the first mode, (b) the second mode and (c) the third mode.
Fig. 8. The Poisson’s ratio of the sample as a function of the 𝛼1 at the bifurcation point. Here the width ratio 𝜁 = 𝑏2∕𝑏1 ranging from 1.1 to 3.0.
𝐀

et al. [40], in which an AFM (tip) approaches a substrate. Because of the
nonlinear interaction of the Lennard-Jones potential between the AFM
tip and substrate, the AFM resonant frequency shifts and thus leads to
the dramatic variation of the AFM frequency response, which is easily
captured by the AFM vibration data in time series [40].

4. Conclusions

At the bifurcation point of resonance frequencies, the Poisson’s ratio
and the Young’s modulus can be determined by a T-shape contact
resonance atomic force microscopy. The flexural and torsional modes
are simultaneously excited due to the tip away from the center axis,
and these two vibrational modes are coupled in the contact mode. The
eigenvalue curve veering phenomena are seen for some mode. The
eigenvalue curve veering is due to coupling, which usually results in
the rapid and even violent changes in mode shape and eigenfrequency.
A contact resonance frequency bifurcation occurs in higher mode (the
third mode or higher), and it is a result of the competition between
the flexural and torsional modes. An important finding is that the
bifurcation point plays a pivotal role to decouple the Poisson’s ratio
and the Young’s modulus. There is a one-to-one relation between the
Poisson’s ratio and the 𝛼1 at the bifurcation point for a known T-shape
cantilever. Once the corresponding 𝛼1 is obtained, the Poisson’s ratio
of sample is determined, then the elastic modulus of sample is derived.
This efficient and accurate method for the characterization of various
nanomaterials is helpful.
6
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Appendix A. The expression of matrix 𝐀

The matrix 𝐀 is an 11 × 11 matrix due to 𝐴3 = 0, and form of matrix
is given in Box I.
The above matrix 𝐀 can be rewritten in the block matrix form as

𝐀 =
(

𝐁 𝐂
)

.
𝐃 𝐄
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𝐄

|

c

𝑇

𝐀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 1 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0

0 0 0 0 − cos(𝜆𝑓 ) − sin(𝜆𝑓 ) cosh(𝜆𝑓 ) sinh(𝜆𝑓 ) 0 0 0

0 0 0 0 sin(𝜆𝑓 ) −
𝛼1
𝜆3𝑓

cos(𝜆𝑓 ) − cos(𝜆𝑓 ) −
𝛼1
𝜆3𝑓

sin(𝜆𝑓 ) sinh(𝜆𝑓 ) −
𝛼1
𝜆3𝑓

cosh(𝜆𝑓 ) cosh(𝜆𝑓 ) −
𝛼1
𝜆3𝑓

sinh(𝜆𝑓 ) 0
𝛼1𝛼2
𝜆3𝑓

cos(
√

𝛽2𝜆𝑡 )
𝛼1𝛼2
𝜆3𝑓

sin(
√

𝛽2𝜆𝑡 )

cos(𝜆𝑓 𝜉𝑜 ) sin(𝜆𝑓 𝜉𝑜 ) cosh(𝜆𝑓 𝜉𝑜 ) sinh(𝜆𝑓 𝜉𝑜 ) − cos(𝜆𝑓 𝜉𝑜 ) − sin(𝜆𝑓 𝜉𝑜 ) − cosh(𝜆𝑓 𝜉𝑜 ) − sinh(𝜆𝑓 𝜉𝑜 ) 0 0 0

− sin(𝜆𝑓 𝜉𝑜 ) cos(𝜆𝑓 𝜉𝑜 ) sinh(𝜆𝑓 𝜉𝑜 ) cosh(𝜆𝑓 𝜉𝑜 ) sin(𝜆𝑓 𝜉𝑜 ) − cos(𝜆𝑓 𝜉𝑜 ) − sinh(𝜆𝑓 𝜉𝑜 ) − cosh(𝜆𝑓 𝜉𝑜 ) 0 0 0

− cos(𝜆𝑓 𝜉𝑜 ) − sin(𝜆𝑓 𝜉𝑜 ) cosh(𝜆𝑓 𝜉𝑜 ) sinh(𝜆𝑓 𝜉𝑜 ) 𝜁 cos(𝜆𝑓 𝜉𝑜 ) 𝜁 sin(𝜆𝑓 𝜉𝑜 ) −𝜁 cosh(𝜆𝑓 𝜉𝑜 ) −𝜁 sinh(𝜆𝑓 𝜉𝑜 ) 0 0 0

sin(𝜆𝑓 𝜉𝑜 ) − cos(𝜆𝑓 𝜉𝑜 ) sinh(𝜆𝑓 𝜉𝑜 ) cosh(𝜆𝑓 𝜉𝑜 ) −𝜁 sin(𝜆𝑓 𝜉𝑜 ) 𝜁 cos(𝜆𝑓 𝜉𝑜 ) −𝜁 sinh(𝜆𝑓 𝜉𝑜 ) −𝜁 cosh(𝜆𝑓 𝜉𝑜 ) 0 0 0

0 0 0 0
𝛼1𝛼2𝛽3
√

𝛽2𝜆𝑡
cos(𝜆𝑓 )

𝛼1𝛼2𝛽3
√

𝛽2𝜆𝑡
sin(𝜆𝑓 )

𝛼1𝛼2𝛽3
√

𝛽2𝜆𝑡
cosh(𝜆𝑓 )

𝛼1𝛼2𝛽3
√

𝛽2𝜆𝑡
sinh(𝜆𝑓 ) 0 − sin(

√

𝛽2𝜆𝑡 ) +
𝛼23𝛼4
√

𝛽2𝜆𝑡
cos(

√

𝛽2𝜆𝑡 ) cos(
√

𝛽2𝜆𝑡 ) +
𝛼23𝛼4
√

𝛽2𝜆𝑡
sin(

√

𝛽2𝜆𝑡 )

0 0 0 0 0 0 0 0 sin(𝜆𝑡𝜉𝑜 ) − cos(
√

𝛽2𝜆𝑡𝜉𝑜 ) − sin(
√

𝛽2𝜆𝑡𝜉𝑜 )

0 0 0 0 0 0 0 0 cos(𝜆𝑡𝜉𝑜 ) 𝜅
√

𝛽2 sin(
√

𝛽2𝜆𝑡𝜉𝑜 ) −𝜅
√

𝛽2 cos(
√

𝛽2𝜆𝑡𝜉𝑜 )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Box I.
𝐁 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 − cos(𝜆𝑓 ) − sin(𝜆𝑓 ) cosh(𝜆𝑓 ) sinh(𝜆𝑓 )
0 0 0 0 sin(𝜆𝑓 ) −

𝛼1
𝜆3𝑓

cos(𝜆𝑓 ) − cos(𝜆𝑓 ) −
𝛼1
𝜆3𝑓

sin(𝜆𝑓 ) sinh(𝜆𝑓 ) −
𝛼1
𝜆3𝑓

cosh(𝜆𝑓 ) cosh(𝜆𝑓 ) −
𝛼1
𝜆3𝑓

sinh(𝜆𝑓 )

cos(𝜆𝑓 𝜉𝑜) sin(𝜆𝑓 𝜉𝑜) cosh(𝜆𝑓 𝜉𝑜) sinh(𝜆𝑓 𝜉𝑜) − cos(𝜆𝑓 𝜉𝑜) − sin(𝜆𝑓 𝜉𝑜) − cosh(𝜆𝑓 𝜉𝑜) − sinh(𝜆𝑓 𝜉𝑜)
− sin(𝜆𝑓 𝜉𝑜) cos(𝜆𝑓 𝜉𝑜) sinh(𝜆𝑓 𝜉𝑜) cosh(𝜆𝑓 𝜉𝑜) sin(𝜆𝑓 𝜉𝑜) − cos(𝜆𝑓 𝜉𝑜) − sinh(𝜆𝑓 𝜉𝑜) − cosh(𝜆𝑓 𝜉𝑜)
− cos(𝜆𝑓 𝜉𝑜) − sin(𝜆𝑓 𝜉𝑜) cosh(𝜆𝑓 𝜉𝑜) sinh(𝜆𝑓 𝜉𝑜) −𝜁 sin(𝜆𝑓 𝜉𝑜) 𝜁 cos(𝜆𝑓 𝜉𝑜) −𝜁 cosh(𝜆𝑓 𝜉𝑜) −𝜁 sinh(𝜆𝑓 𝜉𝑜)
sin(𝜆𝑓 𝜉𝑜) − cos(𝜆𝑓 𝜉𝑜) sinh(𝜆𝑓 𝜉𝑜) cosh(𝜆𝑓 𝜉𝑜) −𝜁 sin(𝜆𝑓 𝜉𝑜) 𝜁 cos(𝜆𝑓 𝜉𝑜) −𝜁 sinh(𝜆𝑓 𝜉𝑜) −𝜁 cosh(𝜆𝑓 𝜉𝑜)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

Box II.
Here B is as given in Box II ,

𝐂 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0
0 0 0
0 0 0
0

𝛼1𝛼2
𝜆3𝑓

cos(
√

𝛽2𝜆𝑡)
𝛼1𝛼2
𝜆3𝑓

sin(
√

𝛽2𝜆𝑡)

0 0 0
0 0 0
0 0 0
0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 − sin(
√

𝛽2𝜆𝑡) +
𝛼23𝛼4
√

𝛽2𝜆𝑡
cos(

√

𝛽2𝜆𝑡) cos(
√

𝛽2𝜆𝑡) +
𝛼23𝛼4
√

𝛽2𝜆𝑡
sin(

√

𝛽2𝜆𝑡)

sin(𝜆𝑡𝜉𝑜) − cos(
√

𝛽2𝜆𝑡𝜉𝑜) − sin(
√

𝛽2𝜆𝑡𝜉𝑜)

cos(𝜆𝑡𝜉𝑜) 𝜅
√

𝛽2 sin(
√

𝛽2𝜆𝑡𝜉𝑜) −𝜅
√

𝛽2 cos(
√

𝛽2𝜆𝑡𝜉𝑜)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

D is as given in Box III.
The determinant of the block matrix satisfies the following relation:

𝐀| = |𝐁| ||
|

𝐄 − 𝐃𝐁−𝟏𝐂||
|

. Here matrix 𝐁 is an invertible square matrix.
Therefore, the |𝐀| = 0 is equivalent to the |

|

|

𝐄 − 𝐃𝐁−𝟏𝐂||
|

= 0. And the
following equation is obtained

𝑓1(𝛼1, 𝜆𝑓 ) − 𝑓2(𝜆𝑓 ) = 0 (A.1)

Here the 𝑓1(𝛼1, 𝜆𝑓 ) is a function of both the contact stiffness and the
ontact resonance frequency, and the 𝑓2(𝜆𝑓 ) is a function of the contact

resonance frequency.

𝑓1(𝛼1, 𝜆𝑓 ) =
𝛼23𝛼4 − 𝛼

2
1𝛼

2
2𝛽3𝑇

√

𝛽2𝜆𝑡
,

=
𝑔1(𝜆𝑓 ) ,
𝑔2(𝜆𝑓 ) + 𝛼1𝑔3(𝜆𝑓 )
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𝑔1(𝜆𝑓 ) = −
{

4(1 − 𝜁2) [sinh(𝜆𝑓 (𝜉𝑜 − 1))(cos(𝜆𝑓 + 𝛽2𝜆𝑡 − 𝜆𝑓 𝜉𝑜)

+ cos(𝜆𝑓 − 𝛽2𝜆𝑡 − 𝜆𝑓 𝜉𝑜)) + cosh(𝜆𝑓 (𝜉𝑜 − 1))

(sin(𝜆𝑓 + 𝛽2𝜆𝑡 − 𝜆𝑓 𝜉𝑜) + sin(𝜆𝑓 − 𝛽2𝜆𝑡 − 𝜆𝑓 𝜉𝑜))]

+(𝜁 − 1)2[cosh(𝜆𝑓 (𝜉𝑜 − 1))(sin(𝜆𝑓 + 𝛽2𝜆𝑡) + sin(𝜆𝑓 − 𝛽2𝜆𝑡))

+ sinh(𝜆𝑓 (2𝜉𝑜 − 1))(cos(𝜆𝑓 + 𝛽2𝜆𝑡) + cos(𝜆𝑓 − 𝛽2𝜆𝑡))

+(cosh(𝜆𝑓 (2𝜉𝑜 − 1)) + cosh(𝜆𝑓 ))(sin(𝜆𝑓 + 𝛽2𝜆𝑡 − 2𝜆𝑓 𝜉𝑜)

+ sin(𝜆𝑓 − 𝛽2𝜆𝑡 − 2𝜆𝑓 𝜉𝑜)) + (sinh(𝜆𝑓 (2𝜉𝑜 − 1)) − sinh(𝜆𝑓 ))

× (cos(𝜆𝑓 + 𝛽2𝜆𝑡 − 2𝜆𝑓 𝜉𝑜) + cos(𝜆𝑓 − 𝛽2𝜆𝑡 − 2𝜆𝑓 𝜉𝑜))]

+[(𝜉𝑜 + 3)2 − 8][cosh(𝜆𝑓 )(sin(𝜆𝑓 + 𝛽2𝜆𝑡) + sin(𝜆𝑓 − 𝛽2𝜆𝑡))

− sin(𝜆𝑓 )(cos(𝜆𝑓 + 𝛽2𝜆𝑡) + cos(𝜆𝑓 − 𝛽2𝜆𝑡))]
}

∕(𝛽2𝜆𝑡),

𝑔2(𝜆𝑓 ) = 2𝜆3𝑓
{

4(1 + 𝜁2) + 4(1 − 𝜁2)
[

cosh
(

(𝜉𝑜 − 1)𝜆𝑓
)

cos
(

(𝜉𝑜 − 1)𝜆𝑓
)

+cos(𝜆𝑓 𝜉𝑜) cosh(𝜆𝑓 𝜉𝑜)
]

+(𝜁 − 1)2
[

cos
(

𝜆𝑓 (2𝜉𝑜 − 1)
)

cosh(𝜆𝑓 ) + cosh
(

𝜆𝑓 (2𝜉𝑜 − 1)
)

× cos(𝜆𝑓 ) + cos
(

𝜆𝑓 (2𝜉𝑜 − 1)
)

cosh
(

𝜆𝑓 (2𝜉𝑜 − 1)
)]

+
[

(𝜁 + 3)2 − 8
]

cos 𝜆𝑓 cosh 𝜆𝑓
}

𝑔3(𝜆𝑓 ) = 2
{

sinh 𝜆𝑓
[

−(𝜁 − 1)2 cos
(

(2𝜉𝑜 − 1)𝜆𝑓
)

−
(

(𝜁 + 3)2 − 8
)

cos 𝜆𝑓
]

+cosh 𝜆𝑓
[

−(𝜁 − 1)2 sin
(

(2𝜉𝑜 − 1)𝜆𝑓
)

+
(

(𝜁 + 3)2 − 8
)

sin 𝜆𝑓
]

+ cosh
(

(2𝜉𝑜 − 1)𝜆𝑓
)

×
[

−(𝜁 − 1)2 sin
(

(2𝜉𝑜 − 1)𝜆𝑓
)

+ (𝜁 − 1)2 sin 𝜆𝑓
]

+ sinh
(

(2𝜉𝑜 − 1)𝜆𝑓
) [

(𝜁 − 1)2 cos
(

(2𝜉𝑜 − 1)𝜆𝑓
)

+ (𝜁 − 1)2 cos 𝜆𝑓
]

+4(𝜁2 − 1) cosh
(

(𝜉𝑜 − 1)𝜆𝑓
)

sin
(

(𝜉𝑜 − 1)𝜆𝑓
)

+4(1 − 𝜁2) sinh
(

(𝜉𝑜 − 1)𝜆𝑓
)

cos
(

(𝜉𝑜 − 1)𝜆𝑓
)}

𝑓2(𝜆𝑓 ) = −
tan(

√

𝛽2𝜆𝑡)
[

tan(
√

𝛽2𝜆𝑡𝜉𝑜) − 𝜅
√

𝛽2 tan(𝜆𝑡𝜉𝑜)
]

+ 𝜅
√

𝛽2 tan(
√

𝛽2𝜆𝑡𝜉𝑜) + 1

tan(
√

𝛽2𝜆𝑡)
[

𝜅
√

𝛽2 tan(
√

𝛽2𝜆𝑡𝜉𝑜) tan(𝜆𝑡𝜉𝑜) + 1
]

− tan(
√

𝛽2𝜆𝑡𝜉𝑜) + 𝜅
√

𝛽2 tan(𝜆𝑡𝜉𝑜)
,

𝜆 =
√

𝛽 𝜆2 .
𝑡 1 𝑓
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𝐃 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0
𝛼1𝛼2𝛽3
√

𝛽2𝜆𝑡
cos(𝜆𝑓 )

𝛼1𝛼2𝛽3
√

𝛽2𝜆𝑡
sin(𝜆𝑓 )

𝛼1𝛼2𝛽3
√

𝛽2𝜆𝑡
cosh(𝜆𝑓 )

𝛼1𝛼2𝛽3
√

𝛽2𝜆𝑡
sinh(𝜆𝑓 )

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

,

Box III.
Fig. B.1. Schematic diagram of the AFM T-shape cantilever.
o

Appendix B. Model development and computation of a damped
T-shape cantilever

For a T-shape cantilever in Fig. B.1, the governing equations are
derived by applying the Hamilton’s principle as follows [29]:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑚1
𝜕2𝑤1

𝜕𝑡2
+ 𝐸𝐼1

𝜕4𝑤1

𝜕𝑥4
+ 𝑐1

𝜕𝑤1
𝜕𝑡

= 0, 0 ≤ 𝑥 ≤ 𝐿1,

𝑚2
𝜕2𝑤2

𝜕𝑡2
+ 𝐸𝐼2

𝜕4𝑤2

𝜕𝑥4
+ 𝑐1

𝜕𝑤2
𝜕𝑡

+ 𝛿(𝑥 − 𝐿)𝑘𝑛(𝑤2 − 𝜃2𝑑)

+𝛿(𝑥 − 𝐿)𝑐𝑛(
𝜕𝑤2
𝜕𝑡

−
𝜕𝜃2
𝜕𝑡
𝑑) = 0,

𝐿1 ≤ 𝑥 ≤ 𝐿.

(B.1)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜌𝐼𝑃1
𝜕2𝜃1
𝜕𝑡2

− 𝐺𝐽1
𝜕2𝜃1
𝜕𝑥2

+ 𝑐1
𝜕𝜃1
𝜕𝑡

= 0, 0 ≤ 𝑥 ≤ 𝐿1,

𝜌𝐼𝑃2
𝜕2𝜃2
𝜕𝑡2

− 𝐺𝐽2
𝜕2𝜃2
𝜕𝑥2

+ 𝑐1
𝜕𝜃2
𝜕𝑡

− 𝛿(𝑥 − 𝐿)𝑘𝑛𝑑(𝑤2 − 𝜃2𝑑)

−𝛿(𝑥 − 𝐿)𝑐𝑛𝑑(
𝜕𝑤2
𝜕𝑡

−
𝜕𝜃2
𝜕𝑡
𝑑)

+𝛿(𝑥 − 𝐿)𝑘𝐿𝐻2𝜃2 + 𝛿(𝑥 − 𝐿)𝑐𝐿𝐻2 𝜕𝜃2
𝜕𝑡

= 0,

𝐿1 ≤ 𝑥 ≤ 𝐿.

(B.2)

As the T-shape structure, the cantilever is divided into two parts,
𝑤𝑖, 𝜃𝑖, 𝑚𝑖, 𝐸𝐼𝑖, 𝜌, 𝐼𝑃 𝑖, 𝐺𝐽𝑖 (𝑖 = 1 and 2) denote the cantilever de-
flection, angle of twist, mass per unit length, flexural stiffness, den-
sity, polar area moment of the inertia and torsional stiffness of the
two parts, respectively. The polar area moment of the inertia 𝐼𝑃 𝑖 =
(𝑏𝑖ℎ3 + 𝑏3𝑖 ℎ)∕12 (𝑖 = 1 and 2), and the torsional stiffness 𝐺𝐽𝑖 =
1
3𝐺𝑏𝑖ℎ

3
[

1 − 0.63 ℎ𝑏𝑖
+ 0.052

(

ℎ
𝑏𝑖

)3
]

(𝑖 = 1 and 2) [30]. Here 𝑘𝑛, 𝑘𝐿, 𝑐𝑛, 𝑐𝐿

and 𝑐1 are the vertical contact stiffness, the tangential contact stiffness,
the damping coefficient for the vertical contact, the damping coefficient
for the tangential contact and the cantilever damping coefficient,
respectively.

The following quantities are introduced to nondimensionalize Eqs.
(B.1) and (B.2)

𝜉 = 𝑥∕𝐿, 𝜉𝑜 = 𝐿1∕𝐿, 𝑊1 = 𝑤1∕𝐿, 𝑊2 = 𝑤2∕𝐿, 𝜏 =
√

𝐸𝐼1∕𝑚1𝐿4𝑡.

(B.3)

here
√

𝐸𝐼1∕𝑚1𝐿4 is with the unit of Hertz and it is the same order of
he first natural frequency of a uniform and undamped cantilever [33].
8

Eqs. (B.1) and (B.2) now become the following dimensionless ones:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜕2𝑊1

𝜕𝜏2
+
𝜕4𝑊1

𝜕𝜉4
+ 𝐶

𝜕𝑊1
𝜕𝜏

= 0, 0 ≤ 𝜉 ≤ 𝜉𝑜,

𝜕2𝑊2

𝜕𝜏2
+
𝜕4𝑊2

𝜕𝜉4
+ 𝐶
𝜁
𝜕𝑊2
𝜕𝜏

+ 𝛿(𝜉 − 1)[𝛼1(𝑊2 − 𝛼2𝜃2)

+𝛼5(
𝜕𝑊2
𝜕𝜏

− 𝛼2
𝜕𝜃2
𝜕𝜏

) = 0],
𝜉𝑜 ≤ 𝜉 ≤ 1.

(B.4)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜕2𝜃1
𝜕𝜉2

− 𝛽1
𝜕2𝜃1
𝜕𝜏2

− 𝐶𝛽4
𝜕𝜃1
𝜕𝜏

= 0, 0 ≤ 𝜉 ≤ 𝜉𝑜,

𝜕2𝜃2
𝜕𝜉2

− 𝛽1𝛽2
𝜕2𝜃2
𝜕𝜏2

− 𝐶𝛽5
𝜕𝜃2
𝜕𝜏

+ 𝛿(𝜉 − 1)𝛼2𝛽3

[𝛼1(𝑊2 − 𝛼2𝜃2) + 𝛼5(
𝜕𝑊2
𝜕𝜏

− 𝛼2
𝜕𝜃2
𝜕𝜏

)]

−𝛿(𝜉 − 1)𝛼23 [𝛼4𝜃2 + 𝛼6𝛽3
𝜕𝜃2
𝜕𝜏

] = 0,

𝜉𝑜 ≤ 𝜉 ≤ 1.
(B.5)

Here 𝜁 is the width ratio of the two parts defined as 𝜁 = 𝑏2∕𝑏1,
𝐶 = 𝑐1

√

𝐿4∕𝑚1𝐸𝐼1 indicates the damping influence. And 𝛼𝑖𝑠 (𝑖 = 1 to 6)
are defined as

𝛼1 = 𝑘𝑛𝐿
3∕𝐸𝐼2, 𝛼2 = 𝑑∕𝐿, 𝛼3 = 𝐻∕𝐿, 𝛼4 = 𝑘𝐿𝐿

3∕𝐺𝐽2,

𝛼5 =
(

𝑐𝑛∕𝐿
)

√

𝐿4∕𝑚2𝐸𝐼2, 𝛼6 =
(

𝑐𝐿∕𝐿
)

√

𝐿4∕𝑚2𝐸𝐼2. (B.6)

Physically 𝛼1 is the ratio of the vertical contact stiffness to the
cantilever flexural stiffness and 𝛼4 is the ratio of the tangential contact
stiffness to the cantilever torsional stiffness. Here 𝛼2 is the ratio of the
off-center distance to the total cantilever length. 𝛼3 is the ratio of the
tip height to the total cantilever length. 𝛼5 and 𝛼6 indicate the damping
influence.

Besides, 𝛽𝑖𝑠 (𝑖 = 1 to 5) are defined as

𝛽1 =
𝐸𝐼1∕𝐿3

𝜌𝐴1𝐿
𝜌𝐼𝑃1𝐿
𝐺𝐽1∕𝐿

, 𝛽2 =
𝐼𝑃2
𝐼𝑃1

𝐺𝐽1
𝐺𝐽2

, 𝛽3 =
𝐸𝐼2
𝐺𝐽2

, 𝛽4 =
𝐸𝐼1
𝐺𝐽1𝐿2

,

𝛽5 =
𝐸𝐼1
𝐺𝐽2𝐿2

.

(B.7)

Here,
√

𝛽1 indicates the likelihood of modal coupling. 𝛽2 is the ratio
f the polar area moment of the inertia to the torsional stiffness. 𝛽3, 𝛽4

and 𝛽5 are the ratios of the flexural stiffness to the torsional stiffness.
The Galerkin method is used to compute the Eqs. (B.4) and (B.5),

𝑊𝑖(𝜉, 𝜏) and 𝜃𝑖(𝜉, 𝜏) (𝑖 = 1 and 2) are assumed as follows:

𝑊𝑖(𝜉, 𝜏) =
𝑁
∑

𝑘=1
𝑎𝑘(𝜏)𝑌𝑖𝑘(𝜉), 𝜃𝑖(𝜉, 𝜏) =

𝑁
∑

𝑘=1
𝑎𝑘(𝜏)𝜓𝑖𝑘(𝜉). (B.8)
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Fig. C.1. The finite element analysis of a T - shape cantilever in the contact mode. In
his example, the cantilever has a total length 𝐿 = 300 μm, width 𝑏1 = 20 μm, 𝑏2 = 50
m, thickness ℎ = 3 μm, and length ratio 𝜉𝑜 = 0.9. The tip has a radius of 100 nm. The
ength, width and thickness of the sample are 250 μm, 100 μm and 6 μm, respectively.

Fig. C.2. The third eigenfrequency as a function of the tip displacement. The insets
are the corresponding mode shapes at different displacements of the tip.

Here 𝑎𝑘(𝜏) is the amplitude to be determined, N is the mode
umber, 𝑌𝑖𝑘(𝜉) and 𝜓𝑖𝑘(𝜉) are the mode shapes of the T-shape cantilever
hat obtained from the previous calculation. Substitute Eq. (B.8) into
q. (B.4), time 𝑌𝑖𝑗 (𝜉) and integrate from 0 to 1, the governing equation
s derived as follows:

𝐗̈ + 𝐂𝐗̇ +𝐊𝐗 = 𝟎 (B.9)

Here 𝐗 =
[

𝑎1(𝜏) 𝑎2(𝜏) ⋯ 𝑎𝑁 (𝜏)
]𝑇 . And the following matrices

𝐌, 𝐂 and 𝐊 are derived with the orthogonal property of the mode
shapes.

𝐌𝑘𝑗 =

⎧

⎪

⎨

⎪

⎩

∫

𝜉𝑜

0
𝑌 2
1𝑘(𝜉)𝑑𝜉 + ∫

1

𝜉𝑜
𝑌 2
2𝑘(𝜉)𝑑𝜉, 𝑘 = 𝑗,

0, 𝑘 ≠ 𝑗.
(B.10)

𝐂𝑘𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐶 ∫

𝜉𝑜

0
𝑌 2
1𝑘(𝜉)𝑑𝜉 +

𝐶
𝜁 ∫

1

𝜉𝑜
𝑌 2
2𝑘(𝜉)𝑑𝜉

+𝛼5
[

𝑌 2
2𝑘(1) − 𝛼2𝑌2𝑘(1)𝜓2𝑘(1)

]

, 𝑘 = 𝑗,

𝛼5
[

𝑌 2
2𝑘(1) − 𝛼2𝑌2𝑘(1)𝜓2𝑘(1)

]

, 𝑘 ≠ 𝑗.

(B.11)

𝐊𝑘𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

𝜆4𝑓

[

∫

𝜉𝑜

0
𝑌 2
1𝑘(𝜉)𝑑𝜉 + ∫

1

𝜉𝑜
𝑌 2
2𝑘(𝜉)𝑑𝜉

]

+𝛼1
[

𝑌 2
2𝑘(1) − 𝛼2𝑌2𝑘(1)𝜓2𝑘(1)

]

, 𝑘 = 𝑗,

[ 2 ]

(B.12)
⎩
𝛼1 𝑌2𝑘(1) − 𝛼2𝑌2𝑘(1)𝜓2𝑘(1) , 𝑘 ≠ 𝑗.

9

In order to solve natural frequencies, the Eq. (B.9) is now rewritten
as follows:

𝐌∗𝐙̇(𝜏) +𝐊∗𝐙(𝜏) = 𝟎. (B.13)

Here the matrices of 𝐌∗, 𝐊∗ and the vector of 𝐙(𝜏) are defined for
a damped non-gyroscopic system as follows [34]:

𝐌∗ =
(

𝐌 𝟎
𝟎 −𝐊

)

, 𝐊∗ =
(

𝐂 𝐊
𝐊 𝟎

)

, 𝐙(𝜏) =
(

𝐗̇𝑇 (𝜏)
𝐗𝑇 (𝜏)

)

.

The contact resonance frequencies of the damped T-shape cantilever
can be obtained from the eigenvalues of the Eq. (B.13). In Fig. 7, the
following parameters are fixed as 𝐶 = 0.1, 𝛼5 = 0.5 [1].

Appendix C. The finite element analysis model

Fig. C.1 shows a graphical depiction of the finite element analytical
mode. Here, the cantilever and tip are made of silicon, whose density,
Young’s modulus and Poisson’s ratio are 2330 kg/m3, 160.5 GPa and
0.168, respectively. The density, Young’s modulus and Poisson’s ratio
of the sample are 1050 kg/m3, 3.5 GPa and 0.35, respectively [41].
Fig. C.2. shows that the third eigenfrequency is related to the vertical
displacement of the tip.
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