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We analyze the energy spectra, production spectra, and interscale energy transfer spectra
for direct numerical simulation data of turbulent channel flows at Re, = 180 and 550.
The transfer spectra are characterized by a negative region and a positive region. We
use the negative region as a spectral mask to separate the flow fields into large-scale and
small-scale fields. The former are characterized by streaks and quasi-streamwise vortices,
and the latter are characterized by hairpin-like vortical structures that are similar to the
original flow fields. Proper orthogonal decomposition and linear stochastic estimation are
utilized to further extract the flow structures of the decomposed fields. The outer large-scale
low-momentum regions are flanked by large quasi-streamwise vortices that are attached to
the wall. This coherent structure presents a high degree of similarity to the structure of
the near-wall cycle. This result indicates that the outer large scales may present a self-
sustaining mechanism similar to that of the near-wall region. We also extract the coherent
structures associated with the real-space energy transfer. The formation of small-scale
hairpin-like vortices is related to the large-scale shear layer. Within this process, the energy
is transferred from large scales to small scales.

DOI: 10.1103/PhysRevFluids.6.104601

I. INTRODUCTION

Wall-bounded turbulent flow is a multiscale and nonlinear dynamic system and is of great
importance to engineering applications. On the one hand, coherent structures, such as near-wall
streaks, hairpin vortices, large-scale motions (LSMs), and very-large-scale motions (VLSMs), hier-
archically distribute over different wall-normal locations and present a broad range of time-space
scales [1-8]. On the other hand, the energy cascade is also a multiscale property of turbulence [9].
The kinetic energy enters the turbulence through the production mechanism at the largest scales
of motion and is then transferred to successively smaller scales until the energy is dissipated by
viscous action [10,11]. Energy transfer and redistribution have been investigated in many studies
[12-20]. However, there have been only a limited number of studies the goal of which is to find
the relationship between energy transfer and coherent structures. The flow structures related to
the energy transfer are expected to provide some insights into the self-sustaining process in real
turbulent flows.

The turbulent kinetic energy (TKE) budget, including production, transport, and dissipation, has
been studied in physical space [10]. It is also meaningful to examine the energy transfer in the scale
space to obtain a better understanding of turbulence [21]. As early as 1964, Lumley [22] calculated
the budget equation of the energy spectra through the Fourier transform of the two-point correlation
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function of the velocity fluctuations in wall turbulence. Lumley provided the forms and physical
interpretations of the various terms. Turbulent energy transport contains interscale transport and
spatial transport [14,17,23]. The former is related to the energy transfer in the space of scales,
which is consistent with the classical Kolmogorov cascade [9] and results in a broad and continuous
energy spectrum [17]. The latter is determined by the spatial redistribution of energy due to the
inhomogeneity. The focus of the present paper is on interscale transfer. Domaradzki et al. [24] used
the results of direct numerical simulation (DNS) to investigate the nonlinear transport of the TKE,
especially the interscale transfer. They found that the energy is directly received from the mean flow
by the largest eddies and is subsequently transferred to smaller scales by nonlinear interactions.
The spectral energy transfer process and the scale interactions in a turbulent channel flow have
been investigated using the one-dimensional spanwise spectra of the TKE budget equation [18].
Those authors analyzed the turbulence production and pressure-strain spectra to reveal that the self-
sustaining process is presumably the dominant dynamic of the energy-containing motions. Lee and
Moser [25] used the DNS data of incompressible turbulent channel flow to investigate the terms in
the Reynolds stress transport equations at friction Reynolds number Re, up to 5200. The detailed
spectral analysis provides much more detail about the energy flow. Recently, Symon ez al. [26] found
that the energy transfer is nearly zero for the optimal (first) resolvent mode, and they proposed using
the eddy viscosity to model the nonlinear transfer for each scale.

Coherent structures are another important topic of wall-bounded turbulence [27]. Generally,
hairpin-like vortices have been identified as the dominant coherent flow structures in wall turbulence
[1,28-31]. In the buffer layer, the legs of hairpin vortices are quasi-streamwise vortices that induce
low-momentum fluid upwards, which forms near-wall low-speed streaks [2]. The streaks and
streamwise vortices form a self-sustaining cycle and maintain independence of the outer-layer
turbulence [32-34]. Although the near-wall cycle can be regarded as universal [35,36], it is still
superposed and modulated by the outer large scales [37-39]. The generation of hairpin vortices
and wave packets in an artificially triggered turbulent spot was numerically studied by Brinkerhoff
and Yaras [30]. The instability of the shear layer in the streamwise-spanwise plane induced by
the legs of hairpin vortices is a critical mechanism for the formation of hairpin vortices along the
spanwise edges of the spot. In the inner layer of the fully developed turbulent boundary layer,
turbulent-turbulent spots, which are the dense concentration of small-scale vortices with high
swirling strength, are also observed by Wu et al. [40]. These turbulent-turbulent spots are promising
candidates to act as fundamental building blocks of wall-bounded turbulence. The streamwise
alignment of a group of hairpin vortices can form LSMs the streamwise length scale of which
is approximately 2-35 [2,3], where § is the boundary layer thickness. The streamwise length
scale of VLSMs is approximately 108. However, there has been no scientific consensus about the
origin of the outer large scales [3]. Sharma and McKeon [41] suggested that energetic streamwise
structures arise naturally from resolvent analysis rather than by a summation of hairpin packets.
Rawat et al. [42] computed the invariant solutions for large-scale structures using an overdamped
large-eddy simulation and found that the energy-containing motions are self-sustaining. The outer
energy-containing motions are also composed of streamwise-elongated streaks and short vortical
structures [8,43].

It is significant to investigate the relationship between energy transfer and coherent structures.
The near-wall cycle consists of three sequential subprocesses: streak formation, streak breakdown,
and vortex regeneration [32,44]. The formation of streaks is created by the convection of streamwise
vortices, and the breakdown is ascribed to the instability of the streak structures, which can generate
three-dimensional velocity fluctuations. The nonlinear interactions of the three-dimensional velocity
fluctuations reenergize the streamwise vortices. According to Hamba [21], this cycle is related to
the energy transfer. Streak formation and streak breakdown correspond to a forward energy cascade,
whereas vortex regeneration corresponds to a backward energy cascade. Recent studies have also
found that the logarithmic layer has a self-sustaining motion similar to that of the buffer layer
[45—47]. Kawata and Alfredsson [48] analyzed the scale-by-scale transport of the Reynolds shear
stress. They revealed that the small scales near the wall indeed influence the large-scale structure
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in the channel core region. This inverse interscale transport of Reynolds shear stress ultimately
supports the production of turbulent energy at large scales. However, their studies are limited to
low Reynolds numbers. A three-dimensional flow structure of the kinetic energy transfer in shear
turbulence is given by Dong et al. [49], which contains an upright hairpin and an inverted hairpin.
Wang et al. [20] revealed the structural characteristics associated with energy transfer using particle
image velocimetry fields at low-to-moderate Reynolds numbers. The large scales are extracted using
the zero-crossing scale boundary in the two-dimensional energy transfer spectrum, and an ideal
spatial distribution of LSMs and energy transfer events is given according to the results of the
conditional average.

Investigation of the interscale interaction between large and small scales (or resolved scales and
unresolved subgrid scales) involves spatial filtering [20,21,48,49]. Simple spatial filtering neglects
the fact that the coherent structures are anisotropic and inhomogeneous in wall turbulence [50].
As shown in the paper by Lee and Moser [25], the interscale energy transfer spectrum provides
details of the donors (negative) and recipients (positive) of energy. In the present paper, the
energy-containing large-scale fields and vortex-dominated small-scale fields are decomposed using
the energy donor mode as a filter at each flow layer [20]. We focus on the interscale transfer spectra
of energy and investigate the flow structures associated with the large scales and small scales. To
pursue this, we use the DNS data of turbulent channel flows to perform spectral decomposition
and then investigate the spatial organization of the flow structures. The remainder of the paper
is organized as follows. The numerical database and spectral energy budget equation used in the
present paper are described in Sec. II. Scale decomposition based on interscale energy transfer is
introduced in Sec. III. We analyze the spatial coherent structures corresponding to the large scales
and small scales in Sec. IV. Finally, we offer an extended discussion and conclusions in Sec. V.

II. NUMERICAL DATA AND FORMULATIONS

A. Data descriptions

In the subsequent descriptions, the streamwise, spanwise, and wall-normal directions are denoted
by x*, z*, and y*, and the corresponding velocity components are represented by u™, w*, and v,
respectively. We also use the index u; (i = 1, 2, 3) to indicate the streamwise, wall-normal, and
spanwise directions, respectively. The superscript (-)* represents that the velocity components are
normalized using the skin friction velocity u., and the length scale is normalized by the inner length
scale v/u, (v is the kinematic viscosity). The mean velocity is denoted by capital letters as U; = (i;),
and the velocity fluctuations are indicated with primes as u; = u; — U;. Two DNS databases of fully
developed turbulent channel flows at Re; = 180 and 550 are employed in this paper, where Re; is
the friction Reynolds number.

Both DNS cases are conducted using a pseudospectral method, where the grid is uniform in the
homogeneous directions, while the points are closely concentrated in the wall-normal direction near
both walls using cosine mapping. The velocity and pressure are expanded into Fourier series in the
streamwise and spanwise directions, and into Chebyshev polynomials in the wall-normal direction.
Periodic boundary conditions are employed in both the streamwise and spanwise directions, and the
no-slip boundary condition is applied at the wall. The aliasing errors are removed using the 3/2 rule.
Time is advanced with a third-order time splitting method. This code is well validated in turbulent
channel flows at various Reynolds numbers [51,52]. The data are stored every ten time steps after
the flow is fully developed to a statistically stationary state. The detailed parameters of the two cases
are listed in Table 1. To obtain smooth spectra, two large datasets with sample numbers of N, = 4000
for Re; = 180 and N, = 5400 for Re,; = 550 are utilized in the present paper.

The profiles of the mean streamwise velocity U, the streamwise turbulence intensity (1)*, the
wall-normal turbulence intensity (v'?)*, and the spanwise turbulence intensity (w'?)* are displayed
in Figs. 1(a), 1(b), 1(c), and 1(d), respectively. For comparison, standard and reliable DNS data at
Re, = 550 [54,55] are also presented as black dashed lines. The mean velocity profiles show good
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TABLE 1. Parameters of the DNS of turbulent channel flows. L, and L, represent the computational domain,
and A} and A] are the grid spacings in the streamwise and spanwise directions. Ay, and Ay} represent the
minimum and maximum grid spacing in the wall-normal direction, respectively. N, denotes the grid number
in the wall-normal direction. The parameter At™ represents the simulation time step, and AT ™ represents the
time interval of the data, which is ten times At as the data are stored every ten time steps. N, denotes the
number of snapshots used in the present paper.

Re. L8  LJ§  Axt  Az" Ayh, Ayh. N, At AT+ N,
180 87 4z 11.8 5.9 0.054 44 64 0058 058 4000
550 4r 2 12.0 60 0041 6.75 128 0.03 030 5400

agreement between our DNS data (red line) and the reference DNS data (black line). The velocity
fluctuations of the reference DNS are slightly larger than those of the data used in the present paper.

This weak difference may be caused by the relatively small computational domain used in the case
of Re, = 550.
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FIG. 1. Statistical profiles of DNS datasets: (a) mean streamwise velocity U™; (b) streamwise turbulence
intensity (u’?)*; (c) wall-normal turbulence intensity (v'?)*; (d) spanwise turbulence intensity (w’?)*. The blue
and red lines correspond to Re, = 180 and 550, respectively. The black dashed line represents the DNS results
downloaded from Ref. [53]; for details on the simulation, please refer to Alamo and Jiménez [54] and Hoyas
and Jiménez [55].
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FIG. 2. Premultiplied two-dimensional spectra of u' (a), (d), v' (b), (e), and w’ (¢), (f) at y©™ = 12 for
Reynolds numbers Re, = 180 (a)—(c) and 550 (d)—(f). The parameters k, and k, are the streamwise and
spanwise wave numbers, respectively. The solid gray lines correspond to contour levels from 0.1 to 0.9 with
an interval of 0.2. For comparison, the spectra computed at Re, =550 with a larger domain of L, = 87§ and
L, = 374§ are also presented as the red dashed lines. The spectra are normalized by the maximum magnitude
and filtered by adopting a bandwidth moving filter of 20% [56].

Figure 2 shows the premultiplied two-dimensional energy spectra of u’ (a), (d), v’ (b), (e), and
w’ (¢), (f) at y*© = 12 for Reynolds numbers Re, = 180 (a)—(c) and 550 (d)—(f). In the near-wall
region at y© = 12, the energy peak of the streamwise velocity fluctuation u’ resides at A" ~ 1000
and 1} ~ 100, which is strongly associated with the elongated streaks generated by the near-wall
cycle. The high-energy region of v’ is distributed at A} ~ 300 and A ~ 70 and that of w’ is
at A} ~ 350 and A ~ 100. The Reynolds number effect has little influence on the near-wall
dominant coherent structures. For comparison, the spectra computed using the DNS data with a
larger computational domain of L, = 876 and L, = 37§ are also displayed as the red dashed lines
in Figs. 2(d)-2(f). The biggest difference is that the second energy peak at large scales (A" ~ 7000
and A} ~ 600) is resolved by the case of larger computational domain. This suggests that the
near-wall structures are modulated by the outer large scales, as proposed by Marusic et al. [37].
These superposition and modulation effects become stronger as the Reynolds number increases
[25,38]. From this comparison at Re; = 550, we found that the streamwise computational domain
of 47§ is not enough to resolve the largest scales in turbulence. However, on the one hand, the
spectra corresponding to the near-wall dominant coherent structures are exactly the same. On the
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other hand, the energy of the second large-scale peak is much weaker than that of the energy peak
of the near-wall dominant coherent structures. Therefore, this limitation of computational domain
has little influence on the decomposition proposed in the present paper. In addition, the gray solid
lines present good agreement with the red dashed lines in Fig. 2(e); this implies that the spectra of
v" at y* = 12 are not affected by the computational domain. Meanwhile, the second energy peak at
large scales is not observed from the spectra of v'.

B. Spectral energy budget equation in a channel flow

For fully developed channel flows, the budget equation of energy spectra can be simplified in the
streamwise and spanwise directions, i.e., the homogeneous plane parallel to the wall [13,22]. We
consider the two-dimensional spectral energy budget equation directly deduced from the Fourier
transform of the Navier-Stokes equation [13,17,18,20] instead of the two-point correlation function
of the velocity fluctuations [21,22,25]. The Fourier transform of the velocity fluctuation component
u; in the wall-parallel plane is given as

ui(x,y,z,1) = / / ke, y, ke, t)e*e*dk, dk,, (1)
—00 J —00

where (A) represents the two-dimensional Fourier transform coefficient and k. and k. are the
streamwise and spanwise wave numbers, respectively. For brevity, u;(k,, y, k., t) is abbreviated as
LT;, and its complex conjugate is denoted by uAl’*

The spectral form of the energy budget equation for a turbulent channel flow is given as follows

[13]:
OE o~ ’E [ou ou
— = -2Wk'E4+v— —v{ —+—t

ot —— 0x3 dxp x>
€p ——
e e
eam AU A 9 e
Rl wy— VR — LV R Y. 2
{(ul M2> axz } {<M1 axj axz {(uz )4 )} ( )
[N —
m e o

Here, (-) refers to the time averaging, k* is equal to k2 + k2, and R denotes the real part. E is the
spectral TKE, which is calculated as %(ufu;*) On the right-hand side of Eq. (2), €, ¢v, €, I1, T, and
¢, represent in-plane dissipation, interplane viscous diffusion, interplane dissipation, shear-induced
turbulence production, nonlinear energy transfer, and pressure diffusion, respectively. According to
Mizuno [17], the nonlinear term 7' can be rewritten as the summation of two parts as

—

- R LZ*B(u;u;) 13 ) —173 (u; (uuh)) . 3
axj 2 sz 2 3X2
Tl T+

The in-plane nonlinear transfer term Tl represents the energy transport between scales; therefore,
this term can also be called interscale energy transfer [17,25]. The integration of the term T over
the whole scale space yields zero; therefore, this term has no contribution to the total energy budget
[17,20]. The interplane term T+ represents the energy transfer in the wall-normal direction, as
shown in Fig. 3. At y* =15, T+ is almost negative at every scale; however, there are positive
regions at y© = 5 and 70. This means that the energy at y* = 15 is transferred into the upward and
downward directions. The present paper focuses on the interscale energy transfer associated with
the energy cascade; for a discussion on spatial energy transfer, please refer to the paper by Mizuno
[17].
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FIG. 3. Premultiplied two-dimensional spatial transfer spectra at different y* for Re, = 550. The solid gray
curves represent the corresponding TKE spectra, and the contour values increment by 0.2, starting with 0.1 and
ending with 0.9. The black dashed lines represent A} = 21}. The spectra are normalized by the maximum
magnitude and filtered by adopting a bandwidth moving filter of 20% [56].

III. SCALE DECOMPOSITION BASED ON INTERSCALE ENERGY TRANSFER

A. Interscale energy transfer

We first investigate the features of the production spectra, as shown in Fig. 4. The solid gray
contour lines represent the corresponding TKE spectra, and the black dashed lines represent
Af =21}, The energy production has most of its content for A} > 211 and shows streamwise-
elongated flow structures. The region of positive production is coincident with that of the high TKE
spectra, especially for y* > 15. For y* = 5 as shown in Figs. 4(a) and 4(b), the streamwise and
spanwise wavelengths corresponding to the production peak are slightly smaller than those of the
TKE spectra. The most interesting aspect is that there is a negative region for production. This
feature has also been reported in the paper by Lee and Moser [25]. The negative peaks almost occur
at wavelengths of (1], A1) = (200, 300) and are elongated in the spanwise direction. However,
the magnitude of the negative production is much less than that of the positive production. The
boundary between the negative region and the positive region is A} = 217 in the near-wall region.
From the results of Re; = 180 and 550, we find that the Reynolds number effect on near-wall energy
production can be ignored.

The interscale energy transfer spectra T!l at several y positions near the wall for different
Reynolds numbers are shown in Fig. 5. It is obvious that the spectra Tl are characterized by a
negative region and a positive region. As proposed by Lee and Moser [25], the negative region
is referred to as the donor mode, and the positive region is referred to as the recipient mode.
The energy is transferred from the donor mode to the recipient mode. The donor region presents
streamwise-elongated structures since this region is below the black dashed line. The donor peak at
y* =15 appears at ;7 ~ 1000 and A} ~ 100, which is consistent with the scales of the near-wall
streaks [57-60]. Both spanwise and streamwise scales increase with increasing y*. With Re,
increasing, the donor regions present weak Reynolds number dependence. Compared with the
production spectra, the donor region is highly correlated with the positive production region which
is the true source of turbulent energy except that the donor region is smaller than that of production
[25].

The energy recipient region in the near-wall region is more interesting. One dominant feature is
that the recipient region is divided into two parts in accordance with the two recipient peaks (at y™ =
15): the spanwise-elongated recipient region, which contains a peak at (A, 1) ~ (300, 200), and
the streamwise-elongated recipient region, which contains a peak at (A, A7) =~ (150, 40). These
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FIG. 4. Premultiplied two-dimensional production spectra at y* =5 (a), (b), 15 (c), (d), and 30 (e), (f)
for Re; = 180 (a), (c), (e) and 550 (b), (d), (f). The solid gray curves represent the corresponding TKE
spectra, and the contour values increment by 0.2, starting with 0.1 and ending with 0.9. The black dashed
lines represent A" = 21} The spectra are normalized by the maximum magnitude and filtered by adopting a
bandwidth moving filter of 20% [56].
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FIG. 5. Premultiplied two-dimensional interscale transfer spectra at y* = 5 (a), (b), 15 (c), (d), and 30 (e),
(f) for Re, = 180 (a), (c), (e) and 550 (b), (d), (f). The solid gray curves represent the corresponding TKE
spectra, and the contour values increment by 0.2, starting with 0.1 and ending with 0.9. The black dashed
lines represent A" = 21F. The spectra are normalized by the maximum magnitude and filtered by adopting a
bandwidth moving filter of 20% [56].

104601-9



WANG, YANG, WU, AND WANG

10* - - 10* - : 0.8
T!l, Re.=550, y*=70 T!l, Re; =550, y*=150
NG i ~
0.4
103} : 103} / /% :
e e 0.0
102} 3 102} 3
0.4
101 Lt P e 0.8
10! 102 10® 10* 10° 101 102 10® 10* 10°
At At
xr xr
(a) (b)
10* . . 104 - : 0.8
H,ReT:@ y+t=70 H,ReT:/éso, g+;1'50
P \\\7/‘ ] 0.6
103 [ amia : 103} 3
// _ 0.4
+ ~ // +
=< /// =< 05
[ | e .
10 || o 1 10% ¢ 1
\ N //
>’~/’ 0.0
101 Lt 101 Lt 0.2
10! 102 10® 10* 10° 101 102 10® 10* 10°
+ +
Aﬂ? )\ZIZ'

() (d)

FIG. 6. Premultiplied interscale transfer spectra (a), (b) and production spectra (c), (d) in the outer layer
of y© =70 (a), (c) and 250 (b), (d) at Re, = 550. The solid gray curves represent the corresponding TKE
spectra, and the contour values increment by 0.2, starting with 0.1 and ending with 0.9. The black dashed
lines represent A = 21F. The spectra are normalized by the maximum magnitude and filtered by adopting a
bandwidth moving filter of 20% [56].

peak locations vary with the wall-normal location but are essentially unaffected by the Reynolds
number. These two recipient peaks are distributed on both sides of the donor region in the spanwise
direction, which implies that the energy is transferred to smaller scales (forward energy cascade) as
well as larger scales (backward energy cascade) in the spanwise direction. As seen from Fig. 5, the
dominant spanwise scale A} is approximately 100 from the TKE spectra. However, the backward
energy cascade can generate much larger spanwise flow structures [25]. Moreover, at y© = 15, the
spanwise-elongated recipient region is highly relevant to the negative production region for different
Re,. The intrinsic connection between the backward energy cascade and negative production is not
yet clear. The streamwise-elongated recipient region represents very narrow streaks in the near-
wall region, which is also not the dominant flow structure in wall-bounded turbulence. The energy
production in this region is almost zero.

Figure 6 presents the interscale transfer spectra and the production spectra at the outer region of
yT = 70 and 250 for Re, = 550. There is no negative region in the energy production, which means
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FIG. 7. The zero-crossing boundary in the interscale transfer spectra at Re, = 550. The wall-normal
position y* increases from 1 to 250 as the line color changes from yellow to red.

the negative production arises in the near-wall region only. The donor region is still consistent with
the region of production, and both present streamwise-elongated modes. Different from the recipient
region near the wall, only one peak at (A, A7) ~ (100, 100) occurs in the recipient region. In
addition, no backward energy cascade is observed from the 7'l spectra. The energy is redistributed
from the streamwise-elongated scales to the nearly isotropic scales.

B. Scale decomposition

As discussed in the previous section, the scale space is divided into the donor region and recipient
region. The former contains energetic streamwise-elongated large scales. As proposed by Wang
et al. [20], the zero-crossing boundary in the 7! spectrum can be used to separate the large scales
(defined as the donor scales) and the small scales (defined as the recipient scales) at each flow layer.
Figure 7 displays the variation trend of the zero-cross boundary as y* increases from 1 to 250 at
Re, = 550. Generally, the shape of the boundary changes from triangle to rectangle as y* increases
and moves toward the region of large scales. Another feature is that the boundary curve becomes
coarser at higher y™ because the large scales require more samples to converge the statistical results,
which has been discussed in Sec. IT A. In practice, the spectral mask is slightly Gaussian smoothed to
avoid the discontinuity in the wall-normal direction. The large-scale flow field, which is actually the
energy donor scale, is obtained through inverse Fourier transform of the two-dimensional velocity
spectrum sharp-filtered by the donor region. The small scales are obtained by subtracting the large
scales from the original DNS fields. It is meaningful to use these filters, which vary with y* and are
anisotropic in the streamwise and spanwise directions, since the most energetic coherent structures
are highly anisotropic [50].

The flow structures of the original DNS data, the large-scale field, and the small-scale field are
visualized in Fig. 8 from top to bottom, and the Reynolds number Re, is 550. The isosurfaces
colored based on the wall-normal height y* indicate low-speed streaks of u' = —1.5, and the
isosurfaces colored by the streamwise fluctuation velocity ' represent vortical structures identified
by the Q criterion, where Q denotes the vortex identification criterion estimated as the second
invariant of the velocity gradient tensor. The streamwise extent of these figures is approximately 124,
and the spanwise length scale is approximately 36. Regarding the flow structures of the original DNS
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FIG. 8. Visualization of vortices and low-speed streaks for the original DNS data (a), the large-scale field
(b), and the small-scale field (c) at a Reynolds number of Re, = 550. The isosurfaces colored based on the
wall-normal height y* indicate low-speed streaks of ' = —1.5, and the isosurfaces colored by the streamwise
fluctuation velocity u’ represent vortical structures identified by the Q criterion with Q = 0.006.
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FIG. 9. Statistical profiles of the large scales (the solid symbols) and the small scales (the hollow symbols)
at Re; = 180 (blue) and 550 (red). The solid lines denote the profiles of the original DNS data.

data, the low-speed structures present characteristics of LSMs and VLSMs and are surrounded by
many hairpin-like vortices. Moreover, the low-speed structures extend down to the near-wall region
and up to the whole boundary layer. The legs of hairpins become quasi-streamwise vortices in the
buffer layer and induce low-momentum fluid upwards. The heads of hairpins located in the outer
layer are characterized by transverse (spanwise) vortices rotating in the same direction as the mean
circulation [2]. The large-scale field shown in Fig. 8(b) is characterized by streaks and streamwise
vortices on the flank. This pattern is consistent with the near-wall self-sustaining process in which
the streak is generated through the lift-up effect of the streamwise vortices, and then the streak
nonlinear instability forms new vortices. For the small-scale field in Fig. 8(c), the vortical structures
are almost the same as those in the original flow fields, i.e., the isosurfaces of the Q criterion in
Figs. 8(c) and 8(a) are similar. Under the same thresholds of isosurfaces, we cannot observe the
large-scale flow structures in Fig. 8(c). From this flow visualization, we would like to offer two
remarks. First, vortices identified based on the velocity gradient mainly represent locally small-scale
structures [61]. Large-scale structures are suitable to be characterized by velocity. Second, the
large-scale structures may be related to the quasi-streamwise vortices, as shown in Fig. 8(b), rather
than the hairpin-like vortices.

The Reynolds stresses of the large-scale fields (the solid symbols) and the small-scale fields (the
hollow symbols) at Re, = 180 and 550 are presented in Fig. 9. The Reynolds stresses (u?)* and
(W'v')" of the large scales are much larger than those of the small scales, whereas the Reynolds
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FIG. 10. Reynolds shear stress weighted joint PDF of u™ and v+ at y™ = 30 (a) and 100 (b) for Re, = 550.
The gray colors represent the PDF of raw DNS data, and the red and blue contours represent the PDF of large
scales and small scales, respectively. The contour levels are from 0.01 to 0.1 in a step of 0.03. The velocity is
scaled by the root mean square of the original DNS velocity at this location.

stresses (v2)* and (w?)* are slightly smaller than those of the small scales. The wall-normal
position of the peak of («/>)T is consistent with the original DNS profile. The large-scale structures
contribute approximately 65% of the streamwise TKE and 80% of the Reynolds shear stress. These
values are higher than the result proposed by Balakumar and Adrian [62], where it is stated that
40-65% of the TKE and 30-50% of the Reynolds shear stress are carried by VLSMs in channel
flows. The Reynolds shear stress (u'v')* is also related to the production term of the TKE. The
large-scale flow fields dominate the production of the TKE.

Quadrant analysis [63] is further used to determine the Reynolds shear stress contribution of large
and small scales. Figure 10 shows the Reynolds shear stress weighted joint probability distribution
function (PDF) of u* and v* at y* =30 (a) and 100 (b) for Re, = 550. The gray colors, red
contours, and blue contours represent the weighted PDF of the original DNS data, large scales,
and small scales, respectively. It is clear that the large scales are dominated by Q2 (u™ < 0, v > 0,
ejection) and Q4 (u™ > 0, vt < 0, sweep) events, which is similar to the result of raw DNS data.
The Q2 and Q4 events result in momentum transfer in the wall-normal direction, which results
in a positive contribution to the Reynolds shear stress. For the small scales indicated by the blue
contours, the contributions to Q1 (u™ > 0, v™ > 0, outward interaction) and 03 (u™ < 0, v < 0,
wallward interaction) events are comparable to Q2 and Q4 events. Therefore, the Reynolds shear
stress at small scales is much less than that at large scales, as shown in Fig. 9.

IV. FLOW STRUCTURES

Up to now, the flow field has been decomposed into large scales and small scales based on
interscale transfer spectra without any artificial or subjective thresholds. In this section, proper
orthogonal decomposition (POD) and linear stochastic estimation (LSE) are used to extract the
dominant flow structures of the large-scale fields and the small-scale fields. There are two objectives.
First, we seek the flow structures associated with the donor modes in the interscale transfer spectra.
Second, we aim to assess the similarity of the flow structures appearing in the near-wall region and
outer region.

A. Proper orthogonal decomposition

To further visualize the large-scale flow fields, POD, which is used to extract the most energetic
coherent structures in the turbulence [22,64], is applied to the two-dimensional three-component
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FIG. 11. The first two POD modes (the upper panel is for the first POD mode, and the bottom panel is
for the second POD mode) of the large-scale flow fields in the regions of 0 < y* < 5, 5 < y* < 30, and
30 < y* < 180 using the cross stream view. Here, the Reynolds number Re, is 180. The contour represents the
low- and high-speed (blue and red) u’ component of the streaks, and the arrows denote the v — w’ components.
Only part of the spanwise range is shown in this figure for clarity.

(2D3C) velocity fields at the yT-z* plane. These 2D3C fields are generated by randomly slicing
the large-scale flow data in the direction of spatial x and temporal ¢. POD provides a series of
orthogonal modes for the spatial structures. These modes are computed by eigenanalysis of the
two-point spatial covariance of the fluctuating flow and ordered according to the contribution to
the energy of the flow. In the present paper, we use the snapshot method introduced by Sirovich
[65] to effectively compute the modes. On the one hand, the scale of the structures increases as
the wall-normal location y* increases in accordance with Townsend’s attached eddy hypothesis
[8,66]. On the other hand, the magnitude of velocity fluctuation also varies with y*, as shown
in Fig. 1. Therefore, it is better to perform POD at different wall-normal regions to obtain local
optimal modes. We demarcated the wall-normal regions in accordance with the classical wall layers,
as given in Pope [10]. For Re, = 180, the flow fields are divided into three parts of 0 < y™ < 5
(viscous sublayer), 5 < yt < 30 (buffer layer), and 30 < y* < 180 (outer layer). For Re, = 550,
the flow fields are divided into four parts of 0 < y* < 5 (viscous sublayer), 5 < y+ < 30 (buffer
layer), 30 < y* < 120, and 120 < y* < 550. The first two POD modes of the large scales at
Re, = 180 are shown in Fig. 11; the near-wall structures can be clearly identified by using a
log-scale y axis. The contour represents the low- (blue) and high-speed (red) u' component of the
streaks, and the arrows denote the v’ — w’ components. In the near-wall region of 0 < y* < 30, we
observe a group of regular high- and low-speed streaks aligned along the spanwise direction. The
spanwise wavelength is approximately 120. The streamwise velocity streaks are flanked by a pair
of counter-rotating streamwise vortices. Positive wall-normal velocity is related to the low-speed
streaks through carrying low-momentum fluid toward a higher wall-normal position. The negative
wall-normal velocity is related to the high-speed streaks through the opposite process. This coherent
structure is a typical representation of the near-wall cycle. The first mode and second mode represent
the same flow structure. The difference between these paired modes is the phase in the spanwise
direction, which is caused by the meandering of streaks. In the outer region (y* > 30), the flow
pattern is very similar to that in the near-wall region except that the spanwise scale of the large
coherent motion is 1} ~ 300 and the vortex position is at y* & 70.

The POD results for Re; = 550 are also presented in Fig. 12. The large-scale coherent structure
still presents a streak-vortex pattern, and the spanwise scale increases with increasing y*. Due to the
modulation, randomness, and asymmetry of the flow structures as Re, increases, however, the flow
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FIG. 12. The first two POD modes (the upper panel is for the first POD mode, and the bottom panel is
for the second POD mode) of the large-scale flow fields in the regions of 0 < y* <5, 5 < y™ <30, 30 <
y* < 120, and 120 < y* < 550 using the cross stream view. Here, the Reynolds number is Re, = 550. The
contours represent the low- and high-speed (blue and red) ' components of the streaks, and the arrows denote
the v — w’ components. Only part of the spanwise range is shown in this figure for clarity.

pattern in Fig. 12 is more disordered than that of Re, = 180. It is better to apply the spatial-temporal
POD [67] or spectral POD [68,69] to extract coherent structures at high Reynolds numbers, which
is beyond the scope of the present paper.

Based on these large-scale POD results, we provide two remarks on the decomposition. First, the
formation of the negative interscale energy transfer spectra is ascribed to coherent flow structures
consisting of streaks and streamwise vortices. Second, the POD mode of the large scales in the
outer region also consists of steaks and streamwise vortices, the length scales of which are much
larger than those in the near-wall region. This outer flow structure is consistent with the invariant
solutions computed using an overdamped large-eddy simulation in turbulent channel flow [42,70].
The similarity between the near-wall region and outer region may suggest the existence of a self-
sustaining process for the large scales in the outer region.

B. Conditionally averaged flow fields

To extract the three-dimensional structures, LSE, a kind of conditional averaging technique, is
used to extract the mean and main vortical structures around a reference point according to the given
events [71,72]. Conditional averaging can be regarded as a cross-correlation of two signals, one of
which defines the events, and the other is the data to be averaged. By supposing that the conditional
average (u;|E) is a linear function of the event E, (u}|E) can be obtained using a linear mean-square
estimation as [73,74]

(M:(x + rxv y’ Z + rZ)E(x’ )’refv Z))
(E(-xa )’refa Z)2>

Here, the parameters r, and r, are the streamwise and spanwise distances from the events, re-
spectively, yrr is the reference wall-normal position, and E represents the event or condition. To
investigate the contribution of the large-scale fields and the small-scale fields to the low-speed
velocity streaks, the event E is chosen as the low-speed velocity of u’ < —u;, . in the original DNS

fields, where u; denotes the root mean square (rms) streamwise velocity at the reference position.

Wi (re, Y, Yrefs I2) = E (X, Yref» 2)- 4)
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FIG. 13. Isosurfaces of conditionally averaged large-scale fields (a), (c), (e) and small-scale fields (b), (d),
() given a low-velocity event in the original DNS data at reference location y* = 30 (a), (b), 60 (c), (d), and
100 (e), (f). The Reynolds number is 550. Condition is for ' < —u[, at each reference location. The vortex
structures are visualized using the Q vortex detection criterion with Q = 0.2Q0,,.x and colored based on the
wall-normal height. The blue isosurface indicates the low-speed streamwise velocity region at u’ = —0.5u;, .
The contour map of the streamwise velocity is plotted in the x-z plane at the reference location.

We tested different thresholds to select for the event, and there was no apparent difference between
those averaged coherent structures. The averaged data are the large-scale fields and the small-scale
fields.

The conditionally averaged coherent structures of the large-scale fields (a, c, ) and small-
scale fields (b, d, f) are given in Fig. 13, and the reference positions y}. for Figs. 13(a) and
13(b), Figs. 13(c) and 13(d), and Figs. 13(e) and 13(f) are 30, 60, and 100, respectively. The
isosurfaces colored by wall-normal height represent the vortical structure with Q = 0.2Qn.x. The
blue isosurface indicates the low-speed streamwise velocity region at u’ = —0.5u/ .. Figure 13(a)

clearly shows the combination of the streaks and quasi-streamwise vortices associated with the
near-wall circle. The streaks and quasi-streamwise vortices are almost parallel to the wall. As y*
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FIG. 14. Wall-normal distribution of interscale energy transfer Tr (the solid lines), (77.) (the solid symbols),
and (7T5) (the hollow symbols) at Re, = 180 (blue) and 550 (red).

increases, the spanwise scales of the low-speed region and the vortical structure also increase, as
does the inclination angle of the quasi-streamwise vortices. In the outer layer (y* = 100, 0.188), the
conditionally averaged flow structures of the large scales are very similar to those in the near-wall
region. The low-speed zone is flanked by two quasi-streamwise vortices that are attached to the
wall. Although the threshold of the isosurface is reduced to a very low value as Q = 0.05Q0max,
the heads of these two quasi-streamwise vortices will not connect with each other. This implies
that the strength of the spanwise vortex is much smaller than that of the quasi-streamwise vortex
in large-scale fields. However, in Figs. 13(b), 13(d) and 13(f), the conditionally averaged vortex
structures of the small scales can be interpreted as the head and neck of a hairpin vortex [72,75]. In
contrast to the conditional results given in Fig. 18 from Ref. [72], there is no elongated low-speed
region underneath the hairpin head or between its legs. These results may indicate that large-scale
motions are generated by large streamwise vortices. This conclusion is consistent with the response
mode obtained using the resolvent analysis proposed in Ref. [41]. Those authors also state that
energetic large-scale structures arise naturally from resolvent analysis rather than by a summation
of hairpin packets [41].

We also consider the conditionally averaged flow structures corresponding to the real-space
energy transfer. In this part, the superscripts (-)* and (-)° are used to denote the large scales
and small scales, respectively. Since the velocity field is decomposed using a Fourier filter, the
cross-correlation (1“4’ yields zero [48,61]. Reference [61] derived the transport equation for the
energy of the large- and small-scale flow fields. The interscale energy transfer between these two

scales can be expressed as
out ous
Tr = (—uSuS ) — { —ufut S50, )
T 9x; ! 9x;

1. Ts

According to Motoori and Goto [61], the first term 77 on the right-hand side can be used to interpret
the energy transfer from the large to small scales, and the second term 75 means the energy transfer
from small to large scales. We plot the wall-normal distribution of Tr, (7;), and (Ts) in Fig. 14
by solid lines, solid symbols, and hollow symbols, respectively. Clearly, on average, T}, is always
positive and T is always negative across the boundary layer. Therefore, the Tr is always larger than
zero. This implies that the energy cascade is from large scales to small scales on average. Another
feature in Fig. 14 is that the peak of 7} locates higher than that of Tg.
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FIG. 15. Conditionally averaged coherent structures corresponding to the events 7;, > Tj s (a), (¢), (e) and
Ts < —Ts.ms (b), (d), (f) at reference location y* = 30 (a), (b), 60 (c), (d), and 100 (e), (f) for Re, = 550. The
vortex structures are visualized using the Q vortex detection criterion with Q = 0.20n.x (), (¢), (e) and Q =
0.040max (b), (d), (f), and colored based on the wall-normal height. The contour map of the streamwise velocity
at z© = 0 is also plotted. The solid black lines in panels (a), (c), and (e) indicate the zero-cross boundaries of
the streamwise velocity, and the solid and dashed black lines in panels (b), (d), and (f) represent ' = 0.1 and
—0.15, respectively.

To analyze how the vortical structures are created by the forward energy cascade, conditionally
averaged coherent structures corresponding to 7; and 7s are computed as shown in Fig. 15. The
large-scale fields are averaged on the condition of 7;, > T} ims, and the results are shown in the
left plane. The small-scale fields are conditioned for the Ts < —7s s €vent, and the results are
shown in the right plane. These events correspond to intense forward energy cascade. The reference
position y:gf is 30, 60, and 100 from top to bottom. The Reynolds number is 550. On the one hand,
the large-scale coherent structures associated with 77, > Ty s still consist of low-speed streaks and
quasi-streamwise vortices. However, the quasi-streamwise vortices connect with each other even for
higher Q threshold. This implies that an intense shear layer exists in the wall-normal direction. We
also present the isocontours of #' = 0 as black solid lines in Figs. 15(a), 15(c) and 15(e) to clearly
show the shear layer. It can be concluded that the forward energy cascade always happens at the
large-scale shear layer. On the other hand, the small-scale coherent structures associated with Ty <
— T 1ms» as shown in Figs. 15(b), 15(d) and 15(f), present periodic distributions along the streamwise
direction. All the hairpins are downstream inclined and consist of prograde hairpins (their head
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rotation is in the same sense as the mean shear, indicated by A) and retrograde hairpins (their head
rotation is opposite to the mean shear, indicated by B and C) in Fig. 15. There are two reasons
for the existence of a retrograde hairpin. One is that a retrograde hairpin indeed exists in the wall
turbulence [49,76]. Another reason is that the local mean shear velocity associated with the large
scales, as shown in Figs. 15(a), 15(c) and 15(e), is subtracted. With the local mean velocity profile
added, the retrograde vortices can be suppressed [41]. Back to the energy cascade, the coherent
structures shown in Fig. 15 indicate that the small-scale vortices may be created by an intense
large-scale shear layer, which may reveal the process of the forward energy cascade. In other words,
the large scales provide a background flow to locally generate small-scale vortices.

V. DISCUSSION AND CONCLUSIONS

The flow structures corresponding to the interscale energy transfer spectra are analyzed to shed
light on the relationship between hairpin vortices and large-scale flow fields. The DNS data of
channel turbulent flow at Re, = 180 and 550 are used in this paper. The relevant discussions and
conclusions are summarized as follows.

(1) The flow fields are decomposed to energy-containing large scales and vortex-dominated
small scales according to the interscale transfer spectra consisting of the negative region and the
positive region. The negative region considerably overlaps with the peak of the energy spectra
and the region of spectral production. The large-scale fields, which are dominated by energetic
streamwise-elongated coherent structures, are extracted by using the negative region as a mask to
filter the spectral space [20]. Bandpass filtering can be also applied to perform scale decomposition
[61,77]; however, this technique cannot easily identify the real vortex-dominated small scales due
to the inhomogeneity and anisotropy of wall-bounded turbulence. For the method used in the
present paper, the shape of this filter varies with the wall-normal location and presents anisotropic
characteristics in the streamwise and spanwise directions. Furthermore, no artificial or subjective
thresholds are required in this method. One limitation is that this method needs a large dataset to
obtain statistically converged interscale energy transfer spectra.

(2) As shown in Fig. 8, the large-scale fields are more suitable to be represented by the velocity,
whereas the small-scale fields are more suitable to be characterized by vortices (velocity gradient).
This can be used to understand the reason why velocity is used to investigate LSMs or VLSMs [61].
It is necessary to reexamine the role of hairpin vortices in fully developed turbulence as well as the
relationship between the large scales and hairpin vortices [41]. Therefore, we analyzed the coherent
structures associated with the real-space energy transfer, as shown in Fig. 15. The forward energy
cascade is related to the large-scale shear layer and small-scale hairpin-like vortices. The large scales
as a background flow field provide strong shear layers due to the existence of wall and high- and
low-speed streamwise streaks, which can further induce a group of streamwise aligned hairpin-like
vortices [30,40,41]. This implies that the small-scale vortices may be generated by shear instability
in the outer layer rather than from the wall [61].

(3) The POD and LSE are utilized to extract the dominant coherent structures of the large scales
and small scales. Both the first two POD modes and the conditionally averaged flow fields indicate
that the outer large scales are formed by the elongated low-speed region and quasi-streamwise
vortical structure. This coherent structure highly resembles the near-wall cycle [32—-34]. Both sides
of the low-speed large-scale structure are statistically flanked by quasi-streamwise vortices, as
shown in Fig. 13. However, in practice, large quasi-streamwise vortices may predominantly exist
on one side of the low-speed region [78]. The large vortical structures are attached to the wall, and
their scales are proportional to the wall-normal height. In the present paper, the near-wall cycle and
outer streak-vortex pattern are simultaneously extracted using the interscale energy transfer spectra,
which indicates that the outer large-scale coherent structures may share a self-sustaining mechanism
similar to that of the near-wall region. It is natural to perform DNS of minimal turbulent channels
of the outer region to study the self-sustaining behavior [45,47]. In this case, the streak-vortex
pattern can be isolated to show the time evolution of streaky motion. Another way to isolate
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energy-containing motions is to remove smaller scales by applying explicit filtering and damp the
larger scales out using the overdamped LES [42,70,79]. Hwang et al. [70] provided the relationship
between the long streaks and the quasi-streamwise vortical structures with the self-sustaining
process of the large-scale structures. Cossu and Hwang [46] even deduced that a continuum of
coherent self-sustaining motions exists in the wall-bounded turbulence with scales ranging from
those of buffer layer structures to those of large-scale and very-large-scale motions in the outer layer.
Resolvent analysis has also been adopted to investigate the self-sustaining process of wall-bounded
turbulence. Sharma and McKeon [41] suggested that the energetic streamwise structures arise
naturally from resolvent analysis. Bae er al. [80] studied the similarities of the self-sustaining
mechanism in buffer and logarithmic layers through the analysis of nonlinear mechanisms by
combining resolvent analysis with numerical simulations of turbulent channel flow. In a word, a
similar dynamical process may exist between the outer layer and the near-wall region.

Herein, our paper focused on the scale separation approach and the statistical flow structures for
turbulent channel flows. In the future, we plan to extend this approach to a higher Reynolds number
and examine the time evolution of the large-scale coherent structures and the small-scale coherent
structures.
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