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Machine learning assisted fast prediction of
inertial lift in microchannels†
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Inertial effect has been extensively used in manipulating both engineered particles and biocolloids in

microfluidic platforms. The design of inertial microfluidic devices largely relies on precise prediction of

particle migration that is determined by the inertial lift acting on the particle. In spite of being the only

means to accurately obtain the lift forces, direct numerical simulation (DNS) often consumes high

computational cost and even becomes impractical when applied to microchannels with complex

geometries. Herein, we proposed a fast numerical algorithm in conjunction with machine learning

techniques for the analysis and design of inertial microfluidic devices. A database of inertial lift forces was

first generated by conducting DNS over a wide range of operating parameters in straight microchannels

with three types of cross-sectional shapes, including rectangular, triangular and semicircular shapes. A

machine learning assisted model was then developed to gain the inertial lift distribution, by simply

specifying the cross-sectional shape, Reynolds number and particle blockage ratio. The resultant inertial lift

was integrated into the Lagrangian tracking method to quickly predict the particle trajectories in two types

of microchannels in practical devices and yield good agreement with experimental observations. Our

database and the associated codes allow researchers to expedite the development of the inertial

microfluidic devices for particle manipulation.

I. Introduction

Inertial migration was first observed in a circular tube in
which the particles converge into a ring having a radius
approximately 0.6 times the tube radius.1 However, inertial
effects have long been ignored in microfluidic applications
because the fluids within microchannels often flow at very
low Reynolds numbers.2 In 2007, Di Carlo et al. published a
paper showing how to use inertia to focus and separate
particles in microchannels.3 This paper sparked the
enthusiasm of the scientific community and soon many new
works demonstrated that inertial effects are capable of
achieving the high-throughput manipulation of diverse
particles in microfluidic platforms.4–11 The migration of

particles profoundly depends on many variables including
particle size, channel geometry, and flow conditions.12–18 To
develop inertial microfluidic devices with optimal
performance for particle manipulation, it is necessary to
predict the equilibrium positions of targeted particles under
different operating conditions, mainly by estimating the
inertial lift forces on particles in confined flows.

Both theoretical analyses and numerical simulations have
been used to calculate inertial lift forces on small particles.
Most theoretical studies were conducted by solving the
Navier–Stokes equations using the perturbation methods. Ho
and Leal proposed an explicit inertial lift formula that can
explain the inertial focusing patterns in planar or tube
Poiseuille flows.12 Vasseur and Cox also deduced an inertial
lift formula from the solution of the next-order equations
that accounts for a non-linear coupling between the
disturbance and the stokeslet disturbance.19 However, the
requirement of small Reynolds number (Re = ρUmaxH/η,
where ρ is the fluid density, Umax the maximum channel
velocity, H the channel height, η the dynamic viscosity) in
deducing lift formula makes their method inapplicable if the
Reynolds number further increases. Using the matched
asymptotic perturbation method, Schonberg & Hinch20 and
Asmolov21 extended the applicable Reynolds number up to
150 and 3000, respectively. Still, it is difficult to directly use
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these theoretical results to predict the inertial lift of finite-
sized particles in three-dimensional rectangular channels,
which is the common situation in inertial microfluidic
applications.14,22–24

The challenge inherent to solving for the inertial lift in more
complicated geometries led to the use of direct numerical
simulation (DNS) because DNS can provide crucial information
that is otherwise unavailable from experiments and
theories.24–26 Using the lattice Boltzmann method, Chun et al.
found eight equilibrium positions in square channels at Re =
100.27 Di Carlo et al. developed a DNS method to obtain the
inertial lift acting on a particle by fixing the particle at specific
positions of the channel cross-section.28 Using the arbitrary
Lagrangian–Eulerian method (ALE), Yang et al. investigated the
inertial lift on a sphere in a tube and proposed an inertial lift
formula similar to the classical one of aerodynamics.29

Asmolov et al. numerically studied the inertial focusing of
finite-sized particles in straight microchannels and generalized
expressions of the inertial lift to finite-sized particles in a
channel flow at Re ≤ 20.9 In spite of being the only means to
accurately obtain the lift forces, DNS often consumes high
computational cost and even becomes impractical when
applied to complex geometries encountered in real-world
microfluidic devices, for example, long serpentine or spiral
channels.24,30–36 By correcting Ho and Leal's formula,12 we
recently proposed a generalized explicit inertial lift formula
based on the DNS data obtained in straight microchannels.37

Incorporated properly into the Lagrangian tracking scheme,
this generalized formula can greatly reduce the computational
cost to predict the particle trajectories in complex
microchannels for inertial microfluidic applications.37,38

However, the formula is too complex to be used with ease by
the researchers who do not have much knowledge in
computational fluid dynamics. Moreover, the implementation
of this formula for different problems requires a look-up table
generated from the computationally-heavy DNS.39

In this work, we developed a fast numerical algorithm in
conjunction with machine learning techniques for the
prediction of inertial lifts in microchannels. A database of
inertial lift forces was constructed by conducting DNS over a
wide range of operating parameters in straight
microchannels with three types of cross-sectional shapes,
including rectangular, triangular and semicircular shapes.
The machine learning assisted model was then used to
obtain the inertial lift distribution in the channel cross-
section, by simply specifying the channel shape, Reynolds
number, particle blockage ratio. The resultant inertial lift was
integrated into the Lagrangian tracking scheme to quickly
predict the particle trajectories in two types of
microchannels, yielding good agreements with the
corresponding experimental observations. Our database and
associated codes allow researchers to expedite the
development of the inertial microfluidic devices for particle
manipulation.

Fig. 1 An overview of the prediction process in three steps illustrated in three columns. The first step: distributions of inertial lift forces on
spherical particles in cross-sections of rectangular microchannels were calculated in a wide parameter space as shown in the table using direct
numerical simulations; the second step: based on the simulation results, a force database was built (the enlarged pictures of the database and the
data file are given in the ESI†) and used as machine learning samples to establish a prediction model; the third step: using the prediction model,
the distribution of inertial lift forces was obtained and mapped to the cross-section to predict the particle trajectories.
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II. Methods

Fig. 1 shows an overview of machine learning assisted fast
prediction of inertial lift forces experienced by spherical
particles in microchannels. Taking the rectangular channel
as an example, the process was carried out in the following
three steps: (I) conduct direct numerical simulations –

distributions of inertial lift forces on cross-sections of
microchannels were calculated in a wide parameter space;
(II) build lift force database as machine learning samples –

machine learning was performed upon the database of the
inertial lift to model variations of the distributions with
controlling parameters; (III) map and predict – the
distribution of inertial lift for a given set of parameters was
obtained from the model and mapped to the channel cross-
section for predicting the particle trajectories.

A. Calculation of inertial lift

Taking a straight microchannel with rectangular cross-
section for example, spherical particles located at different
lateral positions (2y/H, 2z/H) will experience different inertial
lift forces. The inertial lift, FL, on neutrally buoyant spherical
particles in a straight microchannel is generally determined
by a total of seven geometric and physical parameters.14 The
formula of FL can be written as

FL = F(H, a, Umax, η, ρ, y, z), (1)

where (y, z) is the coordinate in the y–z plane as shown in the
channel schematic in Fig. 1. Among these parameters, H,
Umax and ρ were used to nondimensionalize the system.
According to the Buckingham π theorem,40

FL ¼ F 1;
a
H
; 1;

η

ρUmaxH
; 1;

2y
H

;
2z
H

� �
¼ F κ; Re;

2y
H

;
2z
H

� �
; (2)

where κ = a/H is the particle blockage ratio. The
dimensionless parameters, κ and Re, represent particle size
and flow condition, respectively. The lateral position of the
center of the spherical particle is (2y/H, 2z/H).

Three-dimensional direct numerical simulations were
conducted to calculate FL by using the Overture object-
oriented framework.41 Herein, the Navier–Stokes (N–S)
equations for incompressible flow and Newton's second law
for particle motion were numerically coupled. The N–S
equations are

∇·u = 0, (3)

∂u
∂t þ u·∇ð Þu ¼ − 1

ρ
∇pþ η

ρ
∇2u; (4)

where u is the fluid velocity tensor, t is the time, and p is the
pressure. The equations for particle motions are

mp
dUp

dt
¼
ð
P − p1þ τð Þ·ndσ; (5)

d I·ωp
� �
dt

¼
ð
P x − xcð Þ × − p1þ τð Þ·n½ �dσ; (6)

where ωp = [ω1 ω2 ω3]
T is the angular velocity vector, 1 is the

unit tensor, τ is the shear rate tensor, n is the unit normal
vector of the particle surface, I = diag(8πρa5/15) is the
moment of inertia tensor of the particle, and xc is the
position of the particle centroid.

The no-slip boundary condition was imposed on the
channel walls and particle surface. A fully developed
Poiseuille flow velocity profile for the channel cross-section
was imposed at the inlet. The constraint of p + ∂p/∂n = 0 was
imposed at the outlet. The entire grid was constructed based
on the overlapping grid method.42 Information exchanges of
the subzones were achieved via interpolation between every
two overlapping grid blocks. These overlapping grid blocks
were continuously updated during the iteration process to
ensure quality. The solving process was done by PETSc
software package,42 a dynamic link library of the Overture
framework.

To calculate the inertial lift at a predefined lateral
position, the lateral velocity (Uy and Uz) was set to be zero.
Particles were limited to translate only in the axial direction
of the channel but could rotate freely. Once the translational
and rotational motions both reached steady states, the
inertial lift at different lateral positions was obtained. FL is
composed of two components in y and z direction, FLy and
FLz, respectively. The inertial lift coefficient CL was used to
normalize the inertial lift acting on spherical particles12 as

CL ¼ FL

ρUmax
2a4=H2ð Þ : (7)

CLy and CLz are the two components of CL in y- and
z-direction, respectively. More details about the simulation
process and the calculation of the inertial lift can be found
in our previous works.13,14,36 Similar process was conducted
to calculate the inertial lift for the straight microchannels
with triangular and semicircular cross-section shapes.

B. Machine learning algorithms

Artificial neural network (ANN) modeling is a powerful
supervised machine learning algorithm that can train
complex fitting and classification problems. Most of the
normal fitting schemes require prior knowledge of the
functional relationship between the independent variables
and the dependent variables in order to perform purposeful
fitting and extrapolation. By contrast, machine learning does
not require prior knowledge of functional relationships. With
enough data, the neural network can learn and capture the
subtle functional relationships, even if the underlying
relationships are unknown or difficult to describe.
Considering the complicated fluid mechanics involved in the
particle migration and thus many parameters affecting the
inertial lift forces, it would be advantageous to apply the
neural network method to build the prediction model. The
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neural network consists of many connected basic elements
(neurons), which can mimic the behavioral characteristics of
animal neural networks for the distributed and parallel
information processing.43 The structure and function of each
neuron are relatively simple, but the system behavior
produced by a large number of neuron combinations can be
very complicated. Since the neural network can change the
value of synaptic weights to meet the requirement of the
surrounding environment during the learning process, it has
self-adaptation and self-organization capabilities.44,45

Recently, the neural network has been widely used in
microfluidics.46,47

Here, we adopted the most popular error backpropagation
neural network (BP neural network).48 The structure of the
BP neural network includes three types of network layers –

the input layer, hidden layer, and output layer.49 As shown in
Fig. 2, two hidden layers were used in the present study. All
the network layers are made up of neurons. Only neurons in
two adjacent layers are connected, while neurons in the same
layer are not connected. Each connection corresponds to a
weight (wn(i, j)) and a bias (bn( j )), where i corresponds to the
neuron i in the layer n − 1 and j corresponds to the neuron j
in the layer n. After being weighted and summed, the output
of all the neurons in the layer n − 1 will be added a bias to
obtain the input to the neuron j in the layer n, which is

written as
Psn
i¼1

wn i; jð Þan−1 ið Þ þ bn jð Þ. The neuron j passes the

input through a transfer function f (x) to generate an output,

an jð Þ ¼ f
Xsn
i¼1

wn i; jð Þan−1 ið Þ þ bn jð Þ
 !

: (8)

where an−1(i) is the output of the neuron i in the layer n − 1,
and an( j) is the output of the neuron j in the layer n.

The BP neural network continuously updates the weights
and biases through the forward propagation of the signal
and the backpropagation of error to reduce the error to the
neural network goal error.50 The Levenberg–Marquardt
optimization algorithm was used here to describe the update
formula of the weights or biases (x)51

xk+1 = xk − [ JTJ + μ1]−1JTe, (9)

where J is the Jacobian matrix that contains first derivatives
of the errors eq (eq = tq − oq, where tq is the target value
and oq is the output of the network for the qth input) for
the weights or biases, e is the vector of the errors, k is the
training step, and μ is the Levenberg's damping factor. The
μ is adjusted to reduce the performance index, which is
defined as the mean square error, to the training goal
error.

To realize the prediction of inertial lift, the model must
first have good learning ability, in other words, fitting ability.
We found that the effect of polynomial fitting is very poor
under large channel aspect ratios, i.e., an overfitting of the
inertial lift was found as shown in Fig. 3. We here used the
hyperbolic tangent function as the transfer function for
neurons in the two hidden layers, i.e.,

f xð Þ ¼ tanh xð Þ ¼ ex − e −x

ex þ e −x : (10)

The transfer function of the neuron in the output layer was
defined as a linear function by default, i.e.,

f (x) = x. (11)

The comparison of the performance between polynomial
fitting and neural network method for inertial lift was
conducted and shown in Fig. 3. The comparison

Fig. 2 The schematic diagram of the neural network model.
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demonstrates that the BP neural network method can better
capture the functional relationship.

C. Prediction of particle trajectories

After training with the database, the machine learning model
was used to predict the distribution of the inertial lift in
channel cross-sections for any given conditions within the
considered parameter space. The predicted inertial lift was
then mapped to the corresponding channel cross-section to
track the particle trajectories using a procedure similar to

our previous studies.52,53 The calculations were performed in
COMSOL Multiphysics® modeling software. For a given
channel geometry, a no-slip boundary condition was imposed
on each channel wall, a constant flow rate at the inlet, and a
suppressed backflow boundary condition at the outlet. A
steady-state of the flow field without particles was obtained
first by solving the incompressible N–S equations. The
randomly distributed particles were then released at the inlet,
accompanied by imposing a bounce boundary condition on
the channel walls and a freezing boundary condition at the
outlet. Based on the steady-state solution of the flow field,

Fig. 3 Comparison of the performance between polynomial fitting and BP neural network method for inertial lift along long axis in rectangular
microchannel with Re = 200 and κ = 0.2 at AR = 2 (a) and AR = 4 (b).

Fig. 4 Distributions of the inertial lift vectors acting on a spherical particle with κ = 0.2 under Re = 100 in channels with different cross-sectional
shapes, including a square cross-section (a), a rectangular cross-section (b), a triangular cross-section (c), and a semicircular cross-section (d). Due
to symmetry, only a quarter section is shown here for (a) and (b), while a half section is shown for (c) and (d). Each vector represents the inertial lift
experienced by a spherical particle with its center at the origin of the vector. The solid-line circles denote the stable equilibrium positions and the
dashed-line circles denote the unstable equilibrium positions.
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the particle trajectories were calculated by solving Newton's
second law of motion:54

dup
dt

¼ 3μCD Rer
4ρPa2

u −up
� �þ 1

2
ρ

ρP

d u −up
� �
dt

þ 6 FL

πa3ρP
; (12)

where up is the particle velocity, CD is the Stokes drag
coefficient, Rer is the relative Reynolds number, and ρP is the
particle density. The first term on the right-hand side of the
eqn (12) is the drag force which can drive particles to move
along with the fluid flow. The second term is the virtual mass
force. The third term is the inertial lift predicted from the
method in sec. II.B. Here the inertial lift was explicitly
applied to the channel cross-section by a mapping method
(see Fig. S2†).

III. Results and discussion
A. Data preparation

Researchers have also explored various cross-sectional
microchannels for inertial manipulation of particles.55 We
simulated the inertial lifts for microchannels with three
different cross-sectional shapes, including rectangular,
triangular, and semicircular (Fig. 4). For each channel, a wide
range of parameters were considered, i.e., Re varies from 50
to 200 with an interval of 50, and κ varies from 0.10 to 0.30
with an interval of 0.05. The square channel can be
considered as a special case of the rectangular channel with
channel aspect ratio AR = 1 (AR = W/H, where W is the
channel width). In the parameter space, the square channel
always has four stable equilibrium positions near the wall
centers.56 Three types of the rectangular channel with larger
AR (2, 3, and 4) were simulated. These rectangular channels
have two stable equilibrium positions near the long wall
centers and two unstable equilibrium positions near the
short wall centers when Re is smaller than a critical value.14

With the increase of Re, the equilibrium positions near the

short wall centers will become stable (Fig. 5). The triangular
channel is isosceles with equal base and height. It generates
three stable equilibrium positions near the wall centers. For
the semicircular channel, there are two stable equilibrium
positions at the symmetry axis of the channel. The choice of
2y/H and 2z/H for the three types of microchannels were
given in the ESI.† Intervals of the simulated parameters allow
systematical and representative investigation for the
rectangular microchannels (totally 8068 cases for 80
operating conditions), triangular microchannels (totally 2420
cases for 20 operating conditions,) and semicircular
microchannels (totally 3672 cases for 20 operating
conditions).

Considering that the rectangular channel have similar
topological structures, we tried to use AR as one of the
independent variables for the inertial lift to predict the
inertial lift under rectangular cross-section channels with
different AR. Fig. 5 shows the typical distributions of the
inertial lift on a quarter of the cross-section of the
rectangular channels with AR = 2 and 4. Similarities under
different AR can be observed, indicating that using AR as an
independent variable is feasible. The square channel can be
considered as a special case of the rectangular channel with
AR = 1. Fig. 6a and b show the distribution of inertial lift by
three-dimensional surface for channels with AR = 1, 2, and 4.
To obtain better machine learning performance, 2z/H was
normalized (or scaled) by AR to (2z/H)/AR ensuring that the
inertial lift data are within a consistent geometrical space
under different AR. The influences of AR on CLy and CLz are
shown in Fig. 6c and d, respectively. Variations of the inertial
lift along the main axis for AR = 2, 3, and 4 show good
similarity. However, variations for AR = 1 show different
patterns from the other AR, which was also confirmed by the
simulations from other groups.23,28 Therefore, an additional
AR of 1.5 was added (see Fig. S3†) to make the transition
more smooth for AR from 1 to 2.

Fig. 5 Distributions of the inertial lift vectors acting on a spherical particle with κ = 0.2 in quarters of cross-sections of rectangular channels with
AR = 2 (a and b) and AR = 4 (c and d) under Re = 100 (a and c) and Re = 200 (b and d). Trajectories of the particle center are indicated with the
blue lines. Black dots are placed on the trajectories with the same dimensionless time unit.
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Fig. 6 Distributions of the inertial lift coefficient components in quarter of channel cross-sections with Re = 200 and κ = 0.2. The distributions of
CLy (a) and CLz (b) are shown by three-dimensional surface for microchannels with AR = 1 (the first column), AR = 2 (the second column) and AR =
4 (the third column). The CLy along the short axis (c) and CLz along the long axis (d) are shown at different AR.

Fig. 7 The neural network prediction model, parameter setting and calculation procedure.
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B. ANN model setup

The BP neural network was invoked as the ANN model to
train the inertial lift data. Due to the essential difference in
topology, it is difficult to extract the AR-like parameter of the
triangular channel and the semicircular channel to match
the rectangular channel. Therefore, the inertial lift in the
triangular channel and the semicircular channel will be
independently predicted. The inertial lift in the rectangular
channel has 5 independent variables, i.e., AR, Re, κ, 2y/H, (2z/
H)/AR. while the inertial lift in the triangular channel and
semicircular channel has 4 independent variables, i.e., Re, κ,
2y/H and 2z/H. Here, we took the rectangular channel as an
example to introduce the model. As shown in Fig. 7, the

input layer has 5 variables, i.e., AR, Re, κ, 2y/H and (2z/H)/AR,
and the output layer has 2 variables, i.e., CLy and CLz. The
first and second hidden layers contain 20 and 8 neurons,
respectively. The maximum number of iterations is 1000, the
training goal error is 0.00001, and the initial Levenberg's
damping factor is 0.001. The right column shows the steps to
predict the inertial lift distribution for given channel shape,
Reynolds number, and particle blockage ratio: (I) once the
given situation was input, the corresponding discrete points
[2y/H, 2z/H] were automatically generated; (II) the inertial lift
database was imported and normalized by the 0–1
normalization method; (III) the neural network training and
prediction were conducted with the normalized data; (IV)
after anti-normalization, the predicted inertial lift on the

Fig. 8 (a) The performance of the ANN model was verified by measuring the mean square errors of CL in the rectangular channel during training
steps. The predicted data was compared with the simulated data in terms of linear regressions (b) and error distributions (c) for the rectangular
channel (first column), triangular channel (second column), and semicircle channel (third column). The data for the linear regressions was
normalized by the 0–1 normalization method.
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discrete points was output. The process can be executed
within several seconds by the MATLAB code as provided in
ESI.†

C. Verification and validation

To verify the ANN model, the simulated lift data were
randomly divided into three parts: 70% for training (training
data), 15% for verification (verification data), and 15% for
testing (testing data). The mean squared errors of CL for the
training data, verification data and testing data were
measured at each training step. The training data were
utilized to adjust the network by updating weights or biases
according to eqn (9) and reduce the mean squared error to
the training goal error. The verification data were utilized to
measure the generalization performance and provided
feedbacks to the network. The generalization performance
indicates the predictive ability on data outside the training

data and is measured by the mean squared errors of the
verification data (green solid line). The adjustment will be
halted when the generalization performance stops improving.
As shown in Fig. 8a, to ensure a good generalization
performance, the adjustment stops when the mean squared
error of the verification data is reduced to the training best
error (green dotted line) instead of the training goal error
(black dotted line). The testing data were used to view the
prediction ability of the adjusted network, without
contributions to the adjustment. The inertial lift forces were
further predicted by the ANN model for all the combinations
of the input parameters considered here. The linear
regressions were conducted for the predicted results and the
simulated results as shown in Fig. 8b, where the correlation
coefficients (R) for the inertial lift in the rectangular channel,
triangular channel, and semicircular channel is 0.9990,
0.9995, and 0.9961, respectively. All the correlation
coefficients are very close to 1, confirming good consistency.

Fig. 9 Comparisons between the inertial lift forces from the direct numerical simulations (symbols) and the ANN predictions (lines). Interpolated
predictions (a and b) and extrapolated predictions (c and d) for the inertial lift in the rectangular channel were performed to compare with
simulation results. The comparison of the inertial lift in the triangular channel (e) and semicircular channel (f) were also conducted.

Lab on a ChipPaper

Pu
bl

is
he

d 
on

 1
1 

M
ay

 2
02

1.
 D

ow
nl

oa
de

d 
by

 G
ot

eb
or

gs
 U

ni
ve

rs
ite

t o
n 

9/
1/

20
21

 1
:3

5:
42

 A
M

. 
View Article Online

https://doi.org/10.1039/d1lc00225b


Lab Chip, 2021, 21, 2544–2556 | 2553This journal is © The Royal Society of Chemistry 2021

Fig. 8c further shows that the most of errors of the predicted
data are within 10%.

The adaptability of the ANN model was also verified by
predicting the inertial lift under the conditions that were not
included in the database. Fig. 9 provides the comprehensive
comparisons between the inertial lift from the direct
numerical simulations (symbols) and the ANN model (lines)
in the rectangular channel (Fig. 9a–d), triangular channel
(Fig. 9e) and semicircular channel (Fig. 9f). Fig. 9a and b
show CLy along the centerline in y direction and CLz along
the centerline in z direction, respectively, which were
predicted under parameters within the ranges of the database
(interpolation). The parameter combinations are (AR, Re, κ)
of (1, 80, 0.30),28 (1, 168, 0.25),22 (2, 100, 0.18), (2, 125, 0.18),
(2, 200, 0.18), and (3, 50, 0.30).57 On the other hand,
Fig. 9c and d display the lift forces under conditions with at
least one parameter beyond the rage of the database
(extrapolation). Besides, the distributions of CLy and CLz on
the cross-section of the rectangular channels with AR = 1.5
and 2.5 are given in the Fig. S4.† The interpolated predictions
and extrapolated predictions are also performed for
triangular channel (Fig. 9e) and semicircular channel
(Fig. 9f). All these comparisons show excellent agreement
between the DNS and the ANN model, demonstrating the
robustness of the present algorithm in the fast prediction of
the inertial lift forces in a wide range of operating
conditions.

D. Applications in complex microchannels

Knowing particle trajectories prior to fabrication of
microfluidic devices is ideal for their design and

optimization. To avoid the possible bias from self-
comparison, here we chose the experimental results from
other groups to compare with our numerical simulations.
The particle trajectories in two complex microchannels, a
single-position focusing channel with varied cross-sectional
shapes,58 and a multistage rectangular channel,59 were
calculated by the particle tracking method. To capture the
particle trajectories from inlet to outlet in such long
microchannels by DNS is almost impractical. Here, the
inertial lift forces were first obtained for the given channel
geometry and flow conditions using the ANN model and the
lift database. They were then mapped to the cross-sections of
the channels to be explicitly implemented in the last term in
eqn (12). Detailed mapping procedures can be found in the
ESI.†

The single-position focusing microchannel consists of
three parts with different cross-sectional shapes as shown in
Fig. 10a. The microchannel changes from a rectangular cross
section (2.5 cm long) to a triangular cross section (1 cm long)
and then to a semicircular cross section (1 cm long). The
geometry in Fig. 10a was displayed at a ratio of 100 : 1 along
the length. The rectangular cross section has a width of 50
μm and AR = 2. The triangular cross section is isosceles with
equal base and height. Such arrangement realized the single-
position focusing of particles without the need for secondary
flow, sheath flow or external forces.58 Here we simulated the
motion of 9 μm particles at inlet average velocity of 1.0 m s−1.
Due to the particle focusing in the upstream rectangular
cross section, no particle enters the basins of attraction of
the bottom focusing position in the triangular and
semicircular channels (Fig. 10a and b). The particles
successively focus to the two focusing positions in the

Fig. 10 (a) Schematic diagram of a single-position focusing microchannel with varying cross-sectional shapes and the particle trajectories. (b)
Schematic diagram of the focusing patterns of particles in different cross-sectional shapes. (c) Comparison of the particle trajectories between
simulations and experiments58 (experimental images are reproduced from ref. 58 with permission from the Royal Society of Chemistry).
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rectangular channel, the top two focusing positions in the
triangular channel, and top focusing position in the
semicircular channel. Our simulation results agree well with
the experimental ones (Fig. 10c).58

We further simulated the particle migration in a
multistage rectangular channel.59 As shown in Fig. 11a, the
first-stage structure employs 5 loops of curved channel for
particle separation, while the second-stage structure employs
a 3D hydrodynamic focusing channel for single-position
focusing. The multistage channel has a constant height of
130 μm throughout. In the first-stage, the radius of first loop
is 1 cm and the spacing between two adjacent loops is 500
μm. The width of inlet1 and inlet2 is 425 μm and 75 μm,
respectively. In the second-stage, there is a 90° curved
structure with a radius of 250 μm. The width of inlet2, inlet3,
and inlet4 is 100 μm, 200 μm, and 200 μm, respectively. The
flow resistance matching structure employs a serpentine
channel with a width of 400 μm and the radius of curvature
is 250 μm. The flow rates are 0.17 m s−1 at the sheath inlet
(inlet1) and 0.13 m s−1 at the sample inlet (inlet2),
respectively. The sheath flow rate at the inlet3, inlet4, and
inlet5 is 1.2 m s−1, 0.4 m s−1, and 0.4 m s−1. In the first stage,
the larger particles (10 μm and 15 μm) focus near the inner

wall whereas the small ones (5 μm) focus near the outer wall.
Fig. 11b shows the trajectories of the particles with diameter
of 15 μm. The migration of different particles in the curved
structure is mainly determined by the competition between
the inertial lift force and the Dean drag force. The Dean drag
comes from the Dean vortex, which can be accurately
obtained by the N–S equations. The Dean drag was taken into
account through the first and second term on the right-hand
side of eqn (12). Since the velocity profile in the main flow
direction for the curved channel and the straight channel are
consistent, the inertial lift in the corresponding straight
channel was mapped on the cross-section of the curved
channel by the third term of eqn (12). In the second stage,
the particles focusing near the inner wall in the first stage
are squeezed to a single focusing position. Particle positions
predicted by simulations almost reproduce the experimental
observations at different locations of (i), (ii), (iii), (iv), as
shown in Fig. 11c.

IV. Conclusions

Recent developments in inertial microfluidics have proven its
advantages for continuous focusing and separation of

Fig. 11 (a) Schematic diagram of a multistage rectangular channel. (b) The trajectories of particles with diameter of 15 μm are shown. (c)
Comparison of positions for particles with diameter of 15 μm (green), 10 μm (red) and 5 μm (cyan) at different locations between simulation results
and experimental images59 (the experimental images from ref. 59 are reprinted by permission from American Chemical Society).

Lab on a ChipPaper

Pu
bl

is
he

d 
on

 1
1 

M
ay

 2
02

1.
 D

ow
nl

oa
de

d 
by

 G
ot

eb
or

gs
 U

ni
ve

rs
ite

t o
n 

9/
1/

20
21

 1
:3

5:
42

 A
M

. 
View Article Online

https://doi.org/10.1039/d1lc00225b


Lab Chip, 2021, 21, 2544–2556 | 2555This journal is © The Royal Society of Chemistry 2021

microparticles. Based on the extensive direct numerical
simulations of nearly 15 000 cases, we have constructed a
database for distributions of inertial lift forces in three types
of cross-section of straight microchannels in a wide
parameter space. A machine learning assisted model was
proposed to quickly obtain the inertial lift distributions for
given channel shape, Reynolds number, and particle
blockage ratio. The resultant inertial lift can be easily
integrated into the Lagrangian tracking scheme to accurately
predict the particle migration, as demonstrated by simulation
and verification of two types of complex microchannels for
practical applications. With the provided database and
associated codes for the calculation of lift forces, we envision
that researchers could expedite the development and
optimization of inertial microfluidic devices for particle
manipulations.
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