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A B S T R A C T

The interaction between water wave and an array of porous cylinders with porous plates fixed inside is
investigated theoretically in this study. The porous cylinders are bottom-mounted and surface-piercing, which
contain porous plates fixed below the free water surface. The analytical solution of velocity potential in the
flow field is derived using eigenfunction expansion and Graf’s addition theorem for Bessel functions under the
assumptions of potential flow theory and linear wave theory. This paper focus on investigating the influence
of the porous plates on the diffraction process of the multiple porous cylinders. The results show that the
existence of the porous plates has little effect on the surge force of the porous cylinders, but it can reduce the
wave run up inside the cylinders. The behavior of the porous plates and porous cylinders in combination is
similar to that of a wave absorber, which may cause a setdown of the free surface elevation on the array’s
downstream side.
1. Introduction

The viability of traditional impermeable structures has been severely
threatened by the enormous hydrodynamic loads as marine engineering
structures such as offshore platforms and offshore wind turbines have
been developed into deeper waters. Dissipation of wave energy is
an effective means of reducing hydrodynamic loads on structures.
Extensive studies have shown that porous structures can act as wave
absorbers. Therefore, porous structures, especially porous cylinders,
have attracted great interest from researchers.

Wang and Ren (1994) was the first to study the protective effect of
the porous outer cylinder on the impermeable inner cylinder. Darwiche
et al. (1994) extended the work to a semi-porous cylindrical breakwa-
ter, and Williams and Li (1998) extended it to a semi-porous cylindrical
breakwater installed on a storage tank.

Early studies were limited to the isolated porous cylinder, while
studies for the array of cylinders focused more on impermeable cylin-
ders. The analytical solution between the array of cylinders and waves
was originally proposed by Spring and Monkmeyer (1974). They inves-
tigated the interaction of an array of bottom-mounted, surface-piercing,
impermeable cylinders with waves using the eigenfunction expansion
approach and Graf’s addition theory for Bessel functions. Later, Linton
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and Evans (1990) simplified the method. Since then, many schol-
ars (Maniar and Newman, 1997; Walker and Taylor, 2005; Zeng et al.,
2019) have used this method to study the interaction between waves
and the array of impermeable cylinders. Few studies have investigated
the array of porous cylinders. Williams and Li (2000) obtained the
diffraction analytical solution of waves and an array of porous cylinders
by the above method. They found that the permeability of the structure
can effectively reduce the hydrodynamic force and wave run up of the
cylinders. Sankarbabu et al. (2007) continued to use this method to
extend the concentric porous cylinder system studied by Wang and Ren
(1994) to an array of concentric porous cylinders.

On the other hand, many scholars have recognized porous plates
with wave dissipation capability as a promising marine structure. The
interaction between a submerged porous plate and water wave was first
investigated theoretically by Chwang and Wu (1994). Eigenfunction
expansion and Darcy’s law were used to derive the velocity potential
in the flow field. Their results show that the porous plate acts as a
wave absorber. Since then, many scholars (Yip and Chwang, 1998; Cho
and Kim, 2000, 2008; Liu et al., 2007, 2008) have conducted extensive
research on different types of porous plates. All of the above studies
require the solution of complex eigenvalues, which can be troublesome
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under certain parameter conditions. To circumvent this trouble, many
academics (Molin et al., 2004; Evans and Peter, 2011; Liu and Li, 2011;
Liu et al., 2011; Cho and Kim, 2013; Zhao et al., 2017) have devised
other approaches to divide the vertical space into two independent
regions. It is found that both of the methods are effective in tackling
the problem of the porous plate and wave interaction.

Based on the rich research results of the porous cylinder and porous
plate, the combined application of both has also been considered
by scholars to optimize the hydrodynamic performance of the struc-
ture. Wu and Chwang (2002) studied a vertical cylinder with a porous
ring plate. They found that the presence of a porous ring plate not
only reduces the wave run up at the front edge of the cylinder, but
also reduces the hydrodynamic loads on the cylinder. Bao et al. (2009)
and Zhao et al. (2010) investigated the water wave interaction with a
cylinder with a horizontal porous plate fixed inside theoretically and
verified it experimentally. Recently, Wang et al. (2021) extended the
study to a concentric two cylinders system with a plate fixed inside.
These studies clearly indicate that the combined application of porous
plates and porous cylinders is expected to achieve better hydrodynamic
performance.

So far, no systematic analysis of diffraction from porous cylindri-
cal arrays with porous plates fixed inside has been performed. The
influence of the porous plates on the array of porous cylinders has
remained unclear. The primary aim of this paper is to evaluate the
effect of the porous plates on the diffraction process of the array
of porous cylinders. The porous cylinders are bottom-mounted and
surface-piercing. The porous plates are considered to be thin and fixed
below the still water surface. Based on the eigenfunction expansion
approach, analytical solutions of the velocity potential in each of the
regions are derived under the assumptions of linearized potential flow.
The diffraction processes of an isolated cylinder and a four-cylinders
system with varying wave and structural parameters are explored using
this analytical solution. The array of porous cylinders with porous
plates fixed inside can be used not only as a breakwater, but also as
a support component for marine structures. The research results of this
paper are instructive for their engineering applications.

The mathematical model, including governing equations and bound-
ary conditions, are presented in Section 2. The analytical solution is
derived in Section 3. The validations and some numerical results are
given in Section 4. The last section is the conclusion of this paper.

2. Theoretical development

Fig. 1 shows a definition sketch of an arbitrary array of 𝑁 bottom-
ounted cylinders with porous plates fixed inside. Symbol 𝑎 and 𝑑

epresent the radius and draft of the plates, respectively. Symbol ℎ is
he water depth. With the origin at still water level and 𝑧 pointing
ertically upwards, the global coordinates (𝑥, 𝑦, 𝑧) are established. Fig. 1
epicts the various parameters relating to the positions of the 𝑁
ylinders. The origin of the local polar coordinate system (𝑟𝑗 , 𝜃𝑗 ) is
ocated at the center of cylinder 𝑗, with 𝑗 = 1, 2, . . . , 𝑁 , where 𝜃𝑗
s measured counterclockwise from the positive 𝑥-axis. The center of
ylinder 𝑘 has polar coordinates (𝑅𝑘𝑗 , 𝛼𝑘𝑗 ) relative to cylinder 𝑗, where
, 𝑘 = 1, 2, . . . , 𝑁 . The array of cylinders is subjected to regular wave of
mplitude, 𝐴 and angular frequency, 𝜔 propagating at an angle, 𝛽 to the
ositive 𝑥-axis. Considering the fluid to be inviscid and incompressible,
nd the flow to be irrotational, the flow can be described in the fluid
omain by a velocity potential 𝛷 (𝑥, 𝑦, 𝑧, 𝑡) satisfying Laplace’s equation.
he motion is assumed time harmonic with angular frequency, so the
elocity potential can be written as:

(𝑥, 𝑦, 𝑧, 𝑡) = Re
[

𝜙 (𝑥, 𝑦, 𝑧) 𝑒−i𝜔𝑡] (1)

here Re represents the real part of the complex expression, 𝜙 the
patial velocity potential, i the imaginary unit, 𝜔 the angular frequency
2

f the incident wave.
Fig. 1. Definition sketch.

The fluid is divided into 𝑁 + 1 regions, with 𝑁 interior regions
(0 ≤ 𝑟𝑗 ≤ 𝑎, 𝑗 = 1, 2,… , 𝑁) in the vertical space of 𝑁 cylinders and an
exterior region (𝑎 < 𝑟𝑗 , 𝑗 = 1, 2,… , 𝑁). In these regions, the velocity
potentials will be symbolized by 𝜙0 (𝑥, 𝑦, 𝑧) and 𝜙𝑗 (𝑥, 𝑦, 𝑧) , 𝑗 =
1, 2,… , 𝑁 , respectively, and must satisfy the Laplace’s equation:

∇2𝜙𝑗 (𝑥, 𝑦) = 0, 𝑗 = 0, 1, 2,… , 𝑁. (2)

The velocity potential of each region also satisfies the conditions of
ree surface and seafloor, i.e.
𝜕𝜙𝑗

𝜕𝑧
= 𝜔2

𝑔
𝜙𝑗 , 𝑧 = 0, 𝑗 = 0, 1, 2,… , 𝑁, (3)

𝜕𝜙𝑗

𝜕𝑧
= 0, 𝑧 = −ℎ, 𝑗 = 0, 1, 2,… , 𝑁. (4)

On the porous plates and cylinders, the boundary conditions can be
xpressed as:
𝜕𝜙𝑗

𝜕𝑧
∣𝑧=−𝑑+=

𝜕𝜙𝑗

𝜕𝑧
∣𝑧=−𝑑−= −𝑤𝑑

𝑗 (𝜃, 𝑟) , 𝑗 = 1, 2,… , 𝑁, (5)

𝜕𝜙0
𝜕𝑟

∣𝑟=𝑎+=
𝜕𝜙𝑗

𝜕𝑟
∣𝑟=𝑎−= −𝑤𝑎

𝑗 (𝜃, 𝑧) , 𝑗 = 1, 2,… , 𝑁, (6)

where 𝑤𝑑
𝑗 (𝜃, 𝑟) and 𝑤𝑎

𝑗 (𝜃, 𝑧) are the spatial component of 𝑊 𝑑
𝑗 (𝜃, 𝑟, 𝑡)

and 𝑊 𝑎
𝑗 (𝜃, 𝑧, 𝑡), which are the flow velocity passing through the

porous plates and porous cylinders, respectively. The plus and minus
signs in Eq. (5) represent the upper and lower surfaces of the plates,
respectively. The plus and minus signs in Eq. (6) represent the outer and
inner surfaces of the cylinders, respectively. Our investigation is limited
to porous surfaces with fine pores. Darcy’s law can be considered to
apply to fluid flow through the porous surfaces. Therefore, the flow
velocity is linearly proportional to the pressure difference between the
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two sides of the porous surfaces (Taylor, 1956; Wang and Ren, 1994).
We have:

𝑊 𝑑
𝑗 (𝜃, 𝑟, 𝑡) =

𝑙0
𝜇
(

𝑃𝑗 ∣𝑧=−𝑑+ −𝑃𝑗 ∣𝑧=−𝑑−
)

, 𝑗 = 1, 2,… , 𝑁, (7)

𝑎
𝑗 (𝜃, 𝑧, 𝑡) =

𝑙1
𝜇
(

𝑃0 ∣𝑟=𝑎+ −𝑃𝑗 ∣𝑟=𝑎−
)

, 𝑗 = 1, 2,… , 𝑁. (8)

Here, 𝜇 is the constant coefficient of dynamic viscosity. 𝑙𝑞 (𝑞 = 0, 1)
epresent material constants of the plates and cylinders respectively,
oth of which having the dimension of a length. 𝑃𝑗 (𝑗 = 1, 2,… , 𝑁) is
he hydrodynamic pressure on cylinder 𝑗, which can be derived by the
elocity potentials through the linearized Bernoulli equation:

𝑗 = −𝜌
𝜕𝛷𝑗

𝜕𝑡
, 𝑗 = 0, 1, 2,… , 𝑁, (9)

here 𝜌 is the constant fluid density. We can get the expression for 𝑤𝑑
𝑗

nd 𝑤𝑎
𝑗 by substituting formula (9) into formula (7) and (8):

𝑑
𝑗 (𝑟, 𝜃) =

i𝜌𝜔𝑙0
𝜇

[

𝜙𝑗
(

𝑟, 𝜃,−𝑑+
)

− 𝜙𝑗 (𝑟, 𝜃,−𝑑−)
]

, 𝑗 = 0, 1, 2,… , 𝑁,

(10)

𝑤𝑏
𝑗 (𝜃, 𝑧) =

i𝜌𝜔𝑙1
𝜇

[

𝜙0
(

𝑎+, 𝜃, 𝑧
)

− 𝜙𝑗 (𝑎−, 𝜃, 𝑧)
]

, 𝑗 = 1, 2,… , 𝑁. (11)

Substituting (10) into (5), we can get:
𝜕𝜙𝑗

𝜕𝑧
∣𝑧=−𝑑+=

𝜕𝜙𝑗

𝜕𝑧
∣𝑧=−𝑑−= −

i𝜌𝜔𝑙0
𝜇

[

𝜙𝑗
(

𝑟, 𝜃,−𝑑+
)

− 𝜙𝑗 (𝑟, 𝜃,−𝑑−)
]

,

𝑗 = 1, 2,… , 𝑁. (12)

Similarly, substituting (11) into (6), we can get:

𝜕𝜙0
𝜕𝑟

∣𝑟=𝑎+=
𝜕𝜙𝑗

𝜕𝑟
∣𝑟=𝑎−= −

i𝜌𝜔𝑙1
𝜇

[

𝜙0
(

𝑎+, 𝜃, 𝑧
)

− 𝜙𝑗 (𝑎−, 𝜃, 𝑧)
]

,

𝑗 = 1, 2,… , 𝑁. (13)

Define the porous effect parameters 𝜎𝑛 = 𝜌𝜔𝑙𝑛∕𝜇 (𝑛 = 0, 1), where
𝑛 = 0 and 1 represent the porous effect parameters of the plates and
cylinders, respectively, we have:
𝜕𝜙𝑗

𝜕𝑧
∣𝑧=−𝑑+=

𝜕𝜙𝑗

𝜕𝑧
∣𝑧=−𝑑−=i𝜎0

[

𝜙𝑗 (𝑟, 𝜃,−𝑑−) − 𝜙𝑗
(

𝑟, 𝜃,−𝑑+
)]

,

𝑗 = 1, 2,… , 𝑁. (14)

𝜕𝜙0
𝜕𝑟

∣𝑟=𝑎+=
𝜕𝜙𝑗

𝜕𝑟
∣𝑟=𝑎−=i𝜎1

[

𝜙𝑗 (𝑎−, 𝜃, 𝑧) − 𝜙0
(

𝑎+, 𝜃, 𝑧
)]

,

𝑗 = 1, 2,… , 𝑁. (15)

The dimensionless porous effect parameter 𝑏𝑛 is further introduced:

𝑏𝑛 =
2𝜋𝜎𝑛
𝑘0

, 𝑛 = 0, 1. (16)

Furthermore, the diffraction component of the exterior region ve-
locity potential must satisfy the Sommerfeld condition:

lim
𝑟→∞

√

𝑟
[ 𝜕
𝜕𝑟

(

𝜙0 − 𝜙𝐼
)

− i𝑘0
(

𝜙0 − 𝜙𝐼
)

]

= 0, (17)

here 𝜙𝐼 is the incident velocity potential.
The velocity potentials on the common boundaries between differ-

nt regions must satisfy the following transmission conditions:
𝜕𝜙0
𝜕𝑟

=
𝜕𝜙𝑘
𝜕𝑟

, 𝑘 = 1, 2,… , 𝑁, 𝑟𝑘 = 𝑎,−ℎ < 𝑧 < 0, (18)

𝜙0 = 𝜙𝑘 −
1 𝜕𝜙𝑘 , 𝑘 = 1, 2,… , 𝑁, 𝑟𝑘 = 𝑎, −ℎ < 𝑧 < 0. (19)
3

i𝜎1 𝜕𝑟
3. Solution to the problem

The incident potential in the 𝑗th polar coordinate system, can be
expressed as:

𝜙𝑗
𝐼
(

𝑟𝑗 , 𝜃𝑗 , 𝑧𝑗
)

=
−i𝑔𝐴
𝜔

cosh
[

𝑘0
(

𝑧𝑗 + ℎ
)]

cosh
(

𝑘0ℎ
) 𝐼𝑗

∞
∑

𝑛=−∞
𝐽𝑛

(

𝑘0𝑟𝑗
)

𝑒i𝑛
(

𝜋∕2−𝛽+𝜃𝑗
)

,

(20)

where 𝐼𝑗 = 𝑒i
(

𝑥𝑗 cos 𝛽+𝑦𝑗 sin 𝛽
)

is the phase vector corresponding to the 𝑗th
cylinder. 𝐽𝑛 represents the Bessel function of the first kind with order
. 𝛽 and 𝑘0 are the direction and wavenumber of the incident wave.

The wave diffracted by cylinder 𝑗 in the array of cylinders can be
xpressed as:

𝑗
𝐷
(

𝑟𝑗 , 𝜃𝑗 , 𝑧𝑗
)

=
∞
∑

𝑛=−∞
𝑒i𝑛𝜃𝑗

[ ∞
∑

𝑝=0
𝐴𝑗
𝑛𝑝𝑅𝑛

(

𝑘𝑝𝑟𝑗
)

𝑍𝑝
(

𝑘𝑝𝑧𝑗
)

]

, (21)

where 𝐴𝑗
𝑛𝑝 are the unknown complex coefficients.

The radial eigenfunctions 𝑅𝑛
(

𝑘𝑝𝑟
)

and vertical eigenfunctions
𝑍𝑝

(

𝑘𝑝𝑧
)

are given as:

𝑅𝑛
(

𝑘𝑝𝑟
)

=

{

𝐻𝑛
(

𝑘0𝑟
)

, 𝑝 = 0
𝐾𝑛

(

𝑘𝑝𝑟
)

, 𝑝 ≥ 1
,

𝑍𝑝
(

𝑘𝑝𝑧
)

=

⎧

⎪

⎨

⎪

⎩

−i𝑔𝐴
𝜔

cosh[𝑘0(𝑧+ℎ)]
cosh(𝑘0ℎ)

, 𝑝 = 0
−i𝑔𝐴
𝜔

cos
[

𝑘𝑝(𝑧+ℎ)
]

cos
(

𝑘𝑝ℎ
) , 𝑝 ≥ 1

.

Here, 𝐻𝑛 is the first kind of Hankel function with order 𝑛, and 𝐾𝑛
denotes the second kind modified Bessel function with order 𝑛. 𝑘𝑝 are
the positive real roots of the dispersion relation as follows:

−𝑘 tan (𝑘ℎ) = 𝜔2

𝑔
.

The total velocity potential near cylinder 𝑗 is given by:

𝜙0
(

𝑟𝑗 , 𝜃𝑗 , 𝑧𝑗
)

=𝐼𝑗
∞
∑

𝑛=−∞
𝐽𝑛

(

𝑘0𝑟𝑗
)

𝑒i𝑛
(

𝜋
2 −𝛽+𝜃𝑗

)

𝑍0
(

𝑘0𝑧𝑗
)

+
𝑁
∑

𝑗=1

∞
∑

𝑛=−∞
𝑒i𝑛𝜃𝑗

[ ∞
∑

𝑝=0
𝐴𝑗
𝑛𝑝𝑅𝑛

(

𝑘𝑝𝑟𝑗
)

𝑍𝑝
(

𝑘𝑝𝑧𝑗
)

]

. (22)

The second term on the right side of formula (22) can be expressed
using Graf’s addition theorem for Bessel functions (Abramowitz and
Stegun, 1964; Kagemoto and Yue, 1986) as
𝑁
∑

𝑗=1

∞
∑

𝑛=−∞

∞
∑

𝑝=0
𝐴𝑗
𝑛𝑝𝑍𝑝

(

𝑘𝑝𝑧𝑗
)

∞
∑

𝑚=−∞
𝑄𝑗,𝑘

𝑛,𝑚
(

𝑘𝑝𝑟𝑘
)

𝑒−i𝑚𝜃𝑘 , (23)

where

𝑄𝑗,𝑘
𝑛,𝑚

(

𝑘𝑝𝑟𝑘
)

=

⎧

⎪

⎨

⎪

⎩

𝐻𝑛+𝑚
(

𝑘0𝑅𝑗𝑘
)

𝐽𝑚
(

𝑘0𝑟𝑘
)

𝑒i(𝑚+𝑛)𝛼𝑗𝑘𝑒i𝑚𝜋 , 𝑝 = 0

𝐾𝑛+𝑚
(

𝑘𝑝𝑅𝑗𝑘
)

𝐼𝑚
(

𝑘𝑝𝑟𝑘
)

𝑒i(𝑚+𝑛)𝛼𝑗𝑘𝑒i𝑚𝜋 , 𝑝 ≥ 1
.

Replace 𝑚 in (23) with -𝑚, we can get:

𝜙0
(

𝑟𝑘, 𝜃𝑘, 𝑧𝑘
)

=
∞
∑

𝑛=−∞
𝑒i𝑛𝜃𝑘

[

𝐼𝑘𝐽𝑛
(

𝑘0𝑟𝑘
)

𝑒i𝑛
(

𝜋
2 −𝛽

)

𝑍0
(

𝑘0𝑧𝑘
)

+
∞
∑

𝑝=0
𝐴𝑘
𝑛𝑝𝑅𝑛

(

𝑘𝑝𝑟𝑘
)

𝑍𝑝
(

𝑘𝑝𝑧𝑘
)

]

+
𝑁
∑

𝑗=1,𝑗≠𝑘

∞
∑

𝑛=−∞

∞
∑

𝑝=0
𝐴𝑗
𝑛𝑝𝑍𝑝

(

𝑘𝑝𝑧𝑗
)

∞
∑

𝑚=−∞
𝑄𝑗𝑘

𝑛,−𝑚
(

𝑘𝑝𝑟𝑘
)

𝑒i𝑚𝜃𝑘 ,

(24)

here

𝑗,𝑘
𝑛,−𝑚

(

𝑘𝑝𝑟𝑘
)

=

{

𝐻𝑛−𝑚
(

𝑘0𝑅𝑗𝑘
)

𝐽𝑚
(

𝑘0𝑟𝑘
)

𝑒i(𝑛−𝑚)𝛼𝑗𝑘 , 𝑝 = 0
( ) ( ) i(𝑛−𝑚)𝛼𝑗𝑘 𝑚 .
𝐾𝑛−𝑚 𝑘𝑝𝑅𝑗𝑘 𝐼𝑚 𝑘𝑝𝑟𝑘 𝑒 (−1) , 𝑝 ≥ 1
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The potential 𝜙𝑘 (𝑘 = 1, 2,… , 𝑁) of the 𝑘th interior region, can be
expressed as follows:

𝜙𝑘
(

𝑟𝑘, 𝜃𝑘, 𝑧𝑘
)

=
∞
∑

𝑛=−∞
𝑒i𝑛𝜃𝑘

∞
∑

𝑙=1
𝐷𝑘

𝑛𝑙

𝐽𝑛
(

𝜅𝑙𝑟𝑘
)

𝐽𝑛
(

𝜅𝑙𝑎
) 𝑇𝑙

(

𝜅𝑙𝑧𝑘
)

, 𝑘 = 1, 2,… , 𝑁,

(25)

here

𝑙
(

𝜅𝑙𝑧
)

=

{

− i𝑔𝐴
𝜔 sinh

[

𝜅𝑙 (ℎ − 𝑑)
] [

𝜅𝑙 cosh
(

𝜅𝑙𝑧
)

+ 𝜈 sinh
(

𝜅𝑙𝑧
)]

, −𝑑 ≤ 𝑧 ≤ 0
− i𝑔𝐴

𝜔

(

𝜈 cosh 𝜅𝑙𝑑 − 𝜅𝑙 sinh 𝜅𝑙𝑑
)

cosh
[

𝜅𝑙 (𝑧 + ℎ)
]

, −ℎ ≤ 𝑧 ≤ −𝑑
.

Here, 𝜈 = 𝜔2∕𝑔, 𝐷𝑘
𝑛𝑙 are unknown complex coefficients. The eigen-

values 𝜅𝑙 are the roots of:

𝜅𝑙

[

𝜔2

𝑔
cosh

(

𝜅𝑙𝑑
)

− 𝜅𝑙 sinh
(

𝜅𝑙𝑑
)

]

sinh
[

𝜅𝑙 (ℎ − 𝑑)
]

= i𝜎0
[

𝜔2

𝑔
cosh

(

𝜅𝑙ℎ
)

− 𝜅𝑙 sinh
(

𝜅𝑙ℎ
)

]

n the upper half complex plane of 𝜅𝑙 for 0 < 𝜎0 < +∞.
We could obtain the following linear equations by substituting

Eqs. (24) and (25) into transmission conditions (18) and (19) and using
the orthogonality of the vertical eigenfunction of the exterior region:

𝐴𝑘
𝑚𝑝𝑅

′
𝑚
(

𝑘𝑝𝑎
)

𝑆𝑝𝑝 +
𝑁
∑

𝑗=1,𝑗≠𝑘

∞
∑

𝑛=−∞
𝐴𝑗
𝑛𝑝𝑄

𝑗𝑘′
𝑛,−𝑚

(

𝑘𝑝𝑎
)

𝑆𝑝𝑝

=
∞
∑

𝑙=1
𝐷𝑘

𝑚𝑙𝜅𝑙
𝐽 ′
𝑚
(

𝜅𝑙𝑎
)

𝐽𝑚
(

𝜅𝑙𝑎
)𝐶𝑝𝑙 − 𝐼𝑘𝑘0𝐽

′
𝑚
(

𝑘0𝑎
)

𝑒i𝑚
(

𝜋
2 −𝛽

)

𝑆0𝑝, (26)

𝑘
𝑚𝑝𝑅𝑚

(

𝑘𝑝𝑎
)

𝑆𝑝𝑝 +
𝑁
∑

𝑗=1,𝑗≠𝑘

∞
∑

𝑛=−∞
𝐴𝑗
𝑛𝑝𝑄

𝑗𝑘
𝑛,−𝑚

(

𝑘𝑝𝑎
)

𝑆𝑝𝑝

=
∞
∑

𝑙=1
𝐷𝑘

𝑚𝑙

[

1 −
𝜅𝑙𝐽 ′

𝑚
(

𝜅𝑙𝑎
)

i𝜎1𝐽𝑚
(

𝜅𝑙𝑎
)

]

𝐶𝑝𝑙 − 𝐼𝑘𝐽𝑚
(

𝑘0𝑎
)

𝑒i𝑚
(

𝜋
2 −𝛽

)

𝑆0𝑝. (27)

Here, 𝑆𝑝𝑝, 𝑆0𝑝 and 𝐶𝑝𝑙 are integrals of the vertical eigenfunctions,
and the results are presented in the appendix. The unknown coefficients
can be obtained by combining the two linear equations.

The hydrodynamic forces and the water surface elevation surround-
ing the array of cylinders can be calculated using the derived velocity
potentials.

The surge force of cylinder 𝑗 can be calculated by:

𝐹𝑗 =
𝑎𝜔𝜌𝜋
𝜎1

[ ∞
∑

𝑙=1
𝐷𝑗

1𝑙𝜅𝑙
𝐽 ′
1
(

𝜅𝑙𝑎
)

𝐽1
(

𝜅𝑙𝑎
)𝑆𝑓 +

∞
∑

𝑙=1
𝐷𝑗

−1𝑙𝜅𝑙
𝐽 ′
−1

(

𝜅𝑙𝑎
)

𝐽−1
(

𝜅𝑙𝑎
)𝑆𝑓

]

. (28)

where 𝑆𝑓 are integrals of 𝑇𝑙
(

𝜅𝑙𝑧
)

in the interval -ℎ to 0. The result is
lso shown in the appendix.

The free-surface elevation is given by the linearized Bernoulli equa-
ion on 𝑧=0:

=
i𝜔𝜙𝑘
𝑔

∣𝑧=0, 𝑘 = 0, 1, 2,… , 𝑁. (29)

4. Numerical results and discussions

In this section, the model of an isolated porous cylinder is calculated
first. Then, a four-cylinders system illustrated in Figure 2 is calculated
in order to investigate the diffraction phenomenon of an array of
porous cylinders with porous plates fixed inside. The magnitudes of
free-surface elevations and surge forces are nondimensionalized by 2𝐴
nd 2𝜌𝑔𝐴𝑎2ℎ, respectively.

The dimensionless surge force of an isolated porous cylinder varies
ith the dimensionless wavenumber, as seen in Fig. 3. The calcu-

ation parameters are ℎ∕𝑎 = 5, 𝑏1 = 2𝜋, 𝑑∕ℎ = 0.01 and 𝑏0 =
000.0, 20.0, 10.0, 5.0, 0.0001. It should be noted that the circles
epresent the case without the plate, and the result is from Williams and
i (2000). It can be concluded from Fig. 3 that when 𝑏 = 1000, it can
4

0 g
Fig. 2. Geometric model for a four-cylinders system.

Fig. 3. Dimensionless surge force of an isolated porous cylinder with a porous plate
fixed inside for ℎ∕𝑎 = 5, 𝑏1 = 2𝜋, 𝑑∕ℎ = 0.01 and 𝑏0 = 1000.0, 20.0, 10.0, 5.0, 0.0001.

e regarded as the absence of the plate. The presence of a porous plate
as little effect on the structure’s surge force over the whole frequency
ange, as seen in this figure. Regardless of the permeability of the plate,
he peak value of the surge force of an isolated porous cylinder remains
nchanged.

Fig. 4 shows the dimensionless wave run up on the exterior and
nterior walls of an isolated porous cylinder for 𝑘0𝑎 = 0.6, ℎ∕𝑎 = 5,
1 = 2𝜋, 𝑑∕ℎ = 0.01 and 𝑏0 = 1000.0, 20.0, 10.0, 5.0, 0.0001. The
esults of Williams and Li (2000) are recovered in Fig. 4. The presence
f the plate, as shown in Fig. 4 (𝑎), decreases the wave run up outside
he cylinder. However, regardless of the permeability of the plate, the
aximum point of wave run up outside the cylinder always occurs at
= 180. On the contrary, the maximum point of wave run up inside

he cylinder occurs at 𝜃 = 0 as illustrated in Fig. 4 (𝑏). Meanwhile, as
he permeability of the plate diminishes, the peak value of wave run
p both inside and outside the cylinder gradually decreases.

Fig. 5 depicts the total surge force in the 𝑥-direction for ℎ∕𝑎 =
5, 𝑞∕𝑎 = 4, 𝑏1 = 2𝜋, 𝛽 = 45, 𝑑∕ℎ = 0.01 and 𝑏0 = 1000.0, 20.0, 10.0, 5.0,
.0001. The circles in this figure also represent the results of Williams
nd Li (2000) for an array of porous cylinders without porous plates
ixed inside. The peak value of the total surge force of the four-cylinders
ystem decreases slightly with the gradual decrease of 𝑏0, as shown in
ig. 5. By contrast, in the high frequency region (𝑘0𝑎 > 1.5), with the

radual decrease of 𝑏0, the total surge force of the four-cylinders system
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Fig. 4. Dimensionless wave run up on the exterior (𝑎) and interior (𝑏) walls of an isolated porous cylinder with a porous plate fixed inside for 𝑘0𝑎 = 0.6, ℎ∕𝑎 = 5, 𝑏1 = 2𝜋,
𝑑∕ℎ = 0.01 and 𝑏0 = 1000.0, 20.0, 10.0, 5.0, 0.0001.
Fig. 5. Dimensionless surge force in the 𝑥-direction on a four-cylinder system for
ℎ∕𝑎 = 5, 𝑞∕𝑎 = 4, 𝑏1 = 2𝜋, 𝛽 = 45, 𝑑∕ℎ = 0.01 and 𝑏0 = 1000.0, 20.0, 10.0, 5.0, 0.0001.

increases slightly. In general, the existence of the plates has little effect
on the total surge force of the four-cylinders system.

Figs. 6–7 show the dimensionless wave run up on each cylinder
as an illustration of the effect of porosity on wave run up for ℎ∕𝑎 =
5, 𝑞∕𝑎 = 4, 𝑏1 = 2𝜋, 𝛽 = 45, 𝑘0𝑎 = 𝜋∕2, 𝑑∕ℎ = 0.01 and 𝑏0 =
1000.0, 20.0, 10.0, 5.0, 0.0001. The results of Williams and Li (2000) are
again recovered in Figs. 6–7. As can be seen from Fig. 6, the existence of
the plates does not affect the position of the peak value of the wave run
up outside the cylinders, that is, the upstream side. Except for cylinder
2, with the decrease of 𝑏0, the peak value of wave run up on exterior
wall increases gradually. For cylinder 2, the variation law of its peak
point is just the opposite, which may be caused by the shielding effect
of other cylinders. It can be concluded from Fig. 7 that the existence of
the plates makes the wave run up on interior wall of the cylinder more
complex. Meanwhile, it can be seen that the existence of the plates
helps to reduce the wave run up on interior wall of the cylinder.

The influence of permeability on the dimensionless wave height in
the vicinity of the four-cylinders system are presented in Figs. 8–10
for ℎ∕𝑎 = 5, 𝑞∕𝑎 = 4, 𝑑∕ℎ = 0.01, 𝑏1 = 2𝜋, 𝛽 = 45, 𝑘0𝑎 = 𝜋∕2 and
𝑏0 = 0.0001, 10.0, 10000.0. These three pictures show the influence
of the porous plates on the diffraction of the incident wave field.
5

With the decrease of 𝑏0, the setdown phenomenon of the free surface
elevation on the downstream side of the system becomes more and
more obvious. Even if the dimensionless porous effect parameter 𝑏0
decreased to 0.0001, the wave focusing process mentioned by Yu and
Chwang (1993) and Chwang and Wu (1994) was not observed in the
system.

These results demonstrate the effect of the plates on the diffraction
process of the porous cylinders, while differences in the effect of porous
and impermeable plates on this process can also be found.

For a porous cylinder with a porous plate fixed inside, the process of
the fluid passing through the plate consumes part of the wave energy
and reduces the wave run up inside the cylinder. The porous plates
with different permeability hardly change the trend of the wave run
up curve inside the cylinder (Fig. 4 (𝑏) and 7). For a porous cylinder
with an impermeable plate (𝑏0 = 0.0001) fixed inside, the presence of
the plate also reduces the wave run up inside the cylinder, but its effect
on the wave run up is different from the effect of the porous plate on it
(Fig. 7). Due to the phase interaction between the flows over and below
the impermeable plates, the plates may cause wave trapping over the
plates, including refraction and reflection (Chwang and Wu, 1994). The
porous cylinder reduces the fluid entering the interior regions, easing
wave trapping and avoiding the wave energy focusing.

The diffraction process becomes more complex due to the interac-
tion of the plates in the array. Numerous calculations have shown that
the impermeable plates may increase the peak value of wave run up
outside some cylinders in the array (Cylinders 1, 3 and 4 in Fig. 6).
Cylinder 2 is affected by the shielding effect of cylinders 1, 3 and 4, and
the intense process of wave transformation above the plates is slowed
down, resulting in a gradual decrease of the peak value of wave run
up outside the cylinder with the decrease of the plate’s permeability
(Cylinder 2 in Fig. 6). This shielding effect is more obvious in Figs. 8–
10. In this four-cylinders model, the combination of porous plates and
porous cylinders can be regarded as a wave absorber with stronger
wave absorption ability.

5. Conclusions

The interaction of water wave and an array of porous cylinders with
porous plates fixed inside is investigated theoretically. An analytical
solution has been established using the eigenfunction expansion ap-
proach under the assumptions of potential flow and linear wave theory.
The correctness of the theory is verified by the published calculation
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Fig. 6. Dimensionless wave run up on exterior wall of each cylinder of a four-cylinders system for ℎ∕𝑎 = 5, 𝑞∕𝑎 = 4, 𝑏1 = 2𝜋, 𝛽 = 45, 𝑘0𝑎 = 𝜋∕2, 𝑑∕ℎ = 0.01 and
𝑏0 = 1000.0, 20.0, 10.0, 5.0, 0.0001.
results of limiting cases. Then, numerical calculations are carried out
for the four-cylinders system. The results reveal that the existence of the
plate hardly affects the surge force of porous cylinder array, but it will
significantly reduce the wave run up inside the cylinder. Meanwhile,
the porous plates will also enhance the setdown phenomenon of the
free surface elevation on the downstream side of the array, showing
the wave absorption ability of the combined application of the porous
plates and the porous cylinders.
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Appendix

The integral results used to solve the system of linear equations as
shown in (26)–(27), are provided as follows:

𝑆𝑞𝑝 = ∫

0

−ℎ
𝑍𝑞

(

𝑘𝑞𝑧
)

𝑍𝑝
(

𝑘𝑝𝑧
)

𝑑𝑧

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
(

𝑔𝐴
𝜔

)2 1
cosh2(𝑘0ℎ)

[

ℎ
2 + sinh(2𝑘0ℎ)

4𝑘0

]

, 𝑞 = 𝑝 = 0

−
(

𝑔𝐴
𝜔

)2 1
cos2

(

𝑘𝑝ℎ
)

[

ℎ
2 + sin

(

2𝑘𝑝ℎ
)

4𝑘𝑝

]

, 𝑞 = 𝑝 ≥ 1

0, 𝑞 ≠ 𝑝

, (A.1)

𝐶0𝑙 = ∫

0

−ℎ
𝑍0

(

𝑘0𝑧
)

𝑇𝑙
(

𝜅𝑙𝑧
)

𝑑𝑧

= −
𝑔2𝐴2 [𝜈 cosh

(

𝜅𝑙𝑑
)

− 𝜅𝑙 sinh
(

𝜅𝑙𝑑
)]

𝜔2 cosh
(

𝑘0ℎ
)

{

sinh
[(

𝑘0 + 𝜅𝑙
)

(ℎ − 𝑑)
]

2
(

𝑘0 + 𝜅𝑙
)

+
sinh

[(

𝑘0 − 𝜅𝑙
)

(ℎ − 𝑑)
]

2
(

𝑘0 − 𝜅𝑙
)

}

−
𝑔2𝐴2𝜅𝑙 sinh

[

𝜅𝑙 (ℎ − 𝑑)
]

𝜔2 cosh
(

𝑘0ℎ
)

sinh
(

𝑘0ℎ
)

− sinh
[

−𝑑
(

𝑘0 + 𝜅𝑙
)

+ 𝑘0ℎ
]

2
(

𝑘0 + 𝜅𝑙
)

+
𝑔2𝐴2𝜅𝑙 sinh

[

𝜅𝑙 (ℎ − 𝑑)
]

2
( )

sinh
(

𝑘0ℎ
)

+ sinh
[

−𝑑
(

𝜅𝑙 − 𝑘0
)

− 𝑘0ℎ
]

( )
𝜔 cosh 𝑘0ℎ 2 𝜅𝑙 − 𝑘0
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Fig. 7. Dimensionless wave run up on interior wall of each cylinder of a four-cylinders system for ℎ∕𝑎 = 5, 𝑞∕𝑎 = 4, 𝑏1 = 2𝜋, 𝛽 = 45, 𝑘0𝑎 = 𝜋∕2, 𝑑∕ℎ = 0.01 and
𝑏0 = 1000.0, 20.0, 10.0, 5.0, 0.0001.
Fig. 8. Free surface elevations for the four-cylinders system for ℎ∕𝑎 = 5, 𝑑∕ℎ = 0.01,
𝑞∕𝑎 = 4, 𝑏1 = 2𝜋, 𝛽 = 45, 𝑘0𝑎 = 𝜋∕2 and 𝑏0 = 0.0001.
7

Fig. 9. Free surface elevations for the four-cylinders system for ℎ∕𝑎 = 5, 𝑑∕ℎ = 0.01,
𝑞∕𝑎 = 4, 𝑏1 = 2𝜋, 𝛽 = 45, 𝑘0𝑎 = 𝜋∕2 and 𝑏0 = 10.0.
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𝑞

𝐶

Fig. 10. Free surface elevations for the four-cylinders system for ℎ∕𝑎 = 5, 𝑑∕ℎ = 0.01,
∕𝑎 = 4, 𝑏1 = 2𝜋, 𝛽 = 45, 𝑘0𝑎 = 𝜋∕2 and 𝑏0 = 1000.0.

−
𝑔2𝐴2𝜈 sinh

[

𝜅𝑙 (ℎ − 𝑑)
]

𝜔2 cosh
(

𝑘0ℎ
)

cosh
(

𝑘0ℎ
)

− cosh
[

−𝑑
(

𝜅𝑙 + 𝑘0
)

+ 𝑘0ℎ
]

2
(

𝜅𝑙 + 𝑘0
)

−
𝑔2𝐴2𝜈 sinh

[

𝜅𝑙 (ℎ − 𝑑)
]

𝜔2 cosh
(

𝑘0ℎ
)

cosh
(

𝑘0ℎ
)

− cosh
[

−𝑑
(

𝜅𝑙 − 𝑘0
)

− 𝑘0ℎ
]

2
(

𝜅𝑙 − 𝑘0
) ,

(A.2)

𝑝𝑙 = ∫

0

−ℎ
𝑍𝑝

(

𝑘𝑝𝑧
)

𝑇𝑙
(

𝜅𝑙𝑧
)

𝑑𝑧, 𝑝 > 0

= −
𝑔2𝐴2𝜅𝑙

[

𝜈 cosh
(

𝜅𝑙𝑑
)

− 𝜅𝑙 sinh
(

𝜅𝑙𝑑
)]

sinh
[

𝜅𝑙 (ℎ − 𝑑)
]

cos
[

𝑘𝑝 (ℎ − 𝑑)
]

𝜔2
(

𝜅2
𝑙 + 𝑘2𝑝

)

cos
(

𝑘𝑝ℎ
)

−
𝑔2𝐴2𝑘𝑝

[

𝜈 cosh
(

𝜅𝑙𝑑
)

− 𝜅𝑙 sinh
(

𝜅𝑙𝑑
)]

cosh
[

𝜅𝑙 (ℎ − 𝑑)
]

sin
[

𝑘𝑝 (ℎ − 𝑑)
]

𝜔2
(

𝜅2
𝑙 + 𝑘2𝑝

)

cos
(

𝑘𝑝ℎ
)

−
𝑔2𝐴2𝜅𝑙 sinh

[

𝜅𝑙 (ℎ − 𝑑)
]

𝜔2
(

𝜅2
𝑙 + 𝑘2𝑝

)

cos
(

𝑘𝑝ℎ
)

{

𝑘𝑝 sin
(

𝑘𝑝ℎ
)

+ 𝜅𝑙 sinh
(

𝜅𝑙𝑑
)

cos
[

𝑘𝑝 (ℎ − 𝑑)
]}

+
𝑔2𝐴2𝜅𝑙 sinh

[

𝜅𝑙 (ℎ − 𝑑)
]

𝜔2
(

𝜅2
𝑙 + 𝑘2𝑝

)

cos
(

𝑘𝑝ℎ
)

𝑘𝑝 cosh
(

𝜅𝑙𝑑
)

sin
[

𝑘𝑝 (ℎ − 𝑑)
]

−
𝑔2𝐴2𝜈 sinh

[

𝜅𝑙 (ℎ − 𝑑)
]

𝜔2
(

𝜅2
𝑙 + 𝑘2𝑝

)

cos
(

𝑘𝑝ℎ
)

{

𝜅𝑙 cos
(

𝑘𝑝ℎ
)

− 𝜅𝑙 cosh
(

𝜅𝑙𝑑
)

cos
[

𝑘𝑝 (ℎ − 𝑑)
]}

−
𝑔2𝐴2𝜈 sinh

[

𝜅𝑙 (ℎ − 𝑑)
]

𝜔2
(

𝜅2
𝑙 + 𝑘2𝑝

)

cos
(

𝑘𝑝ℎ
)

{

𝑘𝑝 sinh
(

𝜅𝑙𝑑
)

sin
[

𝑘𝑝 (ℎ − 𝑑)
]}

. (A.3)

The integral used to derive the surge force is shown in (28), as
follows:

𝑆𝑓 = ∫

0

−ℎ
𝑇
(

𝜅𝑙𝑧
)

𝑑𝑧

=
i𝑔𝐴

[

𝜈 cosh
(

𝜅𝑙𝑑
)

− 𝜅𝑙 sinh
(

𝜅𝑙𝑑
)]

sinh
[

𝜅𝑙 (𝑑 − ℎ)
]

𝜔𝜅𝑙

−
i𝑔𝐴 sinh

[

𝜅𝑙 (ℎ − 𝑑)
]

sinh
(

𝜅𝑙𝑑
)

𝜔

+
i𝑔𝐴𝜈 sinh

[

𝜅𝑙 (ℎ − 𝑑)
] [

cosh
(

𝜅𝑙𝑑
)

− 1
]

𝜔𝜅𝑙
. (A.4)
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