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Abstract

This paper presents a locally and dynamically adaptive residual-based closure model for density stratified incompressible
ows. The method is based on the three-level form of the Variational Multiscale (VMS) modeling paradigm applied to the
ystem of incompressible Navier–Stokes equations and an energy conservation equation for the relative temperature field. The
elocity, pressure, and relative temperature fields are additively decomposed into overlapping scales which leads to a set of
oupled mixed-field sub-problems for the coarse- and the fine-scales. In the hierarchical application of the VMS method, the
ne-scale velocity and relative temperature fields are further decomposed, leading to a nested system of two-way coupled
ne-scale level-I and level-II variational subproblems. A direct application of bubble functions approach to the fine-scale
ariational equations helps derive fine-scale models that are nonlinear and time dependent. Embedding the derived model
rom the level-II variational equation in the level-I variational equation helps stabilize the convection-dominated mixed-field
hermodynamic subproblem. Locally resolving the unconstrained level-I variational equation yields the residual-based turbulence

odel which is a function of the residual of the Euler–Lagrange equations of the conservation of momentum, mass, and energy.
he derived model accommodates forward- and back-scatter of energy and entropy and embeds sub-grid scale physics in the
omputable scales of the problem. The steps of the derivation show that it is essential to apply the concept of scale separation
ystematically to the coupled system of equations and it is critical to preserve the coupling between flow and thermal phases
n the fine-scale variational equations. The method has been implemented with hexahedral and tetrahedral elements with equal
rder interpolations for the velocity, pressure, and temperature fields. Several canonical flow cases are presented that include
ayleigh–Bénard instability, Rayleigh–Taylor instability, and turbulent plane Couette flow with stable stratification.

c 2021 Elsevier B.V. All rights reserved.

eywords: Variational multiscale method; Hierarchical methods; Density stratification; Incompressible turbulent flows; Boussinesq approximation

1. Introduction

Stratified incompressible flows are encountered in various natural and engineered fluid flow processes. Examples
nclude atmospheric boundary layers, oceanic circulations, and geophysical flows. The models for stratified flows
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are comprised of the incompressible Navier–Stokes (NS) equations, coupled with the conservation form of a scalar
field equation, namely, temperature, concentration, or density field. Via Reynolds transport theorem, the conservation
equation for the scalar field is written as a hyperbolic partial differential equation (PDE), where the velocity field
is furnished by the incompressible Navier–Stokes equations. The variation of the induced scalar field is considered
as the Boussinesq buoyancy effect that is embedded in the momentum balance equation. This scalar field in turn
appears in the conservation of momentum equation, and therefore it is called an “active” field [1,2] due to the two-
way coupled nature of the system. For the general class of problems the scalar field can represent the concentration
of chemical constituents in combustion [3], the magnetic field in stellar astrophysics [4], or the temperature field
that triggers stratification in natural water bodies (e.g., lake and ocean), etc. In particular, density stratification is the
dominant physical process in various natural and environmental applications. Natural plumes [5] due to stratification
are widely observed at different scales of space and time, and with different levels of intensities, namely, the
eruptions of volcanoes or the sudden release of carbon dioxide bubbles in the lakes. The studies on phytoplankton
blooms [6] have revealed that the hydrothermal effect plays a vital role in the stimulation of large reproduction
of the microalgae. Another class of environmental flows that involves density stratification is the tropical cyclones
wherein the wind induced ocean circulation has a strong correlation with the intensity of the hurricanes [7]. Apart
from these environmental or geophysical flows, there are industrial applications of stratification in the storage of
heat energy [8]. Consequently, a robust computational model is needed to not only understand the role of density
stratification in physical processes, including the production and dissipation of turbulence [9–11], but also in the
design of energy-efficient devices.

Numerical methods for simulation of stratified turbulence can be classified as Reynolds-Averaged Navier–
tokes (RANS), large-eddy simulations (LES), and direct numerical simulation (DNS) [12]. LES [1] emerges as
method of choice because of its enhanced accuracy with respect to RANS and its lower cost as compared to
NS, thereby providing a balance between accuracy and computational cost. The closure problem (i.e., the gap
etween filtered and unfiltered nonlinear convection) for stratified flows is more involved than that in the case
f isothermal incompressible flows due to the additional nonlinear convection term in the conservation of energy
quation. Besides, stratified turbulence also results in anisotropy at the small-scale level, which has been investigated
n the literature via DNS techniques [13–15]. Therefore, isothermal LES models for stratified turbulence need to
ocally adapt in space and in time to address the anisotropy in the unresolved scales. The dynamic strategy to
etermine turbulence viscosity, first proposed in [16] for isothermal flows, has been utilized in the modeling of LES
f stratified turbulence [17–19]. In this context, adaptive local deconvolution method (ALDM) [18] to construct an
fficient scheme for implicit LES, and investigations on appropriate filter scales to capture the fundamental features
n stratified turbulence [17] have been pursued. In these works it has been shown that the dynamic strategy can
esult in a negative value of the Smagorinsky coefficient that may eventually lead to instability in the solution [20].
nother approach has been to use the renormalization group (RNG) theory [21] to derive the turbulent viscosity

nd diffusivity, and it has been extended from isothermal flows [22] to turbulent thermal convection [23].
Apart from the LES models that are based on the turbulent viscosity, the Variational Multiscale (VMS)

ramework [24–37] provides an alternate approach to the modeling of turbulence that does not rely on any
ssumptions on the structure of the unresolved scales. A comprehensive literature review of the VMS method for
ncompressible turbulent flows is presented in [38]. Recently, the VMS method has been used for the coupled system
f incompressible NS equations with an active scalar field [39–43], including stratified turbulence [41], thermal
onvection [39,42] and particle-laden flows [40,43]. In [40,41] a fine-scale model is presented by modifying the
oupling provided by the fine-scale inertia while the advection and diffusion of fine-scale velocity and temperature
re left uncoupled. An incompressible turbulence model is directly used in [39] for thermal convection.

In the context of the VMS framework, there are two major classes of fine-scale modeling methods: the Green’s
unction method [24,25,36,39–41], and the bubble functions method [26,27,33,37,44]. The latter method locally
esolves the transient linearized fine-scale sub-problems as a function of the residuals at the preceding levels, and
s therefore suitable for the extension of turbulence models to account for local anisotropy in the flow physics.
n the present work, a residual-based turbulence model is derived by exploiting the notion of multi-level fine-
cale modeling [26,27,34,37,44,45] and VMS method for coupled systems [46,47], which results in a fully-coupled
urbulence model for stratified turbulent flows. A significant contribution of the present work is that it presents

systematic procedure for applying residual-based ideas to coupled fine-scale variational formulations, while

reserving the coupling between flow and thermal phases at the fine scales.
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An outline of the paper is as follows. The coupled system of equations for incompressible fluids with density
tratification is presented in Section 2. The multiscale weak form that is derived via hierarchical application of the
otion of splitting of scales to the coupled system of equations is presented in Section 3. In Section 4, the fine-
cale variational structure is exploited via direct application of the bubble functions approach to derive closed-form
xpressions for the fine-scale fields that serve as the closure model for stratified turbulence. The fine-scale fields
re embedded in the global or coarse-scale variational form and it results in a large-eddy simulation method that is
ndowed with a locally and dynamically adaptive closure model. Section 5 presents a set of numerical test cases
o validate the proposed method and to show its application to a range of density stratified incompressible flow
roblems. Conclusions are drawn in Section 6.

. Boussinesq approximation for incompressible flow with density stratification

.1. Strong form

The influence of the spatio-temporally varying active scalar field (e.g., temperature) T (x, t) leads to spatio-
temporal change in the density ρ(x, t). In the context of incompressible Newtonian fluids, the effect of density
variation is accounted for by introducing a buoyancy force to the momentum balance equation, while the continuity
equation takes the form of incompressibility condition. An applied thermal gradient and a local heat source serve
as the driving mechanisms for the thermal phase. The equations for density-stratified flows, also known as the
Boussinesq equations [48], can be written in an open bounded region Ω ⊂ Rnsd as follows

u,t + u · ∇u = −∇ p +∇ ·
(
2ν∇s u

)
− ĝβθ + f b in Ω × ]0, T [ (1)

∇ · u = 0 in Ω × ]0, T [ (2)

θ,t + u · ∇θ −∇ · (α∇θ) = f in Ω × ]0, T [ (3)

where nsd is the number of space dimensions; u and p are the velocity and kinematic pressure fields, respectively;
θ = T − T0 is the relative temperature field, T is absolute temperature and T0 is the reference temperature; ν is the
kinematic viscosity of the fluid, β is the thermal expansion coefficient, ĝ is the gravitational acceleration vector,
α is thermal diffusivity; f b is the non-gravitational body force, and f is the heat source/sink. u,t = ∂u/∂t and
θ,t = ∂θ/∂t are the time rate of change of velocity and temperature fields, respectively; ∇s

=
1
2

(
∇ + ∇

T
)

is the
symmetric gradient operator. Eq. (1) is the momentum balance equation with a body force that accounts for the
thermal effects, Eq. (2) is the continuity equation that enforces the incompressibility condition, and Eq. (3) is the
energy conservation equation written in the form of convection–diffusion of the relative temperature field.

The initial conditions in the domain Ω and boundary conditions on the piecewise smooth domain boundary
Γ = ∂Ω are:

u(x, 0) = u0(x) in Ω × {0} (4)

θ (x, 0) = θ0(x) in Ω × {0} (5)

u(x, t) = gM on Γ M
g × ]0, T [ (6)

θ (x, t) = gE on Γ E
g × ]0, T [ (7)

σ · n = (2ν∇s u − p I) · n = hM on Γ M
h × ]0, T [ (8)

φ · n = α∇θ · n = hE on Γ E
h × ]0, T [ (9)

where u0 and θ0 are the initial conditions for velocity and relative temperature fields, respectively; gM and gE are
he Dirichlet boundary conditions for the mechanical and thermal phases; hM and hE are the Neumann boundary
onditions for mechanical and thermal phases, respectively. From the perspective of the physics of the problem, gM
nd gE are the prescribed velocities and temperature fields at the boundary, while hM and hE are the prescribed
ractions and thermal fluxes. σ is the total stress in the fluid and φ is the heat flux at the boundary. n is the unit
ormal vector at the boundary Γ . Specifically, these boundaries satisfy the following conditions: Γ M

g ∩ Γ M
h = ∅,

Γ M
g ∪ Γ

M
h = Γ , Γ E

g ∩ Γ
E

h = ∅ and Γ E
g ∪ Γ

E
h = Γ .
3
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Remark 1. In some presentations of the equations for stratified flows [18,23,48] with a known background
temperature gradient (e.g., dT

dh ), the relative temperature field θ is decomposed into dT
dh z and the variation of

temperature θ̂ , such that θ̂ = θ− dT
dh z. The form of the momentum balance equation (Eq. (1)) still remains unchanged

since the Boussinesq buoyancy corresponding to the former part can be absorbed in the pressure term. However,
this decomposition leads to an additional term (e.g., − dT

dh u3) in Eq. (3). The residual-based turbulence model being
roposed can also be naturally extended to this form of the governing system of equations.

.2. Standard weak form

Let w(x) ∈W =
(
H 1

0 (Ω )
)nsd , q(x) ∈ Q = C0(Ω ) ∩ L2(Ω ) and η(x) ∈ H = H 1

0 (Ω ) be the weighting functions
or velocity u, kinematic pressure p, and relative temperature θ fields. The standard weak form of the problem is:
ind V = (u, p, θ) ∈Wt ×Qt ×Ht , such that, ∀ W = (w, q, η) ∈W ×Q×H(

w, u,t
)
+ (w, u · ∇u)+

(
∇w, 2ν∇s u

)
− (∇ · w, p)+

(
w, ĝβθ

)
= (w, hM)Γ M

h
+
(
w, f b

)
(10)

(q,∇ · u) = 0 (11)

(η, θ,t )+ (η, u · ∇θ )+ (∇η, α∇θ ) = (η, hE )Γ E
h
+ (η, f ) (12)

here Wt , Qt and Ht are the time-dependent counterparts of the spaces of weighting functions, respectively; and
·, ·) =

∫
Ω (·)dΩ denotes the L2(Ω ) – inner product. The boundary terms on the right hand side (RHS) of Eqs. (10)

nd (12) are derived from divergence theorem and applying Neumann boundary conditions Eqs. (8) and (9).

.3. Residual form

For brevity of discussion on the derivation of the turbulence model, we define the residuals of the governing
quations in the strong form as

r M (u, p, θ) = u,t + u · ∇u +∇ p −∇ ·
(
2ν∇s u

)
+ ĝβθ − f b (13a)

rC (u) = ∇ · u (13b)

rE (u, θ) = θ,t + u · ∇θ −∇ · (α∇θ)− f (13c)

nd the residuals of weak form as

RM (w; u, p, θ) = BM (w; u, p, θ)+ TM (w; u; u)− L M (w) (14a)

RC (q; u) = BC (q; u) (14b)

RE (η; u, θ) = BE (η; u, θ)+ TE (η; u; θ )− L E (η) (14c)

The subscript (·)M , (·)C and (·)E denotes the momentum balance, mass conservation and energy conservation,
respectively. Linear forms L M (w) and L E (η), bilinear forms BM , BC and BE and trilinear forms TM and TE are

efined as follows

L M (w) = (w, hM)Γ M
h
+
(
w, f b

)
(15a)

L E (η) = (η, hE )Γ E
h
+ (η, f ) (15b)

BM (w; u, p, θ) =
(
w, u,t

)
+
(
∇w, 2ν∇s u

)
− (∇ · w, p)+

(
w, ĝβθ

)
(15c)

BC (q; u) = (q,∇ · u) (15d)

BE (η; θ ) = (η, θ,t )+ (∇η, α∇θ ) (15e)

TM (w; u; v) = (w, u · ∇v) (15f)

TE (η; u; θ ) = (η, u · ∇θ ) (15g)

mploying the definition of residuals and bilinear forms, a concise representation of the Galerkin weak form in
qs. (10)–(12) is written as follows

RM (w; u, p, θ)+ RC (q; u)+ RE (η; u, θ) = 0 (16)
4
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2.4. Closure problem for density-stratified flows

Compared to the isothermal incompressible flows, there is one more nonlinear convection term u · ∇θ that
appears in the strong form Eq. (3) and weak form Eq. (12) of energy conservation equation. In the context of the
conventional LES models, the gap between filtered and unfiltered nonlinear convection terms (i.e., u ·∇θ in Eq. (3)
and u · ∇u in Eq. (1)) needs to be closed, which is also known as the “closure problem”. Employing the VMS
method for the system of weak forms, in the following sections we describe the steps involved in the derivation of
the fully coupled residual-based turbulence model for density-stratified flows.

3. The variational multiscale method

An earlier work of the senior author adopted two-level scale split [33] to develop residual-based turbulence model,
where the so-called div-stabilization term [49] was added to ensure mass conservation at the global level. This
however required the stability parameter for this term to be designed based on the derived stability tensor [25,33].
In a subsequent work [26], three-level VMS approach of Masud and Franca [45] was adopted for the Navier–Stokes
equations wherein split of pressure field into coarse- and fine-scale pressure resulted in a formulation where solution
of the fine-scale continuity equation naturally yielded the div-stabilization term. In addition, it also resulted in a
clean expression for the corresponding stability parameter.

Following along these lines, the derivation of the method in the present work for density-stratified incompressible
fluids is carried out using the hierarchical variational framework. It involves functionals with certain restrictions on
the admissible spaces of functions that are dictated by the type of the differential operators as well as the boundary
and/or constraint conditions. A hierarchical splitting of scales results in a mathematical form that is free of the
restriction on the spaces of functions employed for the various fine-scale fields. Consequently, steps involved in the
derivation of the method, and the expression for the structure of the stability tensor, are agnostic to the type and
order of the shape functions that are employed for approximating the coarse-scale as well as the fine-scale fields.
This generality is essential to establish a formal equivalence between the strong and weak forms of the problem
and to show variational consistency of the method which ensures that the exact solution also satisfies the weak or
the variational form.

3.1. Variational multiscale decomposition

We discretize the bounded domain Ω into nel non-overlapping element subdomains Ω e with boundary Γ e
= ∂Ω e,

where e = 1, 2, . . . , nel. The union of element interiors is defined as Ω ′ =
⋃nel

e Γ e
\ Ω . We introduce the additive

decomposition of the unknown fields (u, p, θ) and their corresponding weighting functions (w, q, η) as follows.

Additively decomposed solution fields

u(x, t) = ū(x, t)+ u′(x, t)

p(x, t) = p̄(x, t)+ p′(x, t) (17)

θ (x, t) = θ̄ (x, t)+ θ ′(x, t)

Additively decomposed weighting functions

w(x) = w̄(x)+ w′(x)

q(x) = q̄(x)+ q ′(x) (18)
η(x) = η̄(x)+ η′(x)

For nonlinear fields this decomposition is to be viewed in the sense of projection. Furthermore, to make the

definition of the appropriate spaces of functions precise, V = {ū, p̄, θ̄} ∈ W̄t × Q̄t × H̄t and V ′ = {u′, p′, θ ′} ∈
W ′t×Q′t×H′t . The corresponding weighting function spaces are the time independent spaces such that W = W̄⊕W ′;
Q = Q̄⊕Q′ and H = H̄⊕H′.

By substituting the additively decomposed weighting functions defined in Eq. (18) in the standard Galerkin weak
form Eq. (16), we have

¯
′ ′ ′
RM (w + w ; u, p, θ)+ RC (q̄ + q ; u)+ RE (η̄ + η ; u, θ) = 0 (19)

5
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Fig. 1. Two-level scale decomposition along the wave number axis.

Because of the linearity of the additively decomposed weighting functions in Eq. (18), we can split the weak form
Eq. (19) into coarse- and fine-scale sub-problems as follows,
Coarse-scale problem

RM (w̄; u, p, θ)+ RC (q̄; u)+ RE (η̄; u, θ) = 0 (20)

ine-scale problem

RM (w′; u, p, θ)+ RC (q ′; u)+ RE (η′; u, θ) = 0 (21)

emark 2. In the context of VMS framework, the basis functions for the coarse-scale trial solutions and weighting
unctions are viewed as filters or projectors in the conventional LES formulation. Fig. 1 shows the split of scales
long the wave number axis |k|.

3.2. Re-organization of the coarse-scale sub-problem

The modeling strategy in Variational Multiscale framework is to extract the fine-scale fields [u′, p′, θ ′] from
fine-scale variational formulation Eq. (21). Subsequently, it is embedded in the coarse-scale formulation Eq. (20)
that gives rise to a multiscale weak form with fully embedded VMS-based closure model.

We substitute the additively split trial solutions defined in Eq. (17) in the coarse-scale sub-problem Eq. (20).

RM (w̄; ū + u′, p̄ + p′, θ̄ + θ ′)+ RC (q̄; ū + u′)+ RE (η̄; ū + u′, θ̄ + θ ′) = 0 (22)

The coarse-scale variational equation in Eq. (22) is expanded out, and the resulting terms are rearranged as follows:

BGal(W̄; V̄ )+ T VMS(W̄; V̄ ; V ′)+ T LES(W̄; V ′; V ′) = LGal(W̄ ) (23)

where BGal(W̄; V̄ ) are the bilinear-form terms that are fully represented in terms of coarse-scale fields (i.e., Galerkin
terms), T VMS(W̄; V̄ ; V ′) are the trilinear-form terms that linearly depend on the fine-scale trial solution, and
T LES(W̄; V ′; V ′) are the trilinear-form terms that nonlinearly depend on the fine-scale fields. These terms are
expressed as

BGal(W̄; V̄ ) =BM (w̄; ū, p̄, θ̄ )+ TM (w̄; ū; ū)+ BC (q̄; ū)+ BE (η̄; θ̄ )+ TE (η̄; ū; θ̄ ) (24a)

T VMS(W̄; V̄ ; V ′) =BM (w̄; u′, p′, θ ′)+ TM (w̄; ū; u′)+ TM (w̄; u′; ū)+ BC (q̄; u′)
+ BE (η̄; θ ′)+ TE (η̄; ū; θ ′)+ TE (η̄; u′; θ̄ ) (24b)

T LES(W̄; V ′; V ′) =TM (w̄; u′; u′)+ TE (η̄; ū′; θ ′) (24c)

LGal(W̄ ) =L M (w)+ L E (η) (24d)

4. Variational derivation of the closure model

This section presents a systematic procedure for the derivation of the closure model for density-stratified
incompressible flows. This derivation relies on consistent linearization of the fine-scale problems, localizing the
fine-scale problems to the sum of element interiors, locally resolving for the velocity, pressure and temperature
fields at the virtual nodes, and subsequently, re-constructing the element-wise solution fields that constitute the

closure model. The model is then embedded in the system of coarse-level variational equations (Eq. (23)). The

6
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Fig. 2. Schematic diagram of the computed and model scales in the VMS framework.

fine-scale problems summarized in Eq. (21) nevertheless pose the same challenges as the coarse-scale problems,
namely, (i) closure problem in the nonlinear convection terms, (ii) restriction imposed by the inf–sup condition on the
permissible interpolation functions employed in the mixed formulation, and (iii) numerical instability arising due to
the convection of fine-scale velocity u′ and relative temperature θ ′ fields. The first issue is addressed via consistent
linearization of the equation, and the second and third issues are resolved through a hierarchical application of
VMS idea that results in a nested system of subgrid scale equations that are connected via residuals from the
preceding level of scales, as shown in Fig. 2. In the proposed method, the coarse-scale fields are approximated
via standard finite element function spaces while the fine-scale fields are approximated with polynomial functions
that are independent of the basis-functions employed at the coarse-scale level. These polynomials at the fine scale
level also satisfy the property of an interpolation function, assuming a value of 1.0 in the natural coordinates for
the internal node and becoming zero at all other nodes. The location of this point in the natural coordinates when
projected onto the physical element serves as the position of the virtual node. Since this node is internal to the
element, the element level problem can be resolved locally in a variational and analytical context for the coefficients
of the fine fields at the virtual node. The analytical expression for the fine-scale solution over element interiors is
reconstructed via expansion through the fine-scale functions. This procedure provides some modeling options that
can be exploited to simplify the derived expression of the fine scale model and write it in an easy to comprehend form
as a function of the residual of element level coarse-scale fields. This step not only yields an analytical expression
for the so-called stability tensor, but it also results in economizing the cost of computation of the stability tensor.

4.1. Linearization of the fine-scale problems

The fine-scale problems summarized in Eq. (21) constitute a mixed nonlinear coupled system. The linearization
operator is defined as follows.

Π
(
R(w′, q ′, η′; ū, u′, p̄, p′, θ̄ , θ ′)

)
=

d
dε

(
R(w′, q ′, η′; ū + εδu′, p̄ + εδp′, θ̄ + εδθ ′)

)
(25)

Applying this linearization operator to Eq. (21), keeping all the linear terms in the expansion, and grouping the linear
terms in the residual forms of conservation of momentum, mass and energy as L

(
RM (w′; ū, p̄, θ̄ )

)
, L

(
RC (q ′; ū)

)
,

L
(
RE (η′; ū, θ̄ )

)
, respectively, we get the following form.

RM (w′; u, p, θ)+ RC (q ′; u)+ RE (η′; u, θ)

= R (w′; ū, p̄, θ̄ )+ R (q ′; ū)+ R (η′; ū, θ̄ )+ L
(
R (w′; ū, p̄, θ̄ )

)
+ L

(
R (q ′; ū)

)
+ L

(
R (η′; ū, θ̄ )

)
(26)
M C E M C E

7
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Employing the bilinear and trilinear operators defined in Eq. (15), the residual form is rearranged into a
residual-driven form as follows

BM (w′; δu′, δp′, δθ ′)+ TM (w′; ū; δu′)+ TM (w′; δu′; ū)

+BC (q ′; δu′)+ BE (η′; δθ ′)+ TE (η′; ū; δθ ′)+ TE (η′; δu′; θ̄ )
= −(w′, r̄ M )− (q ′, r̄C )− (η′, r̄E )

(27)

where r̄ M = r M (ū, p̄, θ̄ ), r̄C = rC (ū), and r̄E = rE (ū, θ̄ ) are the residuals of the Euler–Lagrange equations of the
coarse-scale system of conservation of momentum, mass, and energy, respectively.

Remark 3. The linearization process in Eq. (25) eliminates the fine-fine convective term (w′, u′ ·∇u′) and fine–fine
flux (η′, u′ · ∇θ ′) in a variationally consistent manner, while it preserves the coupling between the mechanical and
thermal phases. In the earlier work of the senior author on the derivation of an isothermal incompressible turbulence
model [26], a similar treatment was adopted.

Remark 4. To keep the presentation simple and clear, hereon, the notation δ is dropped from the terms containing
perturbed fine scales.

4.2. Multiscale decomposition of the fine scales

In Section 3.1, we applied VMS split to the primary fields in the coupled system of equations that is comprised
of velocity, pressure, and relative temperature fields. This resulted in a fine-scale system of coupled equations
(i.e., Eq. (21)). Since the fine-scale problem is in turn a mixed field problem, therefore locally resolving this system
to extract a model for the fine-scale fields still requires that the inf–sup restriction on the admissible functions,
imposed by the celebrated Babuška–Brezzi (BB) condition, be satisfied. A well-established attribute of the stabilized
methods is that they render the discrete formulations free from the restriction imposed by the BB condition, thereby
making it convenient to approximate the fields via simpler, and preferably equal-order interpolation functions.
Therefore, being able to write the fine-scale problem as a stabilized nonlinear problem would help in extracting
the fine-scale model. With this objective of developing a stabilized method at the fine-scale variational level, we
proceed with a hierarchical application of the VMS ideas [45] and carry out another split of scales.

In earlier works by the senior author [32,50], it was shown that it may not be necessary to perform scale split for
every unknown field in the system to develop the stabilized method. Accordingly, we proceed with splitting only
the fine-scale velocity and temperature fields into a set of further finer levels of scales. The rationale to include the
temperature field in the subsequent split is that energy conservation equation (i.e., Eq. (3)) is a hyperbolic equation
and consequently its fine-scale counterpart requires appropriate stabilization. However, we do not require a further
split of the fine-scale pressure. Reason is that localizing the fine-scale fields to element interiors and assuming the
fine-scale velocity field to satisfy the Dirichlet boundary condition locally over the element domains results in mass
conservation at the fine-scale level,

∫
Ωe ∇ · u dΩ =

∫
Γ e u · n dΓ = 0. Therefore, further constraint on conservation

of mass via split of the pressure field is not needed. Consequently, the structure of the stability tensor contains
the basis functions of the fine-scale velocity and temperature fields. Substituting the modeled fine-scale level-II
field in the fine-scale level-I problem results in a stabilized fine-scale equation, and therefore the system is free
of the restrictions imposed on the admissible spaces of fine-scale basis functions. This flexibility helps in using
simple fine-scale basis functions to expand the fields, which facilitates the extracting of analytical expressions for
the fine-scale models.

We decompose the fine-scale trial solutions and weighting functions for u′ and θ ′ into fine-scale level-I and
fine-scale level-II. Accordingly, we define the appropriate fine-scale spaces for the velocity and temperature fields
such that W ′ =W ′I⊕W ′II and H′ = H′I⊕H′II. With this decomposition made precise, we now have {u′I, θ

′

I} ∈W ′I×H′I
and {u′II, θ

′

II} ∈W ′II ×H′II.

u′(x, t) = u′I(x, t)+ u′II(x, t) θ ′(x, t) = θ ′I (x, t)+ θ ′II(x, t) (28)

w′(x) = w′(x)+ w′ (x) η′(x) = η′(x)+ η′ (x) (29)
I II I II

8
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Fig. 3. Three-level scale decomposition along the wave number axis |k|.

Fig. 4. Schematic diagram of hierarchical separation of scales and bottom-up development of the closure model.

Such a decomposition of fine-scale fields can also be presented in the spectral space, as shown in Fig. 3.
By segregating the terms in the weighting function slot corresponding to the two levels in the fine-scale, we

obtain the fine-scale level-I and fine-scale level-II sub-problems.
Fine-Scale Level-I

BM (w′I; u
′, p′, θ ′)+ TM (w′I; ū; u

′)+ TM (w′I; u
′
; ū)

+BC (q ′; u′)+ BE (η′I; θ
′)+ TE (η′I; ū; θ

′)+ TE (η′I; u
′
; θ̄ )

= −(w′I, r̄ M )− (q ′, r̄C )− (η′I, r̄E )
(30)

Fine-Scale Level-II

BM (w′II; u
′, p′, θ ′)+ TM (w′II; ū; u

′)+ TM (w′II; u
′
; ū)

+BE (η′II; θ
′)+ TE (η′II; ū; θ

′)+ TE (η′II; u
′
; θ̄ ) = −(w′II, r̄ M )− (η′II, r̄E )

(31)

Our aim is to extract the solution of fine-scale level-II velocity u′II and temperature θ ′II fields by locally resolving
Eq. (31). These analytical expressions will then be substituted in the fine-scale level-I variational form Eq. (30) and
will result in a stabilized formulation for the fine-scale problems. Fig. 4 shows the hierarchical decomposition of
scales and the subsequent rebuilding of the fine-scale models that are sequentially embedded in the preceding level
variational forms.

Remark 5. The effect of splitting the velocity and not the pressure field is that it results in enriching only the
velocity degrees of freedom, which is attractive from the perspective of the notion of the ratio of constraint count,
i.e., the ratio of the velocity to the pressure degrees of freedom [51].
9
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4.3. Deriving the model for the fine-scale level-II fields

To make the problems tractable, we make an assumption that the fine-scale fields vanish at the element
oundaries.

u′ = 0 p′ = 0 θ ′ = 0 on Γ ′ (32)

w′ = 0 q ′ = 0 η′ = 0 on Γ ′ (33)

We rearrange the fine-scale terms in Eq. (31) by separating the fine-scale trial solutions that belong to level-II from
those at level-I.

BM (w′II; u
′

II, 0, θ ′II)+ TM (w′II; ū; u
′

II)+ TM (w′II; u
′

II; ū)

+ BE (η′II; θ
′

II)+ TE (η′II; ū; θ
′

II)+ TE (η′II; u
′

II; θ̄ )
=− BM (w′II; u

′

I, p′, θ ′I )− TM (w′II; ū; u
′

I)− TM (w′II; u
′

I; ū)

− BE (η′II; θ
′

I )− TE (η′II; ū; θ
′

I )− TE (η′II; u
′

I; θ̄ )− (w′II, r M )− (η′II, rE )

(34)

The RHS of the rearranged fine-scale level-II weak form Eq. (34) can be written in the residual-driven form.

BM (w′II; u
′

II, 0, θ ′II)+ TM (w′II; ū; u
′

II)+ TM (w′II; u
′

II; ū)

+BE (η′II; θ
′

II)+ TE (η′II; ū; θ
′

II)+ TE (η′II; u
′

II; θ̄ )
= −(w′II, r ′M + r̄ M )− (η′II, r ′E + r̄E )

(35)

where r ′M is the residual of the Euler–Lagrange equations of the linearized fine-scale level-I for the conservation of
momentum, while r ′E is the residual of the Euler–Lagrange equation of the linearized fine-scale level-I conservation
of energy. The expressions for r ′M and r ′E are as follows

r ′M = u′I,t + ū · ∇u′I + u′I · ∇ ū +∇ p′ −∇ · (2ν∇u′I)− ĝβθ ′I

r ′E = θ ′I,t + ū · ∇θ ′I + u′I · ∇ θ̄ −∇ · (α∇θ ′I )
(36)

At this point we introduce the notion of bubble functions to expand the fine-scale fields at level-II. These
functions, by their definition, vanish at element boundaries and therefore satisfy the assumptions inherent in Eqs. (32)
and (33). The interpolation of fine-scale level-II trial solutions and weighting functions are therefore written as
follows

u′II = be
IIu
′e
II and θ ′II = be

IIθ
′e
II (37)

w′II = be
IIw
′e
II and η′II = be

IIη
′e
II (38)

where the superscript (·)e in Eqs. (37) and (38) denotes the element-wise quantity. For integration in time, we have
employed the generalized-α method [52] for the first-order system, where the inertial term is evaluated at n + αm

while other terms are evaluated at n + α f over a time-step from time level n to n + 1. By applying the spatial
discretization in Eqs. (37) and (38) to Eq. (35), we arrive at a linear system

αm

γ∆t
M ′II

[
u′eII,t
θ ′eII,t

]
n+1
+ α f K ′II

[
u′eII
θ ′eII

]
n+1
= −α f R′II

[
r M + r ′M
rE + r ′E

]
n+1

(39)

here M ′II = (be, be)I4×4 is the mass matrix of the linear system, and R′II = (be
II, 1)I4×4 is the matrix comprised

f bubble functions, which multiplies the set of residual vectors to yield the out of balance force vector for the
volution of fine scales. The stiffness matrix K ′II is defined as follows

K ′II =

[
Kw′IIu′II

II Kw′IIθ
′
II

II

K η′IIu′II
II K

η′IIθ
′
II

II

]
(40)

where Kw′IIu′II
II = Kw′u′

Gal

(
be

II

)
and includes the cross-scale advection, skew advection and symmetric diffusion. This

n fact constitutes the standard discrete sub-system for the linearized Navier–Stokes equations that is derived in
ur earlier work [32,46]. K

η′IIθ
′
II
= K η′θ ′(be ) represents the cross-scale advection–diffusion terms in the thermal
II Gal II

10
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phase and is form identical to our earlier work in [46,53]. The coupling terms (i.e., Kw′IIθ
′
II

II = Kw′θ ′

Gal (be
II) and

K η′IIu′II
II = K η′u′

Gal (be
II)) of the mechanical phase and the thermal phase also appear in the fine-scale problems.

onsequently, a full (nsd + 1)× (nsd + 1) matrix is derived from the discretized linear system in Eq. (39). Hereon,
he fine-scale level-II velocity and temperature fields are written in terms of the residuals of the conservation laws
t the preceding levels.[

u′II
θ ′II

]
= be

II

[
u′eII
θ ′eII

]
= −τ ′

[
r M + r ′M
rE + r ′E

]
(41)

here τ ′ represents a local variational projector that maps the solution from the smallest scales (i.e., level-II) to the
ext larger scales (i.e., level-I). The derived expression of τ ′ is

τ ′ = be
II

(
αm

α f γ∆t
M ′II + K ′II

)−1

R′II (42)

emark 6. Further details on the structure of τ ′ that can help the interested reader to implement the method are
rovided in Appendix A.1.

emark 7. The time-dependent terms (·)n and their time derivative ∂(·)n/∂t for the level-II fine-scale fields are
eglected (i.e., (·)n = 0 and ∂(·)n/∂t = 0). For a generic time-dependent field (·), the temporal discretization via
he generalized-α method can be written as

∂(·)
∂t

⏐⏐⏐
n+1
=

(·)n+1 − (·)n

γ∆t
+

γ − 1
γ

∂(·)
∂t

⏐⏐⏐
n
=

1
γ∆t

(·)n+1

∂(·)
∂t

⏐⏐⏐
n+αm
=αm

∂(·)
∂t

⏐⏐⏐
n+1
+ (1− αm)

∂(·)
∂t

⏐⏐⏐
n
=

αm

γ∆t
(·)n+1

(·)
⏐⏐
n+α f
=α f (·)

⏐⏐
n+1 + (1− α f )(·)

⏐⏐
n = α f (·)

⏐⏐
n+1

(43)

he value of parameters αm , α f and γ that ensure the unconditional stability of the algorithm are determined by
he parameter ρ∞ [52].

emark 8. To address the issue of orthogonality of standard bubble function and its derivatives, the weighting
art of the advection term in Eq. (40) is enriched with advection bubble, as suggested in senior author’s earlier
ork [32,53].

emark 9. The fine-scale level-II fields are fully cognizant of the residuals at the preceding coarse levels, and these
ffects are fully embedded in the models for [u′II, θ

′

II]
T as derived in Eq. (41).

.4. Derivation of the closure model

.4.1. Stabilized fine-scale level-I weak form
To embed the derived fine-scale level-II fields, we first expand the terms in the fine-scale level-I equation

Eq. (30)) by substituting the additively decomposed form Eq. (28). We then group the terms with respect to the
wo levels in the trial solution slot, which yields

BGal
I (W ′I; V

′

I)+ T V M S
I (W ′I; V

′

II) = LRHS
I (W ′; V̄ ) (44)

here BGal
I represents the Galerkin terms that encompass the fine-scale level-I solution fields, T VMS

I constitutes the
terms that depend on the fine-scale level-II fields, and it is here that the fine-scale level-II solution from Eq. (41)
is substituted. LRHS

I represents the terms that depend on the coarse-scale solution fields. The expressions for these
terms are

BGal
I (W ′I; V

′

I) =BM (w′I; u
′

I, p′, θ ′I )+ TM (w′I; ū; u
′

I)+ TM (w′I; u
′

I; ū)

+ B (q ′; u′)+ B (η′; θ ′)+ T (η′; ū; θ ′)+ T (η′; u′; θ̄ ) (45)
C I E I I E I I E I I
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T VMS
I (W ′I; V

′

II) =BM (w′I; u
′

II, 0, θ ′II)+ TM (w′I; ū; u
′

II)+ TM (w′I; u
′

II; ū)

+ BE (η′I; θ
′

II)+ TE (η′I; ū; θ
′

II)+ TE (η′I; u
′

II; θ̄ ) (46)

LRHS
I (W ′; V̄ ) =− (w′I, r̄ M )− (q ′, r̄C )− (η′I, r̄E ) (47)

By applying divergence theorem to T VMS
I , we have

T VMS
I (W ′I; V

′

II) =
([

χ ′M , χ ′E
]
,
[
u′eII, θ

′e
II

]T
)

(48)

where weighting functions χ ′M and χ ′E are comprised of the various terms that depends on the fine-scale level-II
solution in Eq. (46), and are given as follows,

χ ′M =− ū · ∇w′I + w′I · ∇
T ū − ν(∇(∇ · w′I)+∆w′I)−∇ · q

′
+ η′I∇

T θ̄ (49a)

χ ′E =β ĝ · w′I − ū · ∇η′I − α∆η′I (49b)

We now substitute the fine-scale level-II solution from Eq. (41) in Eq. (48) and take the residual of the coarse-scale
Euler–Lagrange equation to the RHS of Eq. (44). The resulting stabilized fine-scale level-I weak form is written as
follows

BGal
I (W ′I; V

′

I)−
([

χ ′M , χ ′E
]
τ ′; [r ′M , r ′E ]T )

= LRHS
I (W ′; V̄ )−

([
χ ′M , χ ′E

]
τ ′; [r̄ ′M , r̄E ]T ) (50)

4.4.2. Solution of fine-scale level-I
The L.H.S. of Eq. (50) depends on the fine-scale level-I trial solutions only, and this is a consequence of the

variationally derived models for [u′II, θ
′

II]
T that are written in terms of the residuals at level-I as shown in Eq. (41).

We now locally resolve Eq. (50) to derive analytical expressions for [u′I, p′, θ ′I ]
T in a residual form, as shown on the

R.H.S. of Eq. (50). We employ bubble functions be
I to interpolate [u′I, p′, θ ′I ]

T and their corresponding weighting
functions [w′I, q ′, η′I]

T as

[u′I, p′, θ ′I ]
T
= be

I [u′eI , p′e, θ ′eI ]T and [w′I, q ′, η′I]
T
= be

I [w′eI , q ′e, η′eI ]T (51)

It is important to note that bubble function be
I is linearly independent of the function be

II in Eqs. (28) and (29). We
apply the generalized-α method to discretize the system in time. To simplify the equations, we drop the time history
terms and employing Eq. (51), the stabilized fine-scale level-I weak form Eq. (50) can be written in an element-wise
matrix form as(

αm

γ∆t
M ′I + α f K ′I

)⎡⎣u′eI
p′e

θ ′eI

⎤⎦ = −α f R′I

⎡⎣r̄ M

r̄C

r̄E

⎤⎦ (52)

here M ′I is the mass matrix of fine-scale level-I, K ′I is the stiffness matrix, and R′I is the RHS matrix. Locally
solving Eq. (52) over the element interiors with an appropriate time integration scheme gives the coefficients for
[u′eI , p′e, θ ′eI ]T at the virtual nodes. We can reconstruct the fine-scale fields by multiplying with the bubble function.
The fine-scale level-I represents the closure model for the fine-scales where physics from higher modes (i.e., finer
scales) has been embedded via nesting through the hierarchical residuals. We denote the solution of the fine-scale
system in Eq. (52) as⎡⎣u′

p′

θ ′

⎤⎦ ≈
⎡⎣u′I

p′

θ ′I

⎤⎦ = be
I

⎡⎣u′eI
p′e

θ ′eI

⎤⎦ = −beτ

⎡⎣r M

rC

rE

⎤⎦ (53)

where τ projects fine-scale physics from sub-grid scales to the resolved scales, viz.,

τ = be
I

(
αm

α f γ∆t
M ′I + K ′I

)−1

R′I (54)

emark 10. The structure of τ along with the algorithmic detail for its numerical implementation are provided in
ppendix A.2.
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4.5. Residual-based turbulence model

We recall the coarse-scale problem defined in Eq. (23), substitute the scale decomposition of the trial solutions,
nd write out the terms(

w̄, ū,t
)
+ (w̄, ū · ∇ ū)+

(
∇w̄, 2ν∇s ū

)
− (∇ · w̄, p̄)+

(
w̄, ĝβθ̄

)
(55a)

+ (q̄,∇ · ū) (55b)

+ (η̄, θ̄,t )+ (η̄, ū · ∇ θ̄ )+ (∇η̄, α∇ θ̄ ) (55c)

+ (w̄, u′,t )+ (w̄, ū · ∇u′)+ (w̄, u′ · ∇ ū)+
(
∇w̄, 2ν∇s u′

)
+ (q̄,∇ · u′) (55d)

−
(
∇ · w̄, p′

)
(55e)

+ (η̄, θ ′,t )+ (η̄, ū · ∇θ ′)+ (∇η̄, α∇θ ′) (55f)

+
(
w̄, ĝβθ ′

)
+ (η̄, u′ · ∇ θ̄ ) (55g)

+ (w̄, u′ · ∇u′)+ (η̄, u′ · ∇θ ′) = 0 (55h)

The description of these terms is as follows: (i) the terms in Eq. (55a) constitute the coarse-scale Galerkin form
of the momentum balance equation RM (w̄; ū, p̄, θ̄ ), (ii) the term in Eq. (55b) is the coarse-scale Galerkin form
of the continuity equation RC (q̄; ū), (iii) the terms in Eq. (55c) are the coarse-scale Galerkin form of the energy
conservation equation RE (η̄; ū, θ̄ ), (iv) the terms in Eq. (55d) are VMS terms from the mechanical phase (and these
terms are grouped as (χ M , u′) via integration by parts), (v) Eq. (55e) is the VMS term with respect to fine-scale
pressure p′ (and it encompasses the so-called div-stabilization), (vi) the terms in Eq. (55f) are the VMS terms
from thermal phase (and we can rewrite them as (χE , θ ′)), (vii) the terms in Eq. (55g) represent the inter-scale and
inter-phase coupling, namely, the effect of fine-scale temperature on the coarse-scale mechanical phase, and the
effect of fine-scale velocity on the coarse-scale thermal phase, and (viii) the terms in Eq. (55h) are higher-order
fine scale convection terms.

Remark 11. In Eqs. (55d) and (55f), we have dropped (w̄, u′,t ) and (η̄, θ ′,t ) because fine-scale dynamic effects have
been implicitly represented via embedding of fine-scale models in the coarse-scale variational equation. This also
helps simplify numerical solution algorithm for the coarse-scale formulation, while still maintaining the dependency
of the stability tensor on the time-evolving fine scales.

The residual-based turbulence formulation can be written in a concise form as:

RM (w̄; ū, p̄, θ̄ )+ RC (q̄; ū)+ RE (η̄; ū, θ̄ )
+(χ M , u′)− (∇ · w̄, p′)+ (χE , θ ′)+ (w̄, u′ · ∇u′)+ (η̄, u′ · ∇θ ′) = 0

(56)

where the closure model [u′, p′, θ ′]T is derived in Eq. (53). The weighting functions χ M and χE that correspond
o the stabilization terms are written as

χ M = −ū · ∇w̄ + w̄ · ∇T ū − ν(∇(∇ · w̄)+∆w̄)−∇ · q + η̄ · ∇T θ̄

χE = −ū · ∇η̄ − ν∆η̄ + w̄ · ĝβ
(57)

he derivation of the weak form with embedded turbulence model in Eq. (56) is based on hierarchical decomposition
s shown in Fig. 2. Subsequently, the development of the closure model is based on variational embedding as shown
n Fig. 4. The algorithmic form of the proposed residual-based turbulence model for density-stratified incompressible
ows is presented in Algorithm 1.

. Numerical tests

The performance of the proposed turbulence model for stratified turbulent flows is evaluated on canonical test
ases for which an extensive database of published DNS and LES results is available for quantitative comparison.
hese include the well-known thermal instabilities, namely, the Rayleigh–Bénard instability and the Rayleigh–Taylor

nstability. Also presented is the case of stratified plane turbulent flow. These problem classes cover a range of

hysics of flows and account for various combinations of the boundary conditions.
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Algorithm 1: The proposed residual-based turbulence model in the algorithmic form within one time-step.
input : un , pn , θn , (u,t )n , (θ,t )n from time-step n

1 Start the loop of time-step n + 1;
2 Initialize the iteration counter: i ← 0;
3 Predictors: un+1

i = un; pn+1
i = pn; θn+1

i = θn; (u,t )n+1
i =

γ−1
γ

(u,t )n; (θ,t )n+1
i =

γ−1
γ

(θ,t )n;
4 Compute the initial residual R0 =

Rn+1
i


2 following Eq. (22);

5 while
Rn+1

i


2 ≥ tol · R0 do

6 Compute the stability tensor τ ′n+1
i for the fine-scale level-I by solving Eq. (42);

7 Compute the stability tensor τ n+1
i for the coarse-scale by solving Eq. (54);

8 Following Eq. (22), compute the consistent tangent K n+1
i and the residual Rn+1

i to form the algebraic
system K n+1

i [∆un+1
i ,∆pn+1

i ,∆θn+1
i ]T

= Rn+1
i ;

9 Solve the linearized system;
10 Update solution fields: un+1

i+1 = un+1
i +∆un+1

i ; pn+1
i+1 = pn+1

i +∆pn+1
i ; θn+1

i+1 = θn+1
i +∆θn+1

i ;
11 Update transient fields: (u,t )n+1

i+1 = (u,t )n+1
i +

1
γ∆t ∆un+1

i ; (θ,t )n+1
i+1 = (θ,t )n+1

i +
1

γ∆t (∆θi )n+1;
12 Update the iterator: i ← i + 1 ;
13 end

output: un+1, pn+1, θn+1, (u,t )n+1, (θ,t )n+1 of current time-step n + 1

5.1. Code development and solution procedure

The proposed turbulence model is implemented in an in-house finite-element program. The parallel version for
istributed-memory computing is based on the message-passing interface (MPI) that is enabled via the open-source
ackage PETSc [54]. Variational consistency of the model results in quadratic convergence in the nonlinear solution
oop within each time-step of the generalized-α method. The tolerance criterion for the relative L2 norm of the initial
esidual is set as 10−6. We employ the generalized minimal residual algorithm (GMRES) together with the block
acobi preconditioner to solve the discretized linearized system in each iteration within the Newton–Raphson loop.
he relative and the absolute tolerances for the iterative solver are both set as 10−12. The algorithmic form of the
olution procedure employing the proposed residual-based turbulence model is presented in Algorithm 1. To help
he interested reader in the implementation of the method, detailed expressions of the linear systems at the different
evels of variational formulations are presented in the Appendices.

Lines 6 and 7 in Algorithm 1 show that coarse-scale and fine-scale stability tensors are locally and dynamically
pdated within each iteration of the Newton–Raphson loop in the time marching of the nonlinear weak form. These
wo steps introduce additional computational cost as compared to the conventional stabilized method, and this aspect
s discussed in Appendix B. However, it is important to note that these variationally derived stability tensors preclude
he need for any user-defined or user-designed tunable parameters to be introduced in the model.

.2. Rayleigh–Bérnard convection

In this section we carry out a series of numerical studies of the classic Rayleigh–Bénard convection problem
o validate the accuracy of the proposed method. Both two-dimensional (2D) and three-dimensional (3D) cases
re considered, where an applied background temperature gradient drives the flow. This problem is of relevance in
atural and engineered flows [55]. Two governing parameters in this class of problems are the Rayleigh number

Ra, and the Prandtl number Pr . We can write the kinematic viscosity ν and thermal diffusivity α in terms of Ra
nd Pr as follows:

ν =

√
Pr
Ra

and α =

√
1

Pr Ra
(58)

All test cases in this section are assigned a unit buoyancy force (i.e., β| ĝ| = 1), the direction of which is
case-specific.
14
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Fig. 5. Schematic diagram of the 2D Rayleigh–Bénard problem: hot wall (red), cold wall (blue) and adiabatic walls (black). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

5.2.1. Natural convection in 2D cavity enclosure
When the gravitational force is approximately perpendicular to the temperature gradient it is termed as natural

onvection. The first test case is a 2D thermally driven flow where the left and right walls have applied temperature
oundary condition to provide a constant background temperature gradient as the driving mechanism for the
roblem. The top and bottom surfaces are both adiabatic walls. In the fluid phase, all four walls are applied with
o-slip and no-penetration conditions, and a zero-pressure reference point is set at the bottom left corner to eliminate
he constant pressure mode. The computational domain is a bi-unit box (i.e., [0, 1] × [0, 1]) and the schematic

diagram of problem description and boundary conditions is presented in Fig. 5. The unit gravity force is applied in
the negative y-direction, and the thermal expansion coefficient is set as β = 1. The Prandtl number Pr is set equal
to 0.71 that represents the physics of air flow. Although the exact solution for natural convection is presented in
Chenoweth and Paulucci [56] for cases with Ra→ 0, flows of interest in engineering analysis occur at much higher
Rayleigh numbers (i.e., Ra > 106) for which analytical solutions do not exist. Therefore, validation of the proposed
method is carried out via comparison with reported numerical data, including maxima of velocity components and
their locations, and with averaged Nusselt numbers when possible. The averaged Nusselt number Nu is defined on
the boundary as follows,

Nu =
1
A

∫
Γ

∇θ · n dΓ =
1
A

Nseg∑
e=1

∫
Γ e
∇θ · n dΓ (59)

where A is the area of the wall and Nseg is the number of segments on the wall in the current mesh. In other words,
the averaged Nusselt number Nu represents the total heat flux at the boundary. Four different Rayleigh numbers
are selected (i.e., 107, 108, 109 and 1010) to cover the span of the transitional (107 and 108) and turbulent (109 and
1010) natural convections [39,55,57].

We first carried out a mesh dependency study with the proposed method to identify an appropriate mesh for
the given Ra to be used in the quantitative comparison with the reported numerical results in the literature. All
four test cases for the selected Ra were started with a mesh comprised of 25 × 25 bilinear quadrilateral (Q4)
elements. We refined the mesh by doubling the number of elements in both the dimensions till the difference of
averaged Nusselt numbers at the hot wall between two successive meshes was smaller than 0.001. All meshes were
stretched in both horizontal and vertical directions by Chebyshev grid to have enough mesh resolution for the fluid
and thermal boundary layers. The post-processed averaged Nusselt numbers at the hot wall for the different Ra and
mesh resolutions are listed in Table 1. The snapshots of the instantaneous relative temperature field and the velocity
15
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Fig. 6. Instantaneous velocity and temperature fields of natural convection in a 2D enclosure with varying Ra number.

Table 1
Averaged Nusselt number Nuh at the hot wall for different Ra: mesh dependency
study.

Ra 107 108 109 1010

25 × 25 16.6482 30.1542 53.5766 98.9238
50 × 50 16.5334 30.2440 54.4188 97.7409
100 × 100 16.5196 30.2400 54.4325 97.4803
200 × 200 – − – 97.4747

field for the four Ra cases with their corresponding refined meshes are presented in Fig. 6. While the two cases in
he transitional regime gradually approach a steady state as shown in Figs. 6(a) and 6(b), the solution fields in the
wo turbulent cases are only statistically quiescent. As shown in Figs. 6(c) and 6(d), the velocity and temperature
elds from the turbulent cases exhibit unsteady flow structures near the top-left and the bottom-right corners, where

he flow convection which is accelerated by thermal buoyancy competes with the viscous dissipation effects. In
he quantitative comparison study of the statistically stationary quantities, the solution fields from the simulation of
Ra = 109 and Ra = 1010 are averaged over 200 sample points along the time axis that are taken from 2000 steps
at interval of 10 steps once the statistical steady state has reached.

We now present a quantitative comparison of the proposed residual-based turbulence model with some represen-
tative data reported in the literature that come from a range of existing computational methods for turbulent natural
convection. These include DNS with pseudo-spectral method (PSM) [58], finite-volume method (FVM) with k-ε

ANS turbulence model [59], large eddy lattice Boltzmann method (LBM) [57], and VMS method with isothermal
ES turbulence model [39]. As shown in Table 2, the computed Nuh via the proposed turbulence model is very

close to the value reported in the literature for different numerical methods and turbulence models. Another set of
quantitative comparisons includes the magnitude of the maximum horizontal velocity along the vertical mid-plane
(i.e., x = 0.5) and the magnitude of the vertical component of velocity along the horizontal mid-plane (i.e., y = 0.5).
16
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Fig. 7. Distribution of solution fields along mid-planes (i.e., x = 0.5 and y = 0.5) with Ra = 109.

Table 2
Averaged Nusselt number Nuh at the hot wall for different Ra: validation study.

Ra 107 108 109 1010

FVM [59] – 30.1 54.4 97.6
LBM [57] 16.512 30.195 54.510 98.171
VMS (Isothermal) [39] 16.44 30.1 54.29 97.29
Present work 16.5196 30.2400 54.4325 97.4747

The statistically processed results from the transitional and turbulent flow regimes are compared with the reference
data in Tables 3 and 4, respectively. The location and magnitude of the maxima of velocity components validate the
accuracy of the proposed method. To further verify our numerical results, we present the distribution of the solution
fields (i.e., u, v and θ ) along certain critical planes (i.e., x = 0.5 and y = 0.5). Fig. 7 shows spatial distribution

f statistically averaged fields for Ra = 109 and a good agreement with the reference data [39,57] is observed.
he distribution of u in the bottom half of the mid-plane shows some deviation in Fig. 7(d), where our results are
loser to the data reported in [39] near the bottom wall and match with [57] away from the wall. Similarly, spatial
istributions of solution fields for Ra = 1010 along the mid-planes are plotted in Fig. 8, where a good agreement
etween our simulations and other published numerical results is achieved.

.2.2. Natural convection in 3D cavity enclosure
In this section, we extend the 2D natural convection discussed in Section 5.2.1 to 3D, where the walls normal to

he z-axis are insulated and imposed with no-slip boundary conditions, as shown in Fig. 9. To make the geometry
f the computational domain consistent with the experimental setup [60], the dimension of z-axis is set equal to

0.32. The vector of acceleration due to gravity is pointed in the negative y-direction (i.e., ĝ = [0,−1, 0]). The
ayleigh number is set equal to Ra = 1.5 × 109, which makes the flow physics lie in the turbulent regime. Due
17
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Fig. 8. Distribution of solution fields along mid-planes (i.e., x = 0.5 and y = 0.5) with Ra = 1010.

Table 3
Values and locations of velocity maxima of 2D natural convection in the transitional regime.

Ra
107 108

umax y vmax x umax y vmax x

PSM [58] 0.0562 0.879 0.270 0.021 0.0385 0.928 0.266 0.012
FVM [59] – − – − 0.0615 0.941 0.217 0.0135
LBM [57] 0.05635 0.8779 0.2626 0.0217 0.03846 0.9209 0.264 0.125
VMS (Isothermal) [39] 0.0564 0.878 0.264 0.023 0.0399 0.930 0.266 0.0125
Present work 0.0558 0.8852 0.2622 0.0199 0.03703 0.9222 0.2648 0.0120

Table 4
Values and locations of velocity maxima of 2D natural convection in the turbulent regime.

Ra
109 1010

umax y vmax x umax y vmax x

FVM [59] – − – − 0.0278 0.9625 0.202 0.0055
LBM [57] 0.01987 0.9134 0.2645 0.00731 0.01627 0.9791 0.2650 0.00417
VMS (Isothermal) [39] 0.0270 0.931 0.267 0.00667 0.0143 0.956 0.270 0.00375
Present work 0.02110 0.9304 0.2653 0.006153 0.02095 0.9455 0.2678 0.003942

to the thermal and flow boundary layers along the walls in all the three dimensions, a tensor-product Chebyshev
grid C xn = Cxn × Cyn × Czn is developed, where xn = [xn, yn, zn]T are the number of nodes in each dimension,
respectively. Two meshes of trilinear hexahedral elements (H8) including a coarse mesh (i.e., xn = [51, 51, 17]T )
and a fine mesh (i.e., x = [101, 101, 33]T ) are used in the numerical tests in this subsection. To highlight the
n
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Fig. 9. Schematic diagram of 3D natural convection: the hot wall (red), the cold wall (blue) and adiabatic walls (shaded). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Natural convection in a 3D enclosure: isocontours of relative temperature θ and streamlines of velocity field u colored by its
agnitude. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

igher spatial accuracy of our method as compared to the published literature, we compute our results on the
esh with xn = [101, 101, 33]T which corresponds to the coarsest mesh employed in [39,57,60], and compare our

omputed results with the data from the finest mesh employed in these references. We also employ a still lower
esolution mesh to showcase the fine-scale modeling feature of our method that automatically compensates for the
rudeness of spatial discretization and results in the higher spatial accuracy of the solution. To visualize the flow
eld, the streamlines of velocity and iso-surfaces of temperature are plotted in Fig. 10. Once the simulation reaches

he statistical steady state, we carry out time-averaging of the solution fields. In Fig. 11, the time-averaged results
re compared with the reported numerical results, including DNS [60] and LES [39,57]. Fig. 11 presents spatial
istribution of the relative temperature and vertical component of the velocity near the hot wall along a plane at

y = 0.5. A good agreement with published DNS and LES data obtained from various numerical methods and
urbulence models is attained.

The proposed method has also been implemented with linear (T4) and quadratic tetrahedral (T10) elements.
ccordingly, we rearrange the element connectivity for the finer mesh (i.e., xn = [101, 101, 32]T ) to accommodate

the linear tetrahedral (T4) and quadratic tetrahedral (T10) elements while maintaining the number and location of
nodes similar to that in hexahedral element meshes. The computed results with the different members of the family
of 3D Lagrange elements are presented in Fig. 12. The solution fields obtained from simulations with different types
19
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Fig. 11. Natural convection in 3D enclosure (Ra = 1.5× 109): validation study.

f elements and for different orders of polynomials are almost identical (Figs. 12(a)–12(c)), while the distribution
f horizontal velocity shows some variation between the different element types, as presented in Fig. 12(d).

.2.3. 3D Rayleigh–Bénard instability
This section investigates the well-known Rayleigh–Bénard convection, where gravity acts in the opposite

irection to the temperature gradient. The schematic diagram of the problem is presented in Fig. 13. In this problem,
he buoyancy generated by the stratification is counteracted by the viscous damping effect, and the ratio of these
wo effects defines the Rayleigh number. Once the Rayleigh number reaches a certain level, the Rayleigh–Bénard
nstability gets triggered and drives the flow physics. The computational domain is a unit cubic, which is discretized
nto 643 H8 elements. Slip boundary conditions are applied at the top and bottom surfaces (i.e., z = 0 and z = 1),
hile periodic boundary conditions for all the fields are applied at the walls perpendicular to the x- and y-directions.
he grid spacing in the horizontal planes is uniform while the mesh is stretched in z-direction to adapt for the thermal
oundary layer. The Rayleigh number is Ra = 108 and Prandtl number is Pr = 1.

We initialize the problem with a static flow and with zero-gradient temperature field. We first compare the
emporal evolution of the total kinetic energy Eu, the total entropy Eθ̂ and the total Nusselt number NuV with
he DNS (5123) and LES (1283) results reported in [23], as shown in Fig. 14. The expressions of the total kinetic
nergy Eu, total entropy Eθ̂ and total Nusselt number NuV for a FEM-discretized domain are given as follows:

Eu(t) =
1
2

∫
Ω

|u(x, t)|2 dΩ =
1
2

nel∑
e=1

∫
Ωe
|u(x, t)|2 dΩ (60)

Eθ̂ (t) =
1
2

∫ (
θ̂ (x, t)

)2
dΩ =

1
2

nel∑∫
e

(
θ̂ (x, t)

)2
dΩ (61)
Ω e=1 Ω
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o

Fig. 12. Natural convection in a 3D enclosure (Ra = 1.5× 109): various types of elements and p-refinement study.

Fig. 13. Schematic diagram of the 3D Rayleigh–Bénard instability: hot wall at z = 0 (red) and cold wall at z = 1 (blue). (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)

NuV (t) =1+
L z

κ∆θ

1
V

nel∑
e=1

∫
Ωe

w(x, t)θ̂ (x, t) dΩ (62)

where θ̂ is the variation of temperature, which is calculated by subtracting the temperature due to background
thermal gradient from the relative temperature θ , i.e., θ̂ = θ− (∆T/L z)z; ∆T is the temperature difference between
top and bottom planes; and V is the volume of the computational domain. Due to the different initialization strategies

adopted in the various numerical techniques reported in the literature, there is difference in the early time history of
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m

Fig. 14. Evolution of global quantities in the Rayleigh–Bénard instability.

Table 5
Time-averaged total kinetic energy Eu, total entropy E

θ̂
and total Nusselt number NuV : mean and standard

deviation (data collected from 30 to 80).

Mesh res. Eu E
θ̂

NuV

DNS [23] 5123 (2.20± 0.33)× 10−2 (3.75± 0.26)× 10−2 55.5± 10.7
LES-RNG [23] 1283 (2.51± 0.31)× 10−2 (3.64± 0.23)× 10−2 72.4± 10.9
LES-VMS 643 (2.168± 0.296)× 10−2 (3.609± 0.238)× 10−2 55.40± 10.67
LES-VMS 963 (2.332± 0.265)× 10−2 (3.728± 0.174)× 10−2 57.08± 7.32

the total kinetic energy, entropy, and Nusselt number between our simulation and the reference data [23] as shown
in Figs. 14(a)–14(c). After approximately 20 flow overturning cycles, the flow reaches statistically steady state [23],
and we observe a consistent and comparable trend in the time histories of total entropy, energy and Nusselt number
when compared with the reference data. In Fig. 15 we present the instantaneous snapshots of the temperature field
θ for two time points, one from the initial developmental stage and the other from the statistically steady state. In
Fig. 15(a), when the flow begins to develop from the initial conditions, typical salt-finger flow structures develop
at the top and bottom walls. At a later stage, when the flow is fully developed, a more intricate mixing pattern
emerges, as is shown in Fig. 15(b).

To make quantitative comparison of the overall metrics of the turbulent thermal flow, we list the time-averaged
ean and standard deviation of Eu, Eθ̂ and NuV from our model for two meshes (643 and 963 trilinear hexahedrons)

with the published DNS and LES results [23] in Table 5. The time averaging is carried out over the range from 30
to 80 dimensionless time units. Finally, we compare the vertical distribution of the space–time averaged (x–y plane
and time t) mean and fluctuation rms of temperature in Figs. 16(a) and 16(c) and vertical velocity in Figs. 16(b) and
16(d) with the reported DNS and LES results [23], respectively. The rms profile of vertical velocity (Fig. 16(b)) from

our simulation closely matches the reference DNS and LES results [23], while the mean profile of temperature field
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Fig. 15. Relative temperature field (volume rendered) and streamlines of velocity (cones colored by its magnitude) in Rayleigh–Bénard
nstability: initial development and statistically stationary stages. (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)

Fig. 16. Vertical profiles of flow statistics for the Rayleigh–Bénard instability.

(Fig. 16(a)) slightly deviates from the profiles reported in [23]. We have also added to Fig. 16(a) the mean profile

for a closed domain Rayleigh–Bénard Instability [61] with the same Ra and similar Pr , which shows a symmetric
23
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Fig. 17. Schematic diagram of the 2D Rayleigh–Taylor instability: the hot fluid (red region), the cold fluid (blue region) and the perturbed
interface (black). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

distribution of the mean temperature that coincides with our results. Fig. 16(b) presents the profile of the vertical
velocity in the wall normal distribution, computed with the coarse mesh, which shows small variations around zero
at a scale of 10−5, while the reference numerical results show variation that lies within a range of 10−13. This is
ttributed to the use of much lower order of polynomials (H8) as compared to the global interpolation functions
mployed in the pseudo-spectral method presented in [23]. In general, our simulations show superior statistical
esults for the 3D Rayleigh–Bénard instability problem as compared to the LES method that employs turbulent
iscosity type model.

.3. 2D Raleigh–Taylor instability in miscible flows

In this section we evaluate the performance of the proposed LES method via the simulation of turbulent mixing
ayers [62], that are driven by the well-known Rayleigh–Taylor instability (RTI) [63]. The physical mechanism of
TI is that the gravitational force acting on the fluid is opposed by its density gradient, which eventually leads to

arge scale turbulent mixing. RTI plays an important role in various natural phenomena, ranging from the cirrus
louds in the sky [64] to the nebulae resulting from the residual of a supernova [65]. This phenomenon also appears
n engineered flows where RTI and other hydrodynamic instabilities affect the efficiency of energy harvesting devices
n inertial confinement fusion (ICF) [66].

The problem description is presented in Fig. 17. No penetration and no slip conditions are applied to the velocity
eld at the top and bottom boundaries. The relative temperature field is also specified at the top and bottom surfaces
s presented in Fig. 17. Periodic boundary conditions are applied along the left and right boundaries. The aspect ratio
f the domain is L y/L x = 4. The computational domain is discretized into 256 × 1024 uniform linear quadrilateral
Q4) elements, while the reference DNS simulation [67] uses 2048 × 8196 grid points. We select the multi-mode
nitial condition [66] to accelerate the development of turbulent mixing by applying a high-frequency perturbation to
he initial interface between the hot/cold fluids (or the light/dense fluids). The expression for the initial temperature
eld θ0 with a perturbed interface, as suggested in Clark [68], is as follows.

Ys(x) =
1
2

(
1+

1
Ny

60∑
k=30

cos (2πx + φk)

)
(63)

θ0(x, y) =−
1
2

tanh
(
1.28Ny (y − Ys(x))

)
+

1
2

(64)
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Fig. 18. Evolution of the temperature field in the Rayleigh–Taylor instability: 4 selected realizations.

Fig. 19. Flow statistics in the Rayleigh–Taylor instability: mean profiles of the relative temperature field θ at various time points.

where φk is a uniformly distributed random phase ranging from 0 to 2π . The kinematic viscosity ν and the thermal
viscosity κ are both set as ν = κ = 1.58 × 10−6. The magnitude of gravitational acceleration vector | ĝ| and the
thermal expansion coefficient β are both 0.5. For the purpose of ensemble averaging, 25 different realizations with
different random initial conditions are simulated. Four realizations are selected to visualize the evolving temperature
field, as shown in Fig. 18.

The mean profile of the temperature field is generated through ensemble averaging, which is defined as
follows,

⟨θ⟩ (y, t) =
1
N

N∑ 1
L

∫ Lx

θn(x, y, t) dx (65)

n=1 x 0
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Fig. 20. Time history of mixing layer height h: indication of the quadratic law h(t) ∝ t2.

where n denotes the counter for the number of cases in a total of N = 25 realizations. To quantitatively analyze the
results, we first plot the ensemble-averaged temperate field at 4 different time points in Fig. 19(a). A comparison
with the DNS temperature profile at t/τ = 3 reveals that as the flow develops, it triggers turbulent mixing and the
present simulations match well with the DNS data. Next, we normalize the vertical coordinates with the thickness
of mixing layer h(t) where temperature has dropped to 40% of the prescribed boundary temperature, which is
defined as

⟨θ⟩

(
y = ±

1
2

h
)
= ∓0.4Θb (66)

The distribution of the temperature field along the normalized vertical coordinates at various time points is
resented in Fig. 19(b). The curves in Fig. 19(b) at t/τ = 2, 3, 4 are almost identical which suggests that the
ow is self-similar with respect to time. However, the temperature distribution at t/τ = 1 deviates from others,
hich supports the argument for the slower development of turbulent mixing. The time history of mixing layer

hickness h is presented on log scale with the DNS results [67] in Fig. 20(a). Also, the time history of scaled
ixing layer thickness h/t2 is presented in Fig. 20(b), where a plateau is observed after 1.5 units of normalized

ime. This plateau stage suggests that the coefficient between the scaling law of h and t2 is a constant when turbulent
ixing is fully developed, and this is consistent with the reported data [67,69] as shown in Fig. 20(b). To further

dentify the self-similarity state predicted by our turbulence model, we plot the ratio between the rms value of
he horizontal and vertical velocity components (i.e.,

⟨
u′u′

⟩ 1
2
mix and

⟨
v′v′

⟩ 1
2
mix) in the mixing zone with respect to

the normalized time in Fig. 21. The evolution of the ratio between the rms values of both velocity components
illustrates a plateau stage after 2 dimensionless time units, which is consistent with the self-similar stage identified
in Fig. 20(b). The ratio is around

⟨
u′u′

⟩ 1
2
mix /

⟨
v′v′

⟩ 1
2
mix = 1.2 in the self-similar stage, which matches with the published

ata in [67]. Finally, we calculate the global Reynolds number (i.e., Re =
√
⟨u′u′⟩mix + ⟨v

′v′⟩mixh/ν) and Rayleigh
number (i.e., Ra = βgΘbh3/νκ) of the system at every time-step and extract the scaling between these two global
quantities in Fig. 22. It is worth noticing that the proposed residual-based turbulence model for stratified turbulence
successfully predicts the ultimate-state scaling (i.e., Re ∝ Ra

1
2 ) [2].

5.4. Stratified plane Couette flow

This test case evaluates the performance of the proposed turbulence model via plane Couette flow with stable
stratification. The flow field is bounded by two parallel infinite planes with no-slip and no-penetration boundary
conditions applied at top and bottom surfaces (in the wall-normal direction). The plane Couette flow is driven by
a prescribed velocity field along the top and bottom planes (u2|y=±1 = ±Uw), as shown in Fig. 23. The dimension
of the computational domain shown in Fig. 23 is same as that in the published DNS [70] and LES test cases with
anisotropic minimum-dissipation model (AMD) [71]. A background temperature gradient is applied in the positive
y-direction of the domain via the application of Dirichlet boundary condition for the temperature field at the top
26
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Fig. 21. The ratio between the rms value of the horizontal and vertical velocity components in the mixing zone with respect to normalized
ime in log scale.

Fig. 22. Scaling between the global Re and Ra.

Fig. 23. Schematic diagram of the plane Couette flow with stable stratification: hot wall at y = 2 (red) and cold wall at y = 0 (blue). (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

nd bottom planes (θ |y=±1 = ±Θw). Both temperature and velocity fields are periodic in x− (streamwise) and
z− (spanwise) directions. The unit gravitational acceleration vector (i.e., g = [0,−1, 0]) is acting in the opposite
irection to the background temperature gradient, which triggers stable stratification. A structured mesh of trilinear
exahedral (H8) elements is generated with uniform distribution of grid points in the streamwise and spanwise
irections, while in the wall-normal direction, the grid is stretched to resolve the thermal boundary layer at the top
nd bottom surfaces. The mapping from a uniform mesh in a 1D domain [0, 1] with Ny nodes to the designated
tretched mesh in the wall-normal direction with the range y ∈ [0, 2] is defined as

ys
j = 1−

tanh
(
C
(
1− 2y j

))
tanh(C)

(67)

here y j is the coordinate of the j th node in the uniform mesh of [0, 1], ys
j is the coordinate after stretching, and

is a tunable stretch coefficient. A value of C = 3 has been used in each of the test cases presented below.
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Table 6
Summary of the wall-resolved LES simulation of the stratified plane Couette flow with varying Pr and Ri : Nx ,
Ny and Nz are number of nodes in each direction; VMS: the present work, AMD: LES results with anisotropic
minimum-dissipation model [71]; Reτ and Nu, see Eq. (70).

Case Re Pr Ri Nx (Nz) Ny
Reτ Nu

VMS AMD DNS VMS AMD DNS

A1 4250 0.7 0 64 49 220.7 223 233 9.82 10.6 10.6
A2 4250 0.7 0.01 64 49 207.35 212 215 8.61 9.6 9.26
A3 4250 0.7 0.04 64 49 171.57 183 181 5.64 7.1 6.4
B1 4250 7 0 64 65 219.5 223 233 27.87 34.3 31.8
B2 4250 7 0.01 64 65 215.85 228 211 26.74 33.0 29.7
B3C 4250 7 0.04 64 65 203.52 209 206 24.21 28.1 25.9
B3F 4250 7 0.04 128 97 207.66 209 206 25.47 28.1 25.9
B4 4250 7 0.12 64 65 152.03 130 129 13.09 9.87 8.47

The governing parameters of plane Couette flows are the Reynolds number Re, Richardson number Ri and
Prandtl number Pr . Accordingly, the material parameters can be written in terms of Re, Ri and Pr as follows

ν =
Uw

Re
, β =

RiU 2
w

Θw

, α =
ν

Pr
=

Uw

RePr
(68)

o quantitatively validate the simulations, a group of control parameters with varying Pr and Ri was selected,
hich is a subset of the cases considered in the reference results. The values of the parameters for these test cases

re given in Table 6. The simulations were initialized with perturbed laminar Couette flow fields with constant
emperature gradient. The perturbation was constructed with uniformly distributed random noise with an intensity
f 0.1Uw. As suggested by Vreugdenhil and Taylor [71], the turbulent Couette flow reaches a statistically steady
tate for a given set of governing parameters after a time duration of 300h/Uw. Once the flow fields were fully

developed, 500 samples were collected for a time duration of 100h/Uw to carry out statistical analysis. The collected
flow fields were averaged in wall-normal plane as well as in the time dimension, as follows

⟨•⟩ (y) =
1

L x L z T

∫ Lx

0

∫ L y

0

∫ T

0
•(x, y, z, t) dx dz dt (69)

For quantitative comparisons, we write the friction Reynolds number Reτ and the Nusselt number Nu in terms
of the averaged velocity and temperature gradient at the wall

Reτ =

√
Re
Uw

d ⟨u⟩
dy

⏐⏐⏐
y=±1

, Nu =
1
Θw

d ⟨θ⟩
dy

⏐⏐⏐
y=±1

(70)

hese two parameters describe the overall flow physics in the thermal boundary layers, therefore we compare our
omputed Reτ and Nu with the reported values in the literature in Fig. 24. The simulated friction Reynolds number

Reτ and the Nusselt number Nu are very close to the DNS results and the proposed model performs equally well or
etter as compared to the AMD-LES results that were obtained with an equal or finer mesh via the pseudo-spectral
ethod [71]. We next examine profiles of the mean flow fields (i.e., space–time averaged streamwise velocity and

emperature fields). As shown in the overlapping curves presented in Fig. 25, the proposed VMS-based turbulence
odel is capable of accurately modeling the stably stratified turbulent Couette flow. With increasing Richardson

umber, namely, stronger stable stratification, the temperature and velocity profiles in Fig. 25 becomes less steep.
t is worth noticing that the mesh employed in the present work is comprised of 64 × 65 × 64 nodes with trilinear

hexahedral elements, while the LES reference data was obtained using 128 × 97 × 128 nodes employing spectral
interpolation. To further evaluate the effectiveness of the proposed model, we focus on the near wall region and
present the non-dimensional mean profile of velocity and temperature fields on a log scale (see Fig. 26). In both
viscous and conductive sub-layers, the mean profile of the flow fields is very close to the resolved DNS solution. We
also present quantitative comparisons of the second order statistics from our model by plotting the root-mean-square
of fluctuations of the flow fields and the fluxes, including streamwise/wall-normal/spanwise velocities (i.e.,

⟨
u′
⟩
,
⟨
v′
⟩
,

w′
⟩
), temperature (i.e.,

⟨
θ ′
⟩
,), thermal flux (i.e,

⟨
θ ′v′

⟩
) and the off-diagonal term of Reynolds stresses (i.e.,

⟨
u′v′

⟩
)
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Fig. 24. Comparison of the friction Reynolds number Reτ and Nusselt number Nu with varying Richardson number and Prandtl number:
DNS [66] (squares), LES [71] (circles) and LES (present work) (triangles); Pr = 0.7 (blue) and Pr = 7 (orange). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 25. Flow profiles of time–space averaged streamwise velocity and temperature with fixed Pr = 7 but varying Ri : case B1, B2 and B4.

Fig. 26. Flow profiles of time–space averaged streamwise velocity and temperature with fixed Pr = 7 but varying Ri in the near-wall region
with log scale: case B1, B2 and B4.

in Fig. 27. As compared with the coarse mesh, results obtained on the finer mesh are uniformly close to the DNS
data that shows variational convergence feature of the model.

Stable stratification that results from the counteracting effects of the background temperature gradient, and the
direction of the gravitational acceleration can dissipate the smaller turbulent structures in the flow, and is called

re-laminarization. One issue with the traditional viscosity-based models for LES is the viscous dissipation that still
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Fig. 27. Second-order statistics of flow fields in turbulent Couette flow: cases B3C and B3F.

ersists even when the flow has re-entered the laminar regime. This excessive viscosity can inevitably amplify the
e-laminarization effect, thereby affecting the spatial and temporal accuracy of the large eddies in the flow. On the
ther hand, the DNS data with the same governing parameters may still show observable turbulence. The numerical
ests carried out in this section show that the proposed VMS-based model does not have spurious viscous dissipation.
nlike the reference LES work [71], where the mesh is refined in the wall-normal direction to prevent non-physical

e-laminarization, none of the test cases presented in our study needed any local refinement for the given Pr and with
arying Ri. To qualitatively describe the re-laminarization due to stable stratification, the distribution of temperature
eld in the x–z plane at y+ = 5 for Pr = 7, but with varying the Ri , is presented in Fig. 28. With increasing Ri , the
tripe-type distribution of temperature field in the near wall region gets further elongated. These transitions become
ore explicit in Fig. 28(d), where strong stratification almost eliminates most of the temperature fluctuations. Finally,
e present the overall flow structure in Fig. 29 via volume rendering of the instantaneous temperature and velocity
elds near the top and the bottom planes, along with the plotting of the streamlines to illustrate the flow fields in
he core region.
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Fig. 28. Temperature field at the wall-normal plane at y+ = 5 with different Ri .

6. Conclusions

We have presented a residual-based turbulence model for density stratified incompressible flows that dynamically
adapts to the local residuals, thereby providing a two-way coupled interaction between resolved and unresolved
scales. The main contribution of the paper is a systematic and consistent derivation of the fine-scale closure model
that is free of any tunable parameters. A hierarchical application of VMS method leads to hierarchically coupled
fine-scale variational equations. A direct application of bubble functions approach to resolve the fine-scale variational
equations is the key to the derivation of the fine-scale models that are nonlinear and time-dependent. Embedding the
derived model from the level-II variational equation in the level-I variational equation results in a stabilized mixed-
field subproblem. The enhanced stability of the level-I equations helps in locally resolving the unconstrained level-I
system of equations that is driven by the residual of Euler–Lagrange equations emanating from the conservation of
mass, momentum, and energy. This results in variational consistency of the residual-based turbulence model that
ensures that the turbulence model vanishes uniformly when the flow ceases to be turbulent and the computed coarse
scales comprise all the flow physics. The transient linearized fine-scale model leads to consistently linearized tangent
operator that is essential in achieving quadratic convergence in the nonlinear solution scheme. Numerical test cases
show that the derived large eddy turbulence model accommodates forward- and back-scatter of energy and entropy
and effectively embeds sub-grid scale physics in the computable scales of the problem to yield economic solutions
for turbulent flows on cruder spatial discretizations.
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Fig. 29. Instantaneous flow structures in turbulent Couette flows. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Appendix A. Algebraic structure of the stability tensors

The solution process illustrated in Algorithm 1 can be embedded in a standard finite-element program by

mplementing the corresponding consistent tangent and the residual vector from the proposed weak form presented

n Eq. (56). This appendix shows the details of the construction of the element-level contributions to the consistent

angent and residual vector of the discrete system for a typical iteration i + 1 within a Newton–Raphson loop

advancing from time-step n to n+1. As presented in Algorithm 1, we assume that the solution fields and their time

derivatives at iteration i (i.e., u(n+1)
(i) , p(n+1)

(i) , θ
(n+1)
(i) , u(n+1)

,t(i) and θ
(n+1)
,t(i) ) are available. For brevity of presentation, the
subscripts and superscripts denoting the time-step and iteration number are neglected hereon.
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A.1. Fine-scale stability tensor

The tensor τ ′ that variationally scales the residuals from the preceding levels and projects them back onto the
evel-II fine-scale problems is written as follows

τ ′ = be
IIτ
′e (A.1)

where τ ′e is comprised of the coefficients of the solution of fine-scale level-II linear system in Eq. (39) at the
corresponding virtual node. The explicit form of the linear system that is evaluated element-wise is as follows.(

αm

α f γ∆t
M ′II + K ′ADV

II + K ′DIFF
II + K ′STRA

II

)
τ ′e = R′II (A.2)

where M ′II =
(
be

II, be
II

)
I4×4 denotes the mass matrix; R′II =

(
be

II, 1
)

I4×4 denotes the RHS matrix; K ′ADV
II , K ′DIFF

II
and K ′STRA

II denote the stiffness matrix contribution from the advection, diffusion and stratification components,
respectively. The corresponding expressions are as follows

K ′ADV
II =

(
be

adv, u · ∇be
II

)
I4×4 +

[(
be

II,∇
T ube

II

)
(3×3) 0(3×1)(

be
II,∇

T θbe
II

)
(1×3) 0

]

K ′DIFF
II = ν

[(
∇be

II,∇
T be

II

)
(3×3) 0(3×1)

0(1×3) 0

]
+

[
ν(∇be

II,∇be
II)I (3×3) 0(3×1)

0(1×3) α(∇be
II,∇be

II)

]
K ′STRA

II = β

[
0(3×3)

(
be

II, be
II

)
ĝ(3×1)

0(1×3) 0

] (A.3)

Remark 12. We are solving Eq. (A.2) for tensorial form of τ ′e without the use of the Voigt notation.

A.2. Coarse-scale stability tensor

The coarse-scale stability tensor τ that multiplies the residual of Euler–Lagrange equations at coarse scale level
is written as follows

τ = be
I τ

e (A.4)

where τ e is the solution of the element-wise stabilized fine-scale level-I linearized system in Eq. (52) at the
corresponding virtual node. The explicit form of the linearized system is{

αm

α f γ∆t

(
M ′Gal

I −

∫
Ωe

X ′τ ′R′mdΩ
)
+

(
K ′Gal

I −

∫
Ωe

X ′τ ′R′sdΩ
)}

τ e

=

(
R′Gal

I −

∫
Ωe

X ′τ ′1′dΩ
) (A.5)

here M ′Gal
I , K ′Gal

I and R′Gal
I = (be

I , 1)I (5×5) are the mass and stiffness matrices and the residual of the Galerkin
art in the stabilized weak form, respectively; X ′ is the weighting matrix for the stabilization terms; and R′m and R′s
re the matrix form of transient and steady-state parts of the Euler–Lagrange equations of the linearized fine-scale
evel-I in Eq. (36), respectively. The Galerkin part in Eq. (52) contributes to the same slots as in Eq. (39), however
t is expanded via bubble functions that are linearly independent of the functions employed at level-II. The resulting
xplicit forms are as follows.

M ′Gal
I =

(
be

I , be
I

)⎡⎣I (3×3)
0

⎤⎦ (A.6)

1
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K ′Gal
I =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(be
I , u · ∇be

I )I (3×3)

+
(
be

I , be
I∇

T u
)

(3×3)

+ν(∇be
I ,∇

T be
I )(3×3)

+ν(∇be
I ,∇be

I )I (3×3)

(−be
I ,∇be

I )(3×1) (be
I , β ĝbe

I )(3×1)

(be
I ,∇

T be
I )(1×3) 0 0(

be
I , be

I∇
T θ
)

(1×3) 0 (be
I , u · ∇be

I )+ α(∇be
I ,∇be

I )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.7)

The matrix form of the weighting matrix X ′ is derived by taking variational derivative of Eq. (49a) with respect to
the fine-scale level-I weighting functions W ′eI , namely,

X ′(5×4) =
∂[χ ′M , χ ′E ]

∂W ′eI
=

⎡⎢⎢⎢⎣
−u · ∇be

I I (3×3) + be
I∇

T u(3×3)

−ν
(
(∇ ⊗ ∇)(3×3)be

I +∆be
I I (3×3)

) be
I β ĝ(3×1)

−(∇T )(1×3)be
I 0

be
I (∇T )(1×3)θ −u · ∇be

I − α∆be
I

⎤⎥⎥⎥⎦ (A.8)

Likewise, R′m and R′s are derived by taking variational derivatives of Eq. (36) with respect to the transient and
steady-state weighting functions as follows

R′m(4×5) =
∂
[
r ′M , r ′E

]
∂
[
u′eI,t , p′e,t , θ ′eI,t

]T =

[
be

I I (3×3) 0(3×1) 0(3×1)

0(1×3) 0 be
I

]
(A.9)

R′s(4×5) =
∂
[
r ′M − u′I,t , r ′E − θ ′I,t

]
∂
[
u′I, p′, θ ′I

]T =

⎡⎢⎢⎢⎢⎢⎢⎣
u · ∇be

I I (3×3)

+be
I (∇T u)(3×3)

−ν(∇ ⊗ ∇)(3×3)be
I

+∆be
I I (3×3)

(∇)(3×1)be
I be

I β ĝ(3×1)

be
I (∇T )(1×3)θ 0 u · ∇be

I − α∆be
I

⎤⎥⎥⎥⎥⎥⎥⎦ (A.10)

Finally, applying the mean projection theorem to the coarse-scale residual results in 1′ in Eq. (A.5), which takes
the following form

1′(4×5) =

[
I (3×3) 0(3×1) 0(3×1)

0(1×3) 0 1

]
(A.11)

Remark 13. Mathematical stability of the method necessitates that the spaces for the fine-scale enrichment functions
employed at level-I and level-II, as well as the finite element function spaces employed at the global level should
be mutually linearly independent.

Appendix B. Estimation of the computational cost

The computational cost within a single iteration of a Newton–Raphson loop, as shown in Algorithm 1, can be
divided into two parts: (i) the evaluation and assembly process, where the element-wise consistent tangents and
residuals are integrated and then assembled into the global linear system, and (ii) the solution process where the
global linear system is solved for the increment in the solution fields. As shown in the derived algebraic form
of the fine-scale solutions in Eq. (53) and the final stabilized form in Eq. (56), all the fine-scale related terms
are implicitly expressed in terms of the residuals of the coarse-scale Euler–Lagrange equations, premultiplied by
the stability tensor. The residuals of the Euler–Lagrange equations are expanded in terms of the shape functions
employed at the coarse scale level. It is only the stability tensors (i.e., τ and τ ′) that are functions of the fine-scale
basis functions employed for the expansion of the fine-scale fields. The importance of employing bubble functions
that are non-zero within the element and become zero at the element edges becomes apparent now. Since bubble
functions render the calculation of τ and τ ′ a local problem, the process is not only embarrassingly parallel, it

also does not involve any passing of data between the elements. Once the stability tensors are evaluated at the
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Table B.1
Estimation of the relative cost in the numerical integration of the stability tensors (p:
order of the shape function, pint: highest order of monomials in the integrand, nGP:
number of quadrature points in 1D, nel: number of shape functions per element, n f :
cost factor, and cost is scaled by (nGP

C )−3(nel
C )−2).

(a) 8-node hexahedron

p pint nGP nel n f Scaled cost

Coarse 1 5 3 8 1 1
Fine-I 2 8 5 1 1 7.23%
Fine-II 4 8 5 1 0.5 3.62%

(b) 27-node hexahedron

p pint nGP nel n f Scaled cost

Coarse 2 12 7 27 1 1
Fine-I 4 16 9 1 1 0.292%
Fine-II 6 13 7 1 0.5 0.0686%

virtual nodes, the cost associated with numerical integration of the fine-scale terms in Eq. (56) is similar to that of
the integration of the standard Galerkin terms because these Euler–Lagrange residuals are represented via the same
Lagrange shape functions that are employed in the evaluation of the Galerkin terms. Furthermore, the bandwidth of
the global consistent tangent and the number of the nodal unknowns at the global level remain the same in either
two-level VMS method or the three-level VMS method.

The computation of the spatiotemporally adaptive stability tensor τ ′ and τ , as shown in lines 6 and 7 in
lgorithm 1 involves two quadrature loops and two local linear system solution processes. Other than these two

teps that locally and dynamically evaluate the stability tensors, the cost of computation of the rest of the algorithm
s identical to that of any standard stabilized method. To quantitatively evaluate the cost of floating point operations
n the numerical integration, we take a pC -order hexahedral element as an example. The number of shape functions
nodes) nel in a hexahedral element is nel

= (pC+1)nsd , where nsd = 3 is the number of dimensions of the problem.
he fine scale level-I bubble function is taken as the order pFI , which is equal to the smallest even number that

s greater than pC , and the fine scale level-II bubble function takes the order of pFII = pFI + 2. The highest order
terms and their order of polynomials that are to be integrated pint at each scale are estimated as follows:

1. Coarse scale: (u′ · ∇w̄, τ ū · ∇ ū) −→ 3pC + 2pFI − 2
2. Fine scale level-I: (ū · ∇w′I, τ

′ū · ∇u′I) −→ 2pC + 3pFI

3. Fine scale level-II: (w′II, ū · ∇u′II) −→ pC + 2pFI + 3

We denote the Gaussian quadrature point along one dimension of a hexahedral element employed in the evaluation
of element level quantities at the coarse scale level, level-I fine scales, and level-II fine scales as nGP

C , nGP
FI

and nGP
FII

,
respectively, which are determined by the highest order monomial in the integrand at the corresponding level.

Due to the hierarchical application of VMS scale-split, the number and the forms of terms are almost identical
between the coarse scales in Eq. (56) and level-I fine scales in Eq. (50). The fine scale level-II weak form in
Eq. (35) contains only half of the terms (i.e., only the Galerkin terms). It is reasonable to set the computational
cost to evaluate the standard stabilized weak form (of coarse-scale) for a single shape function at a given (by
otherwise arbitrary) Gaussian point as a base unit, and denoted as n f . We further assume that such an evaluation
of the stabilized weak form of fine scale level-I is also 1 unit, and that of the fine scale level-II weak form is 0.5
unit. It is worth noticing that this assumption overestimates the computational cost at the fine-scale levels because
the nonlinear terms have been linearized at the fine levels. The number of terms nterm that need to be evaluated is
nterm =

(
nelnsd

)2
+
(
nelnsd

)
, which consists of the components in the consistent tangent and the residual. We can

estimate the additional cost associated with the integration at either of the fine-scale levels as follows.

nterm
(
nGP)nsd n f ≈

(
nel)2 (

nGP)nsd n f (B.1)

The estimated costs to construct linear systems for the two fine-scale levels that correspond to the cases of

8-node or 27-node hexahedral elements employed for coarse-scale discretization are shown in Tables B.1a and B.1b,
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respectively. As compared to standard stabilized method, multilevel VMS method only introduces an additional 10
percent computational cost in the integration process for the case of trilinear hexahedra. For the 27-node hexahedra,
the additional cost is further reduced to less than 0.4 percent. The size of the element-wise linear systems of two
fine-scale levels in Eqs. (39) and (52) are nsd+1 and nsd+2, respectively. The cost of solving a n×n system with a
direct solver is approximately O(n3). Therefore, the computational cost for solving this small local linear system is
negligibly small as compared to the cost associated with the numerical integration of the element consistent tangent
and residual vector.

Consequently, the multi-level VMS method only introduces a slight increase in the computational cost in the
element-wise integration process, as compared to the standard stabilized methods. In addition, the process is
perfectly parallelizable, and does not involve inter-element data communication. Since the element integration
process only cost less than 25 percent of the total compute time in large simulation [72], with a net 2.5 percent
increase (10 percent of 25 percent for trilinear hexahedron) in the formation of the algebraic system, we develop a
residual-based LES method which is free of any ad hoc parameter dependent turbulence models.
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