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Nomenclature

co = speed of sound
G2D = two-dimensional Green’s function
G3D = three-dimensional Green’s function
k = wave number
M = freestream Mach number
Pij = compressive stress tensor

po = pressure in the background
p 0 = perturbation of pressure
Tij = Lighthill stress tensor

Ui = freestream velocity
Up = phase velocity flows

ui = Cartesian velocity components
xi = Cartesian observer coordinates
yi = Cartesian source coordinates
ρ 0 = perturbation of density
ω = frequency

I. Introduction

T HE objective of this short Note is to derive a model to diminish
the spurious sound caused by vortical flows crossing the per-

meable Ffowcs Williams and Hawkings (FW-H) integral surfaces.
The FW-H integrals are the solutions of the FW-H equation, which
extends Lighthill’s acoustic analogy method to flows with arbitrary
moving boundaries. The FW-H integrals consist of surface integrals
associated with monopole and dipole sources on solid/permeable
boundaries and a volume integral associatedwith quadrupole sources

external to the boundaries [1]. The volume integral is usually
neglected in computing the far-field sound with the assumption that
the sound is dominated by the surface integrals associated with
monopole and dipole sources because the computation of the volume
integral associated with the quadrupole sources is prohibitively
expensive for flows of practical interest. However, recent research
has shown that neglecting the volume integrals may cause spurious
contributions to the far-field sound even for flows at relatively low
Mach numbers [2–4]. This is because the vortical flows crossing the
integral surfaces generate spurious boundary noise that contaminates
the acoustic field [5–7].
The spurious boundary noise has been eliminated by reformulating

the volume integral associated with the quadrupole sources to an
additional surface integral in the works of Wang et al. [7] and Ikeda
et al. [2] for Curle’s equation and the FW-H equation, respectively.
The methodology is based on the assumption that the Lighthill stress
fluxes near the exit boundaries are convected by frozen flow. There-
fore, the quadrupole sources external to the boundaries can be
approximated by a flux term evaluated on the boundaries. The correct
computation of the Lighthill stress flux or the determination of the
convective velocity is crucial to eliminate spurious sound.
Wang et al. [7] determined the convective velocity of the frozen

flow by scaling the freestream velocity. The spurious sound was
successfully eliminated for a class of problems in which vortices
leave the integral surfaces at a nearly constant velocity. Ikeda et al. [2]
improved the computation of Lighthill stress flux to account for the
nonuniform convection for locally subsonic flows. Nitzkorski and
Mahesh [8] proposed a dynamic end cap techniquewhere the quadru-
pole source is correlated over multiple planes to determine the con-
vective velocity to allow for a small but customizable volume
computation. Rahier et al. [9] further improved the computation of
flux by accounting for the Doppler amplification effects associated
with the flow velocity and surface moving velocity. The time-domain
formulations for the additional surface integral have successfully
predicted the contribution of the volumetric quadrupole integral with
a fixed ormoving control surface.However, the extension of the time-
domain formulations to the frequency domain has not been clearly
addressed until recently [10].
Lockard and Casper [11] proposed a frequency-domain formu-

lation that approximated the volumetric quadrupole integral by a
series of surface integrals. The series of surface integrals was derived
by using the integration by parts repeatedly, which involves comput-
ing the high-order derivatives of Green’s function. The model was
found to work reasonably well in several test cases. However, the
high-order derivatives of Green’s function are quite complicated and
nontrivial to calculate [11]. Moreover, the convergence of the series
depends on theMach number and the observer positions. The series is
divergent in computing the sound generated by a two-dimensional
(2-D) convecting vortex for observers upstream when the Mach
number is 0.6. Ikeda et al. [10] fixed this problem by deriving a
frequency-domain formulation via a Fourier transform applied to the
time-domain formulation. In the present work, we propose an alter-
native method to fix the divergence problem.
The proposed method is based on a Lighthill stress flux model to

evaluate the additional surface integral that approximates the volu-
metric quadrupole integral. The model is robust to compute the far-
field sound generated by subsonic flows at different Mach numbers.
We also try to explore the physics that causes the divergence of the
series reported in thework of Lockard and Casper [11]. Furthermore,
we simplify the computation of the high-order derivatives of Green’s
function based on far-field approximations and provide a single
surface integral to avoid computing the series of surface integrals,
resulting in an efficient way to account for the contribution of the
vortical flows outside the boundaries. We will briefly introduce the
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acoustic equations in Sec. II, discuss the proposed Lighthill stress

fluxmodel that diminishes the spurious sound in Sec. III, validate the

proposed method in Sec. IV, and draw conclusions in Sec. V.

II. Acoustic Equations

We compute the sound generated by sources in a uniformly mov-

ingmedia as in theworks of Lockard and Casper [11] andWang et al.

[7]. The FW-H equation in differential form can be written as

�
∂2

∂t2
�UiUj

∂2

∂xi∂xj
� 2Ui

∂2

∂xi∂t
− c2o

∂2

∂xi∂xi

�
�H�f�ρ 0�

� ∂2

∂xi∂xj
�TijH�f�� − ∂

∂xi
�Fiδ�f�� �

∂
∂t
�Qδ�f�� (1)

where

Tij � ρuiuj � Pij − c2oρ
0δij;

Fi � �Pij � ρ�ui −Ui��uj �Uj� � ρoUiUj�nj;
Q � �ρ�ui �Ui� − ρoUi�ni (2)

ρo, co, and po are the density, speed of sound, and pressure of the

ambient flow, respectively; and ρ 0 � ρ − ρo and p 0 � p − po are

perturbations of the density and pressure, respectively. A level set

function f � 0 is used to denote the boundaries outside of which the
solution is desired (hereinafter referred to as the FW-H surface). Note

that ni is the unit normal vector of the boundaries. The FW-H surface

is fixed in uniform flow as in the work of Lockard and Casper [11].

H�f� is the Heaviside function, which is equal to one for f > 0 and
zero for f < 0. Tij is the Lighthill stress tensor, Pij � �p − p0�δij −
τij is the compressive stress tensor, and τij is the viscous stress tensor.
According to thework of Lockard and Casper [11], the viscous stress

tensor in the Lighthill stress tensor is neglected. The solution to

Eq. (1) in the frequency domain can be given by the integrals as

follows (hereinafter referred to as FW-H integrals) [12]:

H�f�c2oρ 0�x;ω� � IT � IL � IQ (3)

where IT , IL, and IQ are contributions of the thickness, loading, and

quadrupole terms, respectively,

IT�x;ω� � −
Z
f�0

iωQ�y;ω�G�x; y� dS;

IL�x;ω� � −
Z
f�0

Fi�y;ω�
∂G�x; y�

∂xi
dS (4)

IQ�x;ω� � −
Z
f>0

Tij�y;ω�
∂2G�x; y�
∂yi∂yj

dV (5)

where x and y are the observer position and source position, respec-

tively. G is Green’s function of the convection wave equation corre-

sponding to Eq. (1) atM < 1. Note that ρ 0�x;ω�, Q�y;ω�, Fi�y;ω�,
and Tij�y;ω� are the Fourier transforms of time-domain variables ρ 0,
Q, Fi, and Tij, respectively.

III. Corrections for the Quadrupole Term

The direct computation of the volume integrals of the quadrupole

term in the form of Eq. (5) is prohibitively expensive. Therefore, we

propose a model to compute the contributions of the volume integral.

In accordance with the setups of Lockard and Casper [11] and Wang

et al. [7], we take the mean flow that carries the frozen vortices along

the y1 direction. By repeatedly using the integration by parts, we

reformulate Eq. (5) as follows:

IQ�x;ω� � −
Z
f>0

Tij�y;ω�
∂2G�x; y�
∂yi∂yj

dV

� −
Z
f>0

�
∂
∂y1

�
Tij�y;ω�I1

�
∂2G�x; y�
∂yi∂yj

��

−
∂
∂y1

�
∂Tij�y;ω�

∂y1
I2
�
∂2G�x; y�
∂yi∂yj

��
� · · ·

� �−1�n ∂
∂y1

�
∂nTij�y;ω�

∂yn1
In�1

�
∂2G�x; y�
∂yi∂yj

��

� �−1�n�1

�
∂n�1Tij�y;ω�

∂yn�1
1

In�1

�
∂2G�x; y�
∂yi∂yj

���
dV (6)

where

In
�
∂2G�x;y�
∂yi∂yj

�
�def

Z
y1

∞

�Z
ξn

∞

�Z
ξn−1

∞

�
· · ·

Z
ξ3

∞

�Z
ξ2

∞

∂2G�x; ξ1; y2�
∂yi∂yj

dξ1

�

× dξ2 · · ·

�
dξn−2

�
dξn−1

�
dξn (7)

is the multiple integral of

∂2G�x; y�
∂yi∂yj

For the ith integral (i < n) from the inner of the integral of Eq. (7),
the independent variable is ξi and the upper limit of the integral is
ξi�1. When i � n, the independent variable is ξn and the upper limit
of the integral is y1.
By integrating the right-hand-side terms of Eq. (6) along the

y1 direction, we obtain the integral on the FW-H surface as
follows:

IQ�x;ω� � −
Z
f>0

�−1�n�1

�
∂n�1Tij�y;ω�

∂yn�1
1

In�1

�
∂2G�x;y�
∂yi∂yj

��
dV

�
Xn
l�0

Z
f�0

�−1�l
�
∂lTij�y;ω�

∂yl1
Il�1

�
∂2G�x;y�
∂yi∂yj

��
dS (8)

Green’s functions for the convective wave equations in 2-D and
three dimensions (3-D) are [11]

G2D�x; y� �
i

4β
exp�iMk�x1−y1�∕β2�H�2�

0

�
k

β2
R

�
(9)

G3D�x; y� �
−1
4πd

expφ3D�x;y� (10)

where M is the Mach number. H�2�
0 is the zero-order Hankel

function of the second kind:

β �
���������������
1 −M2

p
; k � ω∕co;

R �
�����������������������������������������������������
�x1 − y1�2 � β2�x2 − y2�2

q
;

d �
������������������������������������������������������������������������������������
�x1 − y1�2 � β2�x2 − y2�2 � β2�x3 − y3�2

q
;

φ3D � −ik�d −M�x1 − y1��∕β2 (11)

In the far field, by employing the asymptotic form of the Hankel
function [13], Eq. (9) reduces to

G2D�x; y� ≈
i

4β

�
2β2

πkR

�
1∕2

expφ2D�x;y�;

φ2D�x; y� � i

�
Mk�x1 − y1�∕β2 �

π

4
−

k

β2
R

�
(12)

4810 AIAA JOURNAL, VOL. 59, NO. 11: TECHNICAL NOTES

D
ow

nl
oa

de
d 

by
 P

E
K

IN
G

 U
N

IV
E

R
SI

T
Y

 o
n 

N
ov

em
be

r 
20

, 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

06
00

70
 



The far-field asymptotic form of the derivatives of Green’s

functions in 2-D and 3-D can be approximated as follows [14]:

∂l

∂yl1

�
∂2G2D�x; y�

∂yi∂yj

�
≈
�
∂φ�x; y�
∂y1

�
l

2D

∂2G2D�x; y�
∂yi∂yj

(13a)

Il
�
∂2G2D�x; y�

∂yi∂yj

�
≈
�
∂φ�x; y�
∂y1

�−l

2D

∂2G2D�x; y�
∂yi∂yj

(13b)

∂l

∂yl1

�
∂2G3D�x; y�

∂yi∂yj

�
≈
�
∂φ�x; y�
∂y1

�
l

3D

∂2G3D�x; y�
∂yi∂yj

(14a)

Il
�
∂2G3D�x; y�

∂yi∂yj

�
≈
�
∂φ�x; y�
∂y1

�−l

3D

∂2G3D�x; y�
∂yi∂yj

(14b)

According to Eqs. (13) and (14), Eq. (8) can be approximately

expressed as follows to avoid the complicated computation of
the derivatives and integrals of Green’s function:

IQ�x;ω�

�−
Z
f>0

�−1�n�1

�
∂n�1Tij�y;ω�

∂yn�1
1

�
∂φ�x;y�
∂y1

�−n−1∂2G�x;y�
∂yi∂yj

�
dV

�
Xn
l�0

Z
f�0

�−1�l
�
∂lTij�y;ω�

∂yl1

�
∂φ�x;y�
∂y1

�−l−1∂2G�x;y�
∂yi∂yj

�
dS (15)

Equation (15) consists of a volume integral and a series of

surface integrals. The integrands in Eq. (15) are different from
the model proposed by Lockard and Casper [11] because differ-

ent ways of integration by parts are used. Equation (15) gives an

alternative series of surface integrals to approximate IQ by

dropping the volume integral. We will show later that the con-

vergence of the series depends on the convective velocity and

the phase velocity of a perturbation propagating in the convec-

tive flow. Note that Eq. (15) is derived without the assumption

of frozen flows crossing the integral surfaces. In this sense, the
volume integral of the quadrupole term IQ in Eq. (5) can be

approximately evaluated by surface integrals on the boundaries

without referring to the frozen flows assumption. However, the

series of the surface integrals in Eq. (15) involves the high-order

derivatives of the Lighthill stress tensor, which is difficult to

compute or measure. We use the frozen vortices assumption as

follows to avoid the computation of high-order derivatives of the

Lighthill stress tensor:

∂Tij�y�
∂t

�U1

∂Tij�y�
∂y1

� 0 (16)

where U1 is the uniform freestream velocity along the y1 direc-

tion. Using the Fourier transform of Eq. (16), the spatial deriv-

atives of the Lighthill stress tensor can be represented by the time

derivatives in the frequency domain; and Eq. (15) reduces to

IQ�x;ω�

�−
Z
f>0

�
iω

U1

�
n�1

Tij�y;ω�
�
∂φ�x;y�
∂y1

�−n−1∂2G�x;y�
∂yi∂yj

dV

�
Xn
l�0

Z
f�0

�
iω

U1

�
l

Tij�y;ω�
�
∂φ�x;y�
∂y1

�−l−1∂2G�x;y�
∂yi∂yj

dS (17)

When

���� iωU1

�
∂φ�x; y�
∂y1

�−1
���� < 1

and n → ∞, the volume integral term on the right-hand side of

Eq. (17) vanishes, and the series of surface integrals reduces to

the model proposed by this work as follows:

IQ�x;ω� �
Z
f�0

iU1

iU1�∂φ∕∂y1� � ω
Tij�y;ω�

∂2G�x; y�
∂yi∂yj

dS (18)

The model proposed by Lockard and Casper [11] for the quadru-

pole term is

IQ�x;ω��−
Z
f>0

�
−iU1

ω

�
n

Tij�y;ω�
∂n

∂yn1

�
∂2G�x;y�
∂yi∂yj

�
dV

−
Xn
l�1

Z
f�0

�
−iU1

ω

�
l

Tij�y;ω�
∂l−1

∂yl−11

�
∂2G�x;y�
∂yi∂yj

�
dS (19)

To approximate the high-order derivative of Green’s function by

using Eq. (13a) or Eq. (14a), Eq. (19) yields

IQ�x;ω��−
Z
f>0

�
U1

iω

�
n

Tij�y;ω�
�
∂φ�x;y�
∂y1

�
n∂2G�x;y�

∂yi∂yj
dV

−
Xn
l�1

Z
f�0

�
U1

iω

�
l

Tij�y;ω�
�
∂φ�x;y�
∂y1

�
l−1∂2G�x;y�

∂yi∂yj
dS (20)

When

����U1

iω

∂φ�x; y�
∂y1

���� < 1

and n → ∞, the volume integral term on the right-hand side of

Eq. (20) vanishes and the series of surface integrals reduces

exactly to Eq. (18).
It is noted that

iω

U1

�
∂φ�x; y�
∂y1

�−1
≠ �1

for subsonic flows [14], and therefore the denominator in Eq. (18)

does not vanish. Equation (18) is still valid when

iω

U1

�
∂φ�x; y�
∂y1

�−1
� −1

because the volume integral term on the right-hand side of Eq. (17) or

Eq. (20) can be combined with the left-hand-side term [14], and the
alternating series can be reformulated into Eq. (18).
Compared with the previous model in Eq. (19), the proposed model

[Eq. (18)] has only one single surface integral instead of a series of

surface integrals. The proposed model [Eq. (18)] only requires the

computation of the second-order derivatives of the Green’s function,

whereas the previous model [Eq. (19)] requires the computation of

high-order derivatives of the Green’s function. As pointed out by

Lockard and Casper [11], the computations of high-order derivatives

are quite complicated and nontrivial. Ikeda et al. [10] gave the fre-

quency-domain formulation for three-dimensional flowsand treated the

two-dimensional flows as three-dimensional flows with the identical
source distributions along the spanwise direction. The present work

directly gives the formulation for both two-dimensional and three-

dimensional flows. Moreover, Eq. (18) is valid for flows with both

���� iωU1

�
∂φ�x; y�
∂y1

�−1
���� < 1

and

���� iωU1

�
∂φ�x; y�
∂y1

�−1
���� > 1

AIAA JOURNAL, VOL. 59, NO. 11: TECHNICAL NOTES 4811

D
ow

nl
oa

de
d 

by
 P

E
K

IN
G

 U
N

IV
E

R
SI

T
Y

 o
n 

N
ov

em
be

r 
20

, 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

06
00

70
 



Note that

Up �def iω
�
∂φ�x; y�
∂y1

�−1

is the phase velocity of a perturbation propagating in the convective
flow. The series of surface integrals in Eq. (19) only converges
when the convective velocity U1 is slower than Up. For flows with
a relatively large Mach number based on the uniform freestream
velocity and the ambient speed of sound, the convective velocity
might be larger thanUp at some observer positions. This is the reason

that the series of surface integrals in Eq. (19) becomes divergent
when predicting the sound at an observer upstream of the 2-D
convecting vortex with a Mach number of M � U1∕c0 � 0.6, as
we will discuss in the next section. Equation (18) circumvents this
divergence problem by using different ways of integration by parts.
It is worth mentioning that both Eq. (18) and the discussion of the

convergence conditions are consistent with the frequency-domain
formulation derived via the Fourier transform of the time-domain
formulation [10]. We derived the additional surface integral by
using integration by parts and the far-field asymptotic Green’s
functions. The proposed model provides an alternative perspective
to investigate the physics of the divergence problem reported in the
previous work, and the formulation has the capability of efficiently
computing the far-field sound pressure in 2-D problems. Despite
that different approaches and mathematical formulations are em-
ployed, the consistence of the results with the work of Ikeda et al.
[10] provides another support to the validity of the model proposed
by the present work.

IV. Validation

It has been reported that the series of surface integrals in Eq. (19)
becomes divergent when predicting the sound generated by a 2-D
convecting vortex at M � 0.6 as the observer moves from down-
stream to upstream [11]. First, we show the superiority of the pro-
posed model in handling the case (M � 0.6) where the previous
model [Eq. (19)] is divergent. Then, we show that the proposed
model can identify the causes of the divergence reported in the
previous work [11]. Finally, we discuss the advantages of the pro-
posed model by investigating the convergence diagram.
The pressure and velocity of the 2-D convecting vortex are given in

Ref. [11] as the following:

p � 1

γ
�1 − a2 exp�1 − r2��γ∕γ−1; ρ �

�
p

po

�
1∕γ

;

u � U1 − a0a1y2 exp��1 − r2�∕2�;
v � a0a1�y1 −Mt� exp��1 − r2�∕2� (21)

where

a0 � 1; a1 � 1∕�2π�; a2 � �γ − 1�a20a21∕2;
r2 � �y1 −Mt�2 � y22 (22)

where γ � 1.4 is the specific heat ratio of air. Note that po is the

pressure in the background flow. All the variables are normalized

according to the work of Lockard and Casper [11]. The reference

velocity, length, density, time, and pressure are the ambient speed of

sound co, the length L referred to the work of Casper and Lockard

[11], the density of ambient fluid ρo, L∕co, and ρoc
2
o, respectively.

The upstream and downstream observer positions are at a distance of

100L from the initial center of the vortex. The vortexmoves along the

y1 direction at a Mach number of M � U1∕co and remains frozen

during the motion. The pressure gradually approaches the constant

1∕γ in the far field, which indicates that the sound at the far field is

zero. A permeable square with each side of length 10 is used as the

FW-H integral surface.
When the quadrupole term in Eq. (5) is neglected, the FW-H

integrals [Eq. (4)] on the permeable square surface will result in

significant spurious sound, as shown by the solid lines with open

circles labeled as FWH2D in Fig. 1, where observers are at a radius of

100. The negative of the quadrupole term (IQ in Fig. 1) computed by

using the proposedmodel [Eq. (18)] agrees well with the summary of

the monopole and dipole terms, which means that the proposed

model can effectively diminish the spurious sound. The proposed

method is valid in both the downstream and upstream directions. The

series of surface integrals with n � 1 and n � 2 in Eq. (19) gives an
approximation to the quadrupole terms at the downstream observer

position but diverges at the upstream observer position. The diver-

gence of the series at the upstream observer positions can be inves-

tigated by referring to Eq. (20), which is the approximation of

Eq. (19) with far-field asymptotics according to Ref. [14]. The phase

velocity of a perturbation propagating in the convective flows can be

approximated by

Up ≡ iω

�
∂φ�x; y�
∂y1

�−1

� co�1 −M2�
−M� �x1 − y1∕R�

(23)

At the far-field upstream observer positions, x1 − y1∕R ≈ −1; and
Eq. (23) reduces to

Up ≈
co�1 −M2�
−M − 1

� co�M − 1� (24)

The scale factor in the series of surface integrals in Eq. (20) reduces to

Fig. 1 Comparison of the quadrupole correction IQ to the errors produced by FWH2D (IL � IT) at M � 0.6 at a) downstream observer (θ � 0) and
b) upstream observer (θ � π).
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U1

iω

∂φ�x; y�
∂y1

� U1

Up

� M

M − 1
(25)

The series of surface integrals converges when

����U1

iω

∂φ�x; y�
∂y1

���� < 1

which corresponds to 0 < M < 0.5. Therefore, the computation of the

quadrupole term at the upstream observer positions by using the

series in Eq. (19) diverges in the case with M � 0.6. It is clear that
the physics corresponding to the divergence is that the convective
velocity is larger than the phase velocity of a perturbation propagat-
ing through the convective flow. The convergence of the series in
Eq. (19) can be expressed in terms of Mach number and directivity
since the phase velocity depends on the Mach number and the
directivity. Figure 2 provides a diagram to show the convergence of
the series in Eq. (19) at different directivities where θ � 0 and π
correspond to the downstream and upstream observers, respectively.
The series in Eq. (19) converges when theMach number is below the
dashed line, whereas the proposedmodel [Eq. (18)] is valid above the
dashed line (as is the case atM � 0.6 andM � 0.9 in Figs. 1b and 3b)
as well as below (as is the case atM � 0.6,M � 0.9, andM � 0.5 in
Figs. 1a, 3a, and 4a) and on the dashed line (M � 0.5 in Fig. 4b). The
results show that the proposed model can correctly approximate the
volume integral of the quadrupole term and effectively diminish the
error associated with the vortices crossing the FW-H integral surface.
The proposed model is robust in computing the sound at different
directivities and different subsonic Mach numbers.

V. Conclusions

The Ffowcs Williams and Hawkings integrals might generate
strong spurious sound when vortical flows pass the integral surfa-
ces. This spurious sound can be diminished by accounting for the
quadrupole term in a volume external to the integral surface. In this
short Note, a model is derived to evaluate the volume integral in the
frequency domain by modeling the Lighthill stress fluxes on the
surfaces. The proposedmodel uses different ways of integration by
parts to convert the volume integral into surface integrals, which
circumvents the divergence problem in computing sound at the
upstream observer positions. It is found that the divergence is
due to the convective velocity being larger than the phase velocity
of a perturbation propagating through the convective flows. The

Fig. 2 Convergence diagram for flows at different Mach numbers

and observers at different directivities. Markers A (M � 0.5, θ � π),
B (M � 0.6, θ � π), C (M � 0.9, θ � π), D (M � 0.5, θ � 0),
E (M � 0.6, θ � 0), and F (M � 0.9, θ � 0) are validated cases inves-
tigated in this work.

Fig. 3 Comparison of the quadrupole correction IQ to the errors produced by FWH2D (IL � IT) at M � 0.9 at a) downstream observer (θ � 0) and
b) upstream observer (θ � π).

Fig. 4 Comparison of the quadrupole correction IQ to the errors produced by FWH2D (IL � IT) at M � 0.5 at a) downstream observer (θ � 0) and
b) upstream observer (θ � π).
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results show that the proposedmodel is valid even for larger convection
velocity and smaller phase velocity of perturbations propagating
through the convective flow. The frozen flow assumption is employed
to avoid calculating the high-order derivatives of the Lighthill stress
tensor, and far-field asymptotics are employed to calculate the integrals
and derivatives of Green’s function, resulting in a computationally
efficient single surface integral instead of a series of surface integrals.
The proposed model is used to compute the sound generated by a
convecting vortex, and the robustness of the proposedmodel is verified
for flows with different subsonic Mach numbers. It should be noted
that the proposedmodel is suitable to compute the far-field sound since
the asymptotics of Green’s functions are used. The mathematical
analysis of the proposed model is provided at separate Mach regions
for subsonic flows. The proposedmodel is expected to be validated by
complex flows when different Mach regions coexist.
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