
AIP Advances 11, 045025 (2021); https://doi.org/10.1063/5.0033109 11, 045025

© 2021 Author(s).

A semi-implicit discrepancy model of
Reynolds stress in a higher-order tensor
basis framework for Reynolds-averaged
Navier–Stokes simulations
Cite as: AIP Advances 11, 045025 (2021); https://doi.org/10.1063/5.0033109
Submitted: 27 March 2021 • Accepted: 31 March 2021 • Published Online: 16 April 2021

Zhen Zhang (张珍), Shuran Ye (叶舒然),  Bo Yin (银波), et al.

ARTICLES YOU MAY BE INTERESTED IN

Machine learning methods for turbulence modeling in subsonic flows around airfoils
Physics of Fluids 31, 015105 (2019); https://doi.org/10.1063/1.5061693

Feature selection and processing of turbulence modeling based on an artificial neural
network
Physics of Fluids 32, 105117 (2020); https://doi.org/10.1063/5.0022561

An interpretable framework of data-driven turbulence modeling using deep neural
networks
Physics of Fluids 33, 055133 (2021); https://doi.org/10.1063/5.0048909

https://images.scitation.org/redirect.spark?MID=176720&plid=1486011&setID=378289&channelID=0&CID=538682&banID=520405030&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=21da1d28a7c316e5a1e849b56105f7c8034f735f&location=
https://doi.org/10.1063/5.0033109
https://doi.org/10.1063/5.0033109
https://aip.scitation.org/author/Zhang%2C+Zhen
https://aip.scitation.org/author/Ye%2C+Shuran
http://orcid.org/0000-0001-8267-8939
https://aip.scitation.org/author/Yin%2C+Bo
https://doi.org/10.1063/5.0033109
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0033109
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0033109&domain=aip.scitation.org&date_stamp=2021-04-16
https://aip.scitation.org/doi/10.1063/1.5061693
https://doi.org/10.1063/1.5061693
https://aip.scitation.org/doi/10.1063/5.0022561
https://aip.scitation.org/doi/10.1063/5.0022561
https://doi.org/10.1063/5.0022561
https://aip.scitation.org/doi/10.1063/5.0048909
https://aip.scitation.org/doi/10.1063/5.0048909
https://doi.org/10.1063/5.0048909


AIP Advances ARTICLE scitation.org/journal/adv

A semi-implicit discrepancy model of Reynolds
stress in a higher-order tensor basis framework
for Reynolds-averaged Navier–Stokes simulations

Cite as: AIP Advances 11, 045025 (2021); doi: 10.1063/5.0033109
Submitted: 27 March 2021 • Accepted: 31 March 2021 •
Published Online: 16 April 2021

Zhen Zhang (张珍),1,2 Shuran Ye (叶舒然),1,2 Bo Yin (银波),1,2 Xudong Song (宋旭东),3

Yiwei Wang (王一伟),1,2,4,a) Chenguang Huang (黄晨光),1,2,4 and Yaosong Chen (陈耀松)3

AFFILIATIONS
1 Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences,
Beijing 100190, China
2School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
3College of Engineering, Peking University, Beijing 100871, China
4School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China

a)Author to whom correspondence should be addressed: wangyw@imech.ac.cn

ABSTRACT
With the rapid development of artificial intelligence, machine learning algorithms are becoming more widely applied in the modification of
turbulence models. In this paper, with the aim of improving the prediction accuracy of the Reynolds-averaged Navier–Stokes (RANS) model,
a semi-implicit treatment of Reynolds stress anisotropy discrepancy model is developed using a higher-order tensor basis. A deep neural
network is constructed and trained based on this discrepancy model. The trained model parameters are embedded in a computational fluid
dynamics solver to modify the original RANS model. Modification computations are performed for two cases: one interpolation and one
extrapolation of different Reynolds numbers. For these two cases, the ability of the modified model to capture anisotropic features has been
improved. Moreover, when compared with the mean velocity of large eddy simulations (LES), the root mean square error of the modified
model is significantly lower than the original RANS model. Meanwhile, the modified model can better simulate flow field separation and
fluctuation in the shear layer and has better prediction accuracy for the reattachment point and the mean velocity profile compared with the
original RANS model. In addition, the modified model also improves the prediction accuracy for the mean pressure coefficient and mean
friction coefficient of the underlying wall surface. The previously trained model is also directly performed for the modification computation
of the two massive separation periodic hill flows. It is shown that the results simulated by the modified model and LES approach are more
consistent in both trend and magnitude than the original RANS model and LES approach.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0033109

I. INTRODUCTION

Solving the Reynolds-averaged Navier–Stokes (RANS) equa-
tions remains an effective and practical approach in engineering
applications because this approach only computes the mean flow
and omits the turbulent fluctuation of each scale, which reduces
the spatial and temporal resolution and shortens the computa-
tion period.1,2 However, in the RANS approach, the effect of the
turbulent fluctuation in the mean flow field, that is, the Reynolds

stress, is unknown. The eddy-viscosity (turbulent-viscosity) models
are often established to close the equations.3–5 The widely used eddy-
viscosity models generally assume a linear relationship between the
Reynolds stress and the mean strain rate tensor, which cannot ade-
quately capture anisotropies in the flow field.6,7 Although higher-
order eddy-viscosity models can provide better prediction accu-
racy, the underlying structure of these models lacks an adequate
theoretical basis. Furthermore, there are no rigorous results regard-
ing their convergence.8 With the availability of high-performance
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computing architectures, high-fidelity direct numerical simulation
(DNS) and large eddy simulation (LES) can be performed more
readily.9 Moreover, if a machine learning method is combined with
the RANS approach and high-fidelity/experimental data are used
as the training dataset, it should be possible to construct a more
complex relationship between the mean flow field and the level of
turbulent fluctuations. This has therefore become a topic of great
importance in research on RANS turbulence models.10–12

In the past few years, machine learning algorithms have been
extensively introduced into turbulence modeling aiming to speed up
the computation and enhance existing solvers.13–20 Ling and Tem-
pleton21 investigated the impact of database size on the performance
of random forest machine models. Their results showed that the
choice and size of the training database are critical to the perfor-
mance of the machine learning model. Ling et al.22 and Ling, Jones,
and Templeton23 further showed that embedding rotational invari-
ants into machine learning models is essential for achieving high-
performance predictions. The main purpose of modeling based on
machine learning algorithms is to balance efficiency and accuracy.
However, interpretability is necessary when modeling physical sys-
tems.9 Consequently, the key work of Ling, Kurzawski, and Temple-
ton13 proposed a network structure that embeds Galilean invariance
in neural network prediction on the basis of a higher-order eddy-
viscosity model proposed by Pope.24 This framework was tensor-
based to ensure the Galilean invariance of the predicted model.
In addition, based on the work of Ling, Kurzawski, and Temple-
ton,13 Zhang et al.25 improved the network structure to predict the
Reynolds stress of a channel flow for different Reynolds numbers.
The results showed that the Reynolds stress can be accurately recon-
structed and predicted. Although the tensor basis neural network
(TBNN) improves the prediction capability of the RANS model, the
actual training is difficult, which results in difficulties in practical
applications.

Scholars also studied data-driven turbulence closure models
within the physics-based LES framework to learn the subgrid-scale
(SGS) stress. Gamahara and Hattori26 established a model for find-
ing the relation between the grid-scale flow and the SGS stress tensor
using artificial neural networks (ANNs), but this approach did not
consider the consumption of the stress tensor form. Pawar et al.27

presented a model with multilayer ANNs, which utilized coarse-
grained field variables to estimate the SGS stress for Kraichnan
turbulence. The improvement in the prediction of SGS stresses is
achieved in their study. Besides, for LES, the turbulence modeling
approach by learning closure terms and making predictions was also
documented in Beck, Flad, and Munz28 and Weatheritt and Sand-
berg.29 However, most of the above-mentioned SGS stress model
is expressed as an explicit source term in the equation, which leads
to the greatly impaired prediction ability of the data-driven model.
Therefore, Maulik et al.30 devised a predictive framework based on
local conditional probabilities for turbulence models and proposed a
hybrid intelligent implicit LES approach. Their results indicated that
the proposed approach exhibits robust and stable closure.

Xiao et al.31 showed that the mean flow characteristics can
largely explain the discrepancies between the results for Reynolds
stress from RANS modeling and those from DNS. That study indi-
cated that the considering uncertainty in machine learning meth-
ods is an attractive approach. Wang, Wu, and Xiao14 established
a supervised model based on random forests for discrepancies in

RANS-simulated Reynolds stress tensors. Their results showed that
this approach significantly improved the prediction capability for
Reynolds stress compared with the original RANS simulation, but
a similar improvement was not obtained in simulations of the mean
velocity field. Using a SGS stress model of LES, Gamahara and Hat-
tori26 obtained results similar to those of Wang, Wu, and Xiao,14

who tested ANNs as a tool for finding a new subgrid model of the
SGS stress in LES. These neural network models gave better pre-
dictions of SGS stresses than the Smagorinsky model for turbulent
channel flows, but their mean velocity predictions were less satisfac-
tory. It is mainly because the mean velocity field is very sensitive to
errors in Reynolds stress prediction. In order to improve the predic-
tion of the mean velocity field, Wu, Xiao, and Paterson32 proposed
a physics-based implicit processing method to train the linear and
nonlinear parts of the Reynolds stress by using machine learning
and obtained satisfactory prediction accuracy of the eddy-viscosity.
Wu et al.33 derived a local condition number function as a measure
to evaluate the conditional characteristics of the turbulence model,
that is, to measure the sensitivity of the mean velocity at a given posi-
tion of perturbation on the Reynolds stress field. It is proved that the
local condition number can quantitatively explain the improvement
of implicit treatment of Reynolds stress and the results in the study
of Wu, Xiao, and Paterson.32

The aforementioned studies all aim to accurately predict the
velocity field by the typical data-driven Reynolds stress model, and
the Reynolds stress is obtained from a trained machine learning
model without solving partial differential equations. However, most
of their results are still not ideal due to the explicit treatment of
Reynolds stress. Hence, it is urgent and important to construct an
applicable, efficient, and accurate model, which can serve as a com-
monly usable tool for the industry. Based on the generalized form of
Pope,24 the present paper constructs a model using the discrepancies
in Reynolds stress anisotropy between the target results of LES and
the baseline results of RANS simulation. This discrepancy model is
then used to train a neural network model. In addition, the trained
model parameters are embedded in a computational fluid dynam-
ics (CFD) solver by a semi-implicit treatment to modify the original
RANS model aiming to improve the prediction accuracy. Finally,
to explore the generalization ability and robustness of the modified
model, interpolation and extrapolation modifications are performed
based on the Reynolds number and two massive separation flows are
also applied to modification computation.

The remainder of the paper is organized as follows. Section II
derives the Reynolds stress anisotropy discrepancy model and
introduces the methodology of turbulence model modification.
Section III describes the numerical simulation method for training
datasets and validation. Section IV presents the prediction results
of the modified model and an analysis of the results. Section V
discusses the main findings and concludes the paper.

II. METHODOLOGY
A. RANS turbulent-viscosity model

In this study, we employ the three-dimensional (3D) incom-
pressible Navier–Stokes equations (NSEs) as

∂ui

∂xi
= 0, (1)
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∂ui

∂t
+ (uj

∂ui

∂xj
) = −

1
ρ
∂p
∂xi
+ ν

∂2ui

∂x2
j
+ f i, (2)

where ui is the ith component of instantaneous velocity, p is the pres-
sure, ρ is the density (which is constant in incompressible flows), and
ν is the viscosity coefficient.

The incompressible RANS equations are obtained by taking the
average of the NSEs over time, which in their form without body
forces are written as

∂ui

∂xi
= 0, (3)

∂ui

∂t
+ uj

∂ui

∂xj
=

∂

∂xj
(−

p̄
ρ

δij + ν
∂ūi

∂xj
− u′i u

′
j). (4)

Although the equations are similar to the Navier–Stokes equations,
there is an additional term (u′i u

′
j ), which is called the Reynolds stress.

The Reynolds stress is a symmetric tensor, which can be decomposed
into isotropic and anisotropic parts. The decomposition results are
as follows:

u′i u
′
j =

2
3

δijk + aij, (5)

where aij is the Reynolds stress anisotropy tensor, k is the turbulent
kinetic energy, and δij is the Kronecker delta. Therefore, a closure
model is required for the anisotropy tensor. k–ε and k–ω3,34 are the
most widely used eddy-viscosity models. These models assume a
linear relationship between the anisotropy tensor aij and the mean
strain rate tensor Sij,

aij = −2νtSij, (6)

where νt is the eddy-viscosity and Sij = 1/2(∂ui/∂xj + ∂uj/∂xi).
The standard k–ε modeled transport equations are

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∂k
∂t
+ uj

∂k
∂xj
=

∂

∂xj
(

νt

σk

∂k
∂xj
) +𝒫 − ε,

∂ε
∂t
+ uj

∂ε
∂xj
=

∂

∂xj
(

νt

σε

∂ε
∂xj
) + Cε1

𝒫 ε
k
− Cε2

ε2

k
,

(7)

where 𝒫 is the production term, given by

𝒫 = −u′i u
′
j
∂ūi

∂xj
, (8)

σk and σε are set to 1.0 and 1.3, respectively, according to empirical
data, and Cε1 and Cε2 are two coefficients that need to be calibrated
using empirical data.

The eddy-viscosity coefficient νt can be calculated from
νt = Cμk2

/ε by solving the above transport equation, where Cμ is set
to 0.09 by the empirical relationship.

B. Turbulence model modification
The linear turbulence-viscosity model is based on the assump-

tion of simple shear flow. For complex flows, it is possible to create
higher-order turbulent-viscosity models. Pope24 presented a gen-
eral expression of a higher order turbulent-viscosity model is a
function of Ŝij and R̂ij, that is, aij = f (Ŝij, R̂ij), where Ŝij = Sijk/ε

= k/(2ε)(∂ui/∂xj + ∂uj/∂xi) is the normalized mean strain rate ten-
sor and R̂ij = Rijk/ε = k/(2ε)(∂ui/∂xj − ∂uj/∂xi) is the normalized
mean rotation rate tensor. Eventually, aij can be expressed as a lin-
ear combination of ten isotropic basis tensors in 3D incompressible
flow,

aij = k
10

∑
n=1

Gn
(λ1, λ2, λ3, λ4, λ5)Tn

ij . (9)

The basis tensors T are given by

T1
= Ŝ,

T2
= ŜR̂ − R̂Ŝ,

T3
= Ŝ2
−

1
3

I3 ⋅ Tr(Ŝ2
),

T4
= R̂2

−
1
3

I3 ⋅ Tr(R̂2
),

T5
= R̂Ŝ2

− Ŝ2R̂,

T6
= R̂2Ŝ + ŜR̂2

−
2
3

I3 ⋅ Tr(ŜR̂2
),

T7
= R̂ŜR̂2

− R̂2ŜR̂,

T8
= ŜR̂Ŝ2

− Ŝ2R̂Ŝ,

T9
= R̂2Ŝ2

+ Ŝ2R̂2
−

2
3

I3 ⋅ Tr(Ŝ2R̂2
),

T10
= R̂Ŝ2R̂2

− R̂2Ŝ2R̂,

(10)

and invariants λ are given by

λ1 = Tr(Ŝ2
), λ2 = Tr(R̂2

), λ3 = Tr(Ŝ3
),

λ4 = Tr(R̂2Ŝ), λ5 = Tr(R̂2Ŝ2
).

(11)

For flows that are statistically two-dimensional, the situation is
considerably simpler. The tensors T1, T2, and T3 form an integrity
basis, and invariants λ are given by

λ1 = Tr(Ŝ2
), λ2 = Tr(R̂2

). (12)

Furthermore, the term in T3 can be absorbed into the modified pres-
sure so that G3

= 0. Therefore, the higher-order turbulent-viscosity
model for statistically two-dimensional flows is35

aij = k(G1T1
ij +G2T2

ij). (13)

Taking into account the periodic boundary conditions and the
two-dimensional characteristics of the geometry of the periodic hill
flow, and constructing a more universal model, the constitutive
equation we are trying to train in this study only requires four basis
tensors,35,36

aij = k(G1T1
ij +G2T2

ij +G3T3
ij +G4T4

ij). (14)

Therefore, the discrepancies between the anisotropy tensors
obtained by the higher-order turbulent-viscosity model (aij) and
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the traditional turbulent-viscosity model (−2νtSij) are

Δaij = aij − (−2νtSij)

= k
2

∑
n=0

Gn
(λ1, λ2)Tn

ij − (−2νtSij)

= kG0T0
ij + kG1Ŝij + kG2T2

ij + 2νt
ε
k

Ŝij

= kG0T0
ij + k(G1

+
2νtε
k2 )Ŝij + kG2T2

ij. (15)

Then,

Δaij = kG0T0
ij + k(G1

+
2νtε
k2 )T1

ij + kG2T2
ij. (16)

Obviously, the discrepancies in the anisotropy tensors can also be
expressed as the generalized form of Pope.24

In order to improve the performance of the original RANS
model in capturing the anisotropy of the flow field, a semi-implicit
discrepancy model is constructed. A fully connected neural network
is trained based on the above discrepancy model. Figure 1 presents
a flow diagram of a supervised learning algorithm applied in the
RANS turbulence model. The LES method is performed to gener-
ate target data aLES

ij , and the RANS k–ε model is used to obtain the
baseline data aRANS

ij . The 3D LES data are spanwise averaged and
then linearly interpolated to correspond to the simulated 2D RANS
data under the coarse grid. The discrepancies Δaij = aLES

ij − aRANS
ij are

computed as the output of the neural network, and the regression
function f : q→ Δaij is constructed, where q = {λ1, λ2} is chosen as
the input features.

The trained regression function f is used to predict the
anisotropy discrepancy tensors Δaij for the modified flow, and the
modified anisotropy tensors aij are obtained by adding the predicted
discrepancy tensors Δaij to the anisotropy tensors aRANS

ij simulated

by the original RANS model,

aij = Δaij + aRANS
ij = Δaij − 2νtSij. (17)

Then, the modified Reynolds stress tensors are also obtained by
adding the modified anisotropic tensors aij to the isotropic tensors
2
3 δijk,

u′i u
′
j = aij +

2
3

δijk = Δaij − 2νtSij +
2
3

δijk. (18)

Therefore, the modified RANS equation can be expressed as

∂ūi

∂t
+ ūj

∂ūi

∂xj

=
∂

∂xj

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
p̄
ρ

δij + ν
∂ūi

∂xj
−

⎛
⎜
⎜
⎜
⎜
⎝

Δaij
°
explicit

−2νtSij +
2
3

δijk
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

implicit

⎞
⎟
⎟
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (19)

It can be seen that Eq. (19) has no diffusion flux for implic-
itly discretizing. However, the discretization of equations based
on the finite volume method (FVM) generates a numerical diffu-
sion.37 Therefore, the modified Reynolds stress in Eq. (19) is decom-
posed into two terms for numerical considerations.38 The linear part
of the Reynolds stress is treated implicitly by the original RANS
model, while the non-linear part is explicitly predicted by the neural
network.

Compared with the original RANS equation, the source terms
added in the modified momentum equation are

Su1 = −(
∂Δa11

∂x
+
∂Δa12

∂y
),

Su2 = −(
∂Δa12

∂x
+
∂Δa22

∂y
).

FIG. 1. Framework for modification of the turbulence model.
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The corresponding time-discrete momentum equation is as
follows:

ūn+1
i − ūn

i

Δt
+ ūn

j
∂ūn+1

i

∂xj
= −

1
ρ
(
∂p̄
∂xi
)

n+1
+

∂

∂xj
(ν

∂ūn+1
i

∂xj
)

−
∂

∂xj
(Δaij

∗n
− νt

∂ūn+1
i

∂xj
− νt

∂ūn+1
j

∂xi
+

2
3

δijkn
), (20)

where the superscript indicates the calculation result of the nth time
step or the (n + 1)th time step. Equation (20) gives the velocity pre-
diction of the fluid, which is corrected by the updated pressure at the
(n + 1)th time step.

The modified transport equations for the turbulent kinetic
energy k and dissipation rate ε are

∂k
∂t
+ uj

∂k
∂xj
=

∂

∂xj
(

νt

σk

∂k
∂xj
) + (𝒫 +𝒫 ∗) − ε, (21)

∂ε
∂t
+ uj

∂ε
∂xj
=

∂

∂xj
(

νt

σε

∂ε
∂xj
) + Cε1

(𝒫 +𝒫 ∗)ε
k

− Cε2
ε2

k
, (22)

where 𝒫 ∗ is the modification of production term, given by

𝒫 ∗ = −Δaij
∗ ∂ūi

∂xj
. (23)

Therefore, the source terms added in the two modified transport
equations are

Sk = 𝒫
∗, Sε = Cε1

𝒫 ∗ε
k

.

In this semi-implicit modification computation, a relaxation
coefficient γ is used to ensure that the computation does not fail to
converge owing to an excessive source term. The value of γ gradu-
ally changes from 0 to 1 as the iteration step increases. Therefore, the
final modified source terms Su1_γ and Su2_γ in the momentum equa-
tion and the modified source terms Sk_γ and Sε_γ in the transport
equation are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Su1_γ = −γ(
∂Δa11

∂x
+
∂Δa12

∂y
),

Su2_γ = −γ(
∂Δa12

∂x
+
∂Δa22

∂y
),

Sk_γ = γ𝒫 ∗,

Sε_γ = Cε1
γ𝒫 ∗ε

k
.

(24)

C. Neural network structure and parameters
In this approach, a fully connected deep neural network (DNN)

is employed to establish a functional relationship between the mean
flow field and the Reynolds stress anisotropy discrepancy. Figure 2
is a schematic of the DNN. The DNN consists of an input layer, the
hidden layers, and an output layer. Neurons in any layer receive a
set of inputs from the previous layer, and they then output a set of
data. That is, each neuron in layer l is connected to all neurons in
layer l − 1 (this is the meaning of fully connected), and the output
aj(l − 1) of neurons in layer l − 1 is the input of neurons in layer l.
Each connection between the two layers has a weight W, which is
the model parameter that the neural network needs to learn. Take
the ith neuron node of the lth layer as an example, the value of this
neuron is

zi(l) =
n

∑
j=1

Wij(l)aj(l − 1) + bi(l) (25)

and zi(l) is applied to the activation function to get the output result
ai(l) of this neuron,

ai(l) = σ[zi(l)], (26)
where bi(l) is the bias and f is the activation function. The activation
function σ in this network is the leaky rectified linear unit (leaky
ReLU)39 and is expressed as

σ(x) =
⎧⎪⎪
⎨
⎪⎪⎩

αx, x < 0

x, x ≥ 0,
(27)

In this paper, the RANS model is used for baseline com-
putation and the results of LES are used as the target results.
The output parameter of neural network are the discrepancies

FIG. 2. Schematic diagram of the DNN.
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TABLE I. Cases used for discrepancy model training and the original RANS model
modification.

Cases Discrepancy model training cases Modification cases

P1 Re = 2800, 8400, 10 595 Re = 5 600
P2 Re = 2800, 5600, 8400 Re = 10 595

Δaij in the Reynolds stress anisotropy between the target result
aLES

ij and the baseline result aRANS
ij . The input parameters are λ1

= Tr(Ŝ2
) = Tr(SijSijk2

/ε2
) and λ2 = Tr(R̂2

) = Tr(RijRijk2
/ε2
),

which are the invariants. The mean strain rate tensor Sij and the
mean rotation rate tensor Rij are both obtained by the LES results
and are non-dimensionlized by the turbulent kinetic energy k
and dissipation rate ε in the RANS results, which adds effective
information of RANS to the neural network. The hidden layer is set
to 4 layers, each with 20 neuron nodes. The datasets that we use for
model training is provided in Table I. α in the activation function is
taken as 10−8.

To minimize the error between the output and the given
Reynolds stress anisotropy discrepancy Δaij, gradient descent back-
propagation is used to iterate the weights and optimize the bias
parameters. The loss function is given by
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2, (28)

where ΔaNN
ij is the output of the network, M indicates the number of

the current set, α′ is the regularization coefficient, which is given as
0.0005, and ∥W∥2

2 is the regularization term, which is used to prevent
overfitting.40

III. NUMERICAL SIMULATIONS
Periodic hill flow has typical characteristics of flow separation,

recirculation, and reattachment.41 Separation induced by pressure
occurs from the curved surface, and reattachment is observed on the
plate. These flow characteristics of periodic hill flow are therefore
sensitive to various features of flow modeling and numerical sim-
ulations. Periodic hill flow is widely used as a test case to study the
ability of the RANS model and LES approach in the curved geometry
to model flow separation and simulate physical mechanisms.

A. Governing equations
Periodic hill flow has been extensively studied because of its

periodic boundary conditions and symmetrical geometry. Peller and
Manhart42 performed DNS of periodic hill flow up to a Reynolds
number of Re = UBh/ν = 5600 (based on the bulk velocity UB, hill
crest h, and kinematic viscosity coefficient ν). Fröhlich et al.,43

Breuer et al.,41 and Temmerman and Leschziner44 performed LES of
separated periodic hill flow at Re = 10 595. To overcome the limita-
tion of these previous studies to high Reynolds numbers, the present
paper explores the prediction capability of deep learning models
over a wide range of Reynolds numbers by using LES to perform
numerical simulations of periodic hill flow.

To study the characteristics of the periodic hill flow, a filter
function G(x, ξ; Δ) is used to obtain the filtered physical variable
such as ũ(x, t) = ∫ G(x, ξ; Δ)u(ξ, t)dξ. Δ = 3

√
ΔxΔyΔz is the spatial

filter scale determined using an explicit box filter, where Δ is the side
length of the grid cell under the Cartesian grid. The filtered momen-
tum equation can be deduced by making operation on the above
momentum equation as

∂ũi

∂xi
= 0, (29)

∂ũi

∂t
+ (ũj

∂ũi

∂xj
) = −

1
ρ
∂p̃
∂xi
+
∂(2ν̃Sij)

∂xj
−
∂τij

∂xj
+ f̃i, (30)

where ũi is the filtered ith velocity component, p̃ is the filtered pres-
sure, S̃ij = 1/2(∂ũi/∂xj + ∂ũj/∂xi) is the filtered strain-rate tensor,
and the term τij = ũiuj − ũiũj is the subgrid-scale (SGS) stress, which
results from the unresolved subgrid-scale and needs to be modeled
by an SGS model. The flow in this study is driven by a mean velocity
force so as to yield the global mass flux.

B. Subgrid-scale modeling
The sub-lattice quantities are unknown, so it is necessary to

establish corresponding models for them. The SGS stress in this
paper is modeled by the One-equation eddy-viscosity model (OEM)
(Yoshizawa45). Compared with the Smagorinsky model, this model
has a more accurate time scale. The one-equation eddy-viscosity SGS
model uses the eddy-viscosity approximation, so the anisotropic part
of the SGS stress tensor is modeled as

τij −
1
3

δijτkk = −2νSGSS̃ij, (31)

where the trace τkk is lumped into a modified pressure and does not
need to be considered. νt is the SGS viscosity and is computed using
kSGS as νSGS = CkΔ

√
kSGS, A transportation equation is derived to

account for the historic effect of kSGS due to production, dissipation,
and diffusion,

∂kSGS

∂t
+ ũj

∂(kSGS)

∂xj
−

∂

∂xj
[(ν + νSGS)

∂(kSGS)

∂xj
]

= 2νSGS
∂ũi

∂xj
S̃ij − Cε

k3/2
SGS
Δ

, (32)

where Ck is the model constant whose default value is 0.094 and Cε
is another model constant whose default value is 1.048.

C. Numerical scheme
Figure 3 illustrates the geometry adopted in the simulations.

The dimensions of the computation are the hill-crest separation Lx,
the channel height Ly, and the span length Lz , which are set to 9.0h,
3.035h, and 4.5h, respectively. The computational domain contains
Nx ×Ny ×Nz = 200 × 160 × 80 interior cells, and periodic boundary
conditions are carried out. Near the lower wall, no-slip conditions
are applied. In addition, the near-wall processing method is wall-
resolved LES. This is because y+ corresponding to the height of the
first layer of grid is less than 1.

In the present study, five simulation datasets, each for different
Reynolds numbers Re = 2800, 5600, 8400, and 10 595, are obtained
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FIG. 3. Geometry of the periodic hill flow.

FIG. 4. Three mesh sizes for LES simulation. (a) Coarse mesh, (b) original mesh,
and (c) fine mesh.

FIG. 5. Results of normal stress components (u′1u′1) of the LES approach for three
mesh sizes. (a) x/h = 0.5, (b) x/h = 2, (c) x/h = 4, and (d) x/h = 6.

by performing LES of periodic hill flow. Besides the original mesh, a
new coarse mesh and a fine mesh are presented in Fig. 4. The com-
putational domain of coarse and fine meshes contains Nx ×Ny ×Nz
= 141 × 113 × 57 and Nx ×Ny ×Nz = 283 × 226 × 113 interior cells,
respectively.

The LES database provides the averaged second-order correla-
tion fields of the fluctuating velocity, which is the Reynolds stress
field on the LES grids according to the definition. The results of nor-
mal stress components (u′1u′1) and shear stress components (u′1u′2)
for three mesh sizes at Re = 10 595 are shown in Figs. 5 and 6,
respectively. Figures 5 and 6 show that the results simulated by the
original mesh and fine mesh agree well with each other in both trend
and magnitude, which verify the validity of the present mesh size.

Figure 7 displays an instantaneous characteristic of the flow
field, namely, the streamline velocity. It can be seen that there are
a few typical regions of the periodic hill flow. First, on the left curved
surface, flow separation begins to occur owing to the reverse pres-
sure gradient, and a recirculation zone is then formed along the
streamline direction. Finally, with the geometric contraction and
the accompanying pressure gradient, the flow reattaches before it
reaches the next hill crest with the formation of a recovery region.
The flow characteristics of these typical regions will be the main con-
cerns of the validation in Sec. III D and the analysis of results in
Sec. IV.

FIG. 6. Results of normal stress components (u′1u′2) of the LES approach for three
mesh sizes. (a) x/h = 0.5, (b) x/h = 2, (c) x/h = 4, and (d) x/h = 6.
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FIG. 7. Instantaneous streamline velocity based on the Q criterion.

D. Validation of simulation results
Figure 8 presents the mean streamline velocity and second-

order fluctuation statistics of the periodic hill flow as computed by
LES and by RANS. For comparison, it also shows the experimen-
tal results of Rapp, Pfleger, and Manhart46 and the DNS results
of Breuer et al.41 According to the experimental results,46 the flow
begins to separate at x/h = 0.5, x/h = 2 is the center of the flow recir-
culation region, x/h = 4 is the position of the reattachment point,
and x/h = 6 is the position of flow recovery [see Fig. 8(a)]. It can
be seen from the mean velocity profile in Fig. 8(a) that the results
of LES are closely consistent with the experimental/DNS results.
Meanwhile, the normal stress components [Figs. 8(b) and 8(d)] and
the shear stress components [Fig. 8(c)] are also consistent with the
experimental/DNS results. Therefore, this comparison indicates that
the datasets computed using LES can be used to train the neural
network that will be used to modify the RANS turbulence model.

IV. RESULTS AND DISCUSSION
The cases used for neural network model training and modifi-

cation are provided in Table I, where P stands for two periodic hill
cases, with P1 and P2 being the modification results for Re = 5600
and 10 595, respectively. The modification flow field is a new case
computed by Fluent, which does not participate in the neural net-
work model training. In the previous study of turbulence modeling
by machine learning methods, the research results presented that the
prediction accuracy for the Reynolds stress was improved, but no
significant improvement was observed for the mean velocity field. In
the present paper, therefore, the prediction accuracy of the Reynolds
stress using the modified model was computed for two cases com-
pared to the results of LES and RANS, and then the velocity profiles
were also compared. Finally, one of two cases was used as an exam-
ple to study the prediction accuracy of the mean pressure coefficient
and the mean friction coefficient on the underlying wall surface.

In order to explore the predictive performance of the modi-
fied model, the previously trained model is also directly performed
for the modification computation of the two massive separation
periodic hill flows in Sec. IV D.

A. Prediction of Reynolds stress anisotropy
The Reynolds stress anisotropy tensor aij is symmetric, and

its eigenvalues are real.47 It can be therefore defined through the
following similarity transformation:

FIG. 8. Results from LES and RANS, compared with the experimental results of
Rapp, Pfleger, and Manhart46 and the DNS results of Breuer et al.41 for the profiles
of (a) mean streamline velocity Ux/UB, (b) normal stress components u′1u′1/U

2
B, (c)

shear stress components u′1u′2/U
2
B, and (d) normal stress components u′2u′2/U

2
B at

four different locations (x/h = 0.5, 2, 4, 6).

XikaknXnj = 2k(λiδij), (33)

where Xij is the matrix containing the eigenvectors of aij/2k and
λiδij is the diagonal matrix with the eigenvalues of aij/2k. The
barycentric coordinates of the barycentric map are then obtained
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using the eigenvalues,47 as follows:

C1c = λ1
− λ2, C2c = 2(λ2

− λ3
), C3c = 3λ3

+ 1, (34)

and C1c + C2c + C3c = 1. The points (x, y) in the barycentric map can
be expressed in terms of the coordinates of three vertices (x1c, y1c),
(x2c, y2c), and (x3c, y3c),

x = C1cx1c + C2cx2c + C3cx3c,

y = C1cy1c + C2cy2c + C3cy3c.
(35)

The plots of the turbulent states in triangles can be used to
evaluate the prediction performance of the modified model. The
predicted Reynolds stress anisotropy is displayed in Fig. 9 for two
cases (modifications with Re = 5600 and Re = 10 595). The predic-
tion results of the original RANS model evolve along a line termed
plane strain, which is significantly different from the LES result.
However, compared with the original RANS model, the ability of the
modified model to capture anisotropic features has been improved.
The qualitative curve direction and the topology of the graph of the
modified model are consistent with the LES.

B. Prediction of the velocity
It is very difficult to predict the velocity field based on a typical

data-driven Reynolds stress model under the DNN framework. This
is mainly because the mean velocity field is very sensitive to errors in
Reynolds stress prediction. However, the discrepancies between the
Reynolds stress computed by the high-fidelity algorithm and RANS

model can better reflect the differences in the typical characteristics
of the mean flow field. Therefore, this section will focus on analyzing
and discussing the prediction results of the velocity profiles.

Interpolated and extrapolated modifications of the RANS tur-
bulence model are performed based on the Reynolds number. An
example of a velocity contour map is depicted in Fig. 10 for case P1
(Re = 5600). Figures 10(a)–10(c) correspond to LES, the modified
model, and the RANS model, respectively.

From the velocity contours of the mean flow, it can be seen
that the prediction of flow separation and reattachment by the orig-
inal RANS model is not accurate enough, whereas the modified
model shows an obvious improvement in this respect and is con-
sistent with the LES results. Furthermore, the computational result
in the recirculation region is consistent with the physical proper-
ties, although slight hysteresis occurs at the computed reattachment
point compared with the LES results.

Furthermore, the root mean square error (RMSE) is used
to quantify the deviations in the x-direction velocity between
the prediction results of the modified model and the original
RANS model compared with those of LES. It is given by RMSE
=
√

1/n∑ (ûi − ūi)2, where ûi is the x-direction mean velocity from
LES, ūi is the prediction result of the modified model or the origi-
nal RANS model, and n indicates the number of grids in a flow field.
Table II shows the RMSE for cases P1 and P2. It can be seen that in
each case, the RMSE values for the modified model are significantly
lower than those for the original model.

In this paper, the volume flowrate is used as an indicator to
further verify the prediction performance of the modified model

FIG. 9. Prediction performance for the Reynolds stress anisotropy for two cases (Re = 5600 and Re = 10 595) using LES, the modified model, and the original RANS model
at three locations (x/h = 2, 4, 6), plotted as barycentric maps with (a) x/h = 2, Re = 5600; (b) x/h = 4, Re = 5600; (c) x/h = 6, Re = 5600; (d) x/h = 2, Re = 10 595;
(e) x/h = 4, Re = 10 595; and (f) x/h = 6, Re = 10 595.
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FIG. 10. Predicted velocity contour maps for the mean flow using (a) LES, (b) the
modified model, and (c) the original RANS model at Re = 5600.

from a macro perspective. The computation results of the volume
flowrate listed in Table III show that the prediction results of the
modified model are closer to the target results (LES) than the orig-
inal RANS model because the volume flow rate is closely related to
the prediction accuracy of the flow field velocity. In addition, we also
specifically analyze the prediction results of the velocity profile.

Figure 11 compares the distribution of mean x-direction
velocity Ux/UB at different vertical positions in the flow field,
x/h = 0.05, 1, 2, . . . , 7. It can be seen that the modified model is able
to give more accurate predictions of the mean velocity profile com-
pared with the RANS model. The deviations (RMSE) of the differ-
ent velocity profiles (see the blue and red numbers in Fig. 11) also
confirm that the modified model outperforms the original RANS
model.

TABLE II. RMSE of velocity for two cases obtained by comparing the predicted results
of the modified model and of the original RANS model with those of the LES.

Cases Modified model RANS model

P1: Re = 5600 0.048 0.081
P2: Re = 10 595 0.046 0.064

TABLE III. Volume flowrate for two cases obtained by LES, the modified model, and
the original RANS model.

Cases LES Modified model RANS model

P1: Re = 5600 0.0533 0.0554 0.0568
P2: Re = 10 595 0.0535 0.0531 0.0528

FIG. 11. Predictions of the mean x-direction velocity (Ux/UB) profile using the mod-
ified model compared with the predictions using LES and the original RANS model
at Re = 5600. The blue and red numbers are the RMSE values from the modified
model and the original RANS model, respectively, and the black numbers are the
deviation reduction.

The numbers in black in Fig. 11 indicate the deviation reduc-
tion of the modified model. It can be seen that the modified model
alters the valley flow most significantly. The reverse flow expands
to the position of x/h = 4 in LES results; however, the RANS model
overestimates the end of the recirculation zone because the veloc-
ity field still has negative values at x/h = 5. Meanwhile, the RANS
model also underestimates the velocity gradient near the wall area of
the recirculation zone (x/h = 1, 2, 3). The modified model not only
improves the prediction of the velocity gradient but also improves
the prediction of the separation bubble size. Hence, we can conclude
that, compared with the RANS model, the modified model is better
at simulating fluctuations in the shear layer and in determining the
location of end point of the reverse flow.

Case P2 in Table II is an extrapolation computation based on
the Reynolds number, and the flow at Re = 10 595 is modified. The
results of the velocity prediction for different profiles are shown
in Fig. 12. It can be seen that the extrapolated modification still
captures the flow characteristics more accurately than the original

FIG. 12. Predictions of the mean x-direction velocity (Ux/UB) profile using the
modified model compared with the predictions using LES and the original RANS
model at Re = 10 595. The blue and red numbers are the RMSE values from the
modified model and the original RANS model, respectively, and the black numbers
are the deviation reduction.
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FIG. 13. Predictions of (a) the mean pressure coefficient Cp and (b) the mean friction coefficient C f obtained using LES, the modified model, and the RANS model at
Re = 5600.

RANS model, especially in the prediction for the length of recircula-
tion zone. In addition, the deviation reduction indicated by the black
numbers in Fig. 12 also further demonstrates that the prediction
performance of the modified model is superior to the original RANS
model.

C. Prediction of the mean pressure and friction
coefficients

Periodic hill flow is a standard case for evaluating turbulent
simulation in complex boundary walls. Therefore, it is appropri-
ate to evaluate the prediction performance of the modified model
using the pressure and friction coefficient predictions near the wall
as indicators.

Figure 13 presents the distributions of the mean pressure coef-
ficient Cp and the mean friction coefficient C f on the underlying
wall surface of the periodic hill. It can be seen from Fig. 13(a) that,
compared with LES, the original RANS model underestimates the
pressure in the valley region, and the capture of pressure peaks is
significantly delayed because of the overestimation of the recircu-
lation region. The pressure predicted by the modified model in the
valley region is better, and this model not only captures the pressure
peak accurately but also reveals a strong forward pressure gradient
when x/h > 7.5.

The accuracy of the modified model in predicting the velocity
and pressure coefficient outperforms that of the RANS model, and
the friction coefficient is closely related to the fluid velocity depen-
dent on the pressure field. Therefore, it can be seen in Fig. 13(b)
that the modified model captures the wall friction coefficient more
accurately than the original RANS model. The original RANS model
predicts negative friction coefficients when 4.5 < x/h < 7, while the
predictions of the modified model are consistent with the results
from LES. This is also because the reattachment point of the flow
field computed by the original RANS model is delayed.

D. Prediction of the velocity for two massive
separation flows

In order to explore the predictive performance of the higher-
order discrepancy model, the previously trained model is directly

performed for the modification computation of the two massive sep-
aration periodic hill flows. The geometry used is illustrated in Fig. 14.
The black geometry is the original size in this study, and the hill
width is k(y). The green and red represent the geometry of the hill
width β1k(y) and β2k(y), respectively. The length of the bottom at
the region for three geometries remains constant. Two massive sepa-
ration flows at Re = 10 595 are simulated and modified, respectively,
and the RMSE of the velocity for these two massive flows obtained is
illustrated in Table IV. It can be seen that the velocity field obtained
by the modified model is closer to the LES result by comparing the
RMSE of the modified model and of the original RANS model with
those of the LES. In order to intuitively compare the advantages of
the modified model, the predictions of the velocity profiles obtained
at different locations of two massive separated flows are given in
Figs. 15 and 16.

FIG. 14. The geometries of periodic hill flow with the original geometry shown in
black, and the green and red represent the geometry of the hill width β1k(y) and
β2k(y), respectively.

TABLE IV. RMSE of the velocity for two massive separated flow obtained by compar-
ing the predicted results of the modified model and of the original RANS model with
those of the LES.

Massive separated flow Modified model RANS model

β1k(y) 0.056 0.091
β2k(y) 0.062 0.099
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FIG. 15. Predictions of the mean x-direction velocity (Ux/UB) profile for hill width
β1k(y) using the modified model compared with the predictions using LES and
the original RANS model at Re = 10 595.

FIG. 16. Predictions of the mean x-direction velocity (Ux/UB) profile for hill width
β2k(y) using the modified model compared with the predictions using LES and
the original RANS model at Re = 10 595.

The hill width of the green geometry in Fig. 14 is β1 = 1/2 times
the original geometry. The trained discrepancy model used in case
P2 is used to modify this massive separation flow. The modification
results of mean x-direction velocity profiles is presented in Fig. 15,
and it is shown that the results simulated by modified model and LES
approach are more consistent in both trend and magnitude than the
original RANS model and LES approach, which validate and verify
whether the prediction of the modified model is still superior to the
RANS model.

The red geometry in Fig. 14 has a greater slope with the hill
width β2k(y) (β2 = 1/3). The modification computation for this
massive separation flow is also derived from the trained discrepancy
model used in case P2. The modification results in Fig. 16 show that
the prediction accuracy of the modified model is still better than that
of the original RANS model. However, the modified model is still not
accurate enough to capture the reattached points.

E. Discussion
From the analysis of the results of interpolation and extrap-

olation modification, it can be seen that the modified model can
capture the flow field phenomenon similar to the LES result better
than the original RANS model. To further explore the generalization
of the modified model. A greater degree of extrapolation of case P3 in
Table V is performed. The flow at Re = 100 000 is modified. Mean-
while, a new case of ramp is also modified based on the discrepancy
model trained in case P3. The specific results of the two modification
computation are shown in Appendixes A and B, respectively.

Taghizadeh, Witherden, and Girimaji36 proposed a closed loop
training program that implements constraints in a self-consistent
manner, which addresses the need for physical guidance in the devel-
opment of machine learning-enhanced turbulence closure models.
Their study points out three closure elements in the two-equation
RANS model and also gives three key elements in machine learn-
ing modeling, namely, physical compatibility, training consistency,
and loss function formulation, respectively. Based on the mentioned
key elements, they incorporate the dynamics system into the train-
ing process to ensure consistency and compatibility among various
coefficients. The meaningful and innovative method of Taghizadeh,
Witherden, and Girimaji36 inspired us to discuss the compati-
bility and consistency of the closure model based on the neural
network.

The purpose of the machine learning-enhanced turbulence clo-
sure model is to hope that the prediction accuracy of the modified
RANS model meets the requirements of high-fidelity data. Based on
the above purpose, Ling, Kurzawski, and Templeton13 obtains an
improved Reynolds stress constitutive relationship through machine
learning and replaces the original Reynolds stress term of the
momentum equation with the trained Reynolds stress, which is
a unidirectional transfer from the machine learning to the RANS
equation solver. It is also the open loop training framework men-
tioned by Taghizadeh, Witherden, and Girimaji.36 However, this
method of explicit treatment of Reynolds stress has not signifi-
cantly improved the prediction accuracy of the posterior veloc-
ity field. Therefore, in order to ensure the implicit treatment of
Reynolds stress, the discrepancy in the anisotropic Reynolds stress
between the high-fidelity data and the original RANS model is
used to build a model in this study, and the discrepancy model is
applied to modify the momentum equation and transport equation.
In our training framework, the original transport closure coeffi-
cients are kept as unchanged as possible. Only the discrepancy of
Reynolds stress is updated by the network, and the updated con-
stitutive closure coefficients of the network are not used to modify
the transport closure coefficients based on compatibility constraints.
Therefore, the discrepancy model used in this study is not fully
compatible.

TABLE V. Cases used for discrepancy model training and the original RANS model modification; RMSE of velocity for periodic hill (Re = 100 000) and ramp (Re = 10 000)
obtained by comparing the predicted results of the modified model and the original RANS model with those of the LES.

Datasets RMSE

Cases Discrepancy model training cases Modification cases Modified model RANS model

P3 Periodichill : Re = 2800, 5600, 8400, 10 595 Periodichill : Re = 100 000 0.080 0.109
R1 Periodichill : Re = 2800, 5600, 8400, 10 595 Ramp : Re = 10 000 0.049 0.060
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In order to improve the prediction accuracy of the posterior
results, it is necessary to realize the bidirectional feedback trans-
fer between the machine learning turbulence model and the RANS
model solver. If the posterior result does not reach the prediction
accuracy of the high-fidelity data, the modified result in the solver
is fed back to the neural network, and the neural network starts to
retrain and feeds back to the solver again. Through the iterative feed-
back between network training and the solver, the posterior accu-
racy of the RANS modified model achieves high fidelity, that is, the
machine learning closed loop training framework is realized. This
method overcomes the inconsistencies and incompatibility between
various elements through iterative training and modification, so
the computational cost of the closed loop framework will become
higher.

Our research is not a completely closed loop model. However,
compared to the open loop unidirectional prediction model of Ling,
Kurzawski, and Templeton,13 the discrepancy of Reynolds stress in
the modified RANS model is solved iteratively by the network in
real time, which is similar to a semi-closed-loop training framework.
The initial state modeled in this paper is consistent with the ideal
state of closed loop iterative modification. That is, the posterior flow
field of the modified RANS model has achieved high-fidelity data
accuracy. Therefore, the input and output of the neural network all
come from high-fidelity data. The network training is performed
based on the high-order model and then fed back to the solver. The
solver realizes semi-implicit treatment of the Reynolds stress. The
closed loop training framework proposed by Taghizadeh, Wither-
den, and Girimaji36 provides an improvement goal and direction for
this study.

V. CONCLUSIONS
In the study of the typical data-driven Reynolds stress model,

high-fidelity Reynolds stress data as source terms are treated com-
pletely explicitly to solve the RANS equation. The mean velocity
field results obtained by this approach are not ideal. In this paper,
a semi-implicit treatment of the Reynolds stress anisotropy discrep-
ancy model is derived using a higher-order tensor basis with the aim
of improving the prediction accuracy of the mean velocity. A DNN
is constructed to train this discrepancy model based on the peri-
odic hill flow at different Reynolds numbers. In this approach, the

Reynolds stress term is not completely replaced, thereby ensuring
the implicit solution of the Reynolds stress in the RANS equation,
and the relaxation coefficient ensures the convergence of the model
as well.

First, interpolation modifications are performed based on
the Reynolds number. The modified model is then explored
further regarding its prediction capability by modifying the
medium-Reynolds-number flow fields. When performing modifica-
tion, the ability to capture anisotropic features and turbulent states
in triangles of the modified model have been improved compared
with the original RANS model. In addition, the modified model is
also able to accurately predict the mean velocity profile. For the
modified model, the values of the RMSE compared with the LES
results are 0.048 and 0.046, respectively, for two cases, which are
significantly lower than the corresponding RMSE values for the orig-
inal RANS model (0.081 and 0.064). Besides, the modified model
improves the prediction accuracy for the mean pressure coefficient
and mean friction coefficient of the underlying wall surface com-
pared with the original RANS model. In particular, the pressure
peaks and friction peak are more accurately captured; meanwhile,
the prediction of the recirculation region and the reattachment point
have also been improved. The above results show that the semi-
implicit treatment of Reynolds stress makes the model converge well
as well as improve the prediction accuracy, and thus, it would be
more applicable for industrialization.

Future work needs to examine the scope for generalizing the
modified RANS model, and we are planning to apply it to more com-
plex multiphase flows, such as cavitation flows and flows in complex
geometries. In addition, we will investigate the possibilities of using
the turbulence model coupled with the cavitation phase transition
to simulate the time-varying instability of cavitation flow with an
acceptable computational cost.
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FIG. 17. Prediction performance for the Reynolds stress anisotropy for the case (Re = 100 000) using LES, the modified model, and the original RANS model at three
locations (x/h = 2, 4, 6), plotted as barycentric maps with (a) x/h = 2, Re = 100 000; (b) x/h = 4, Re = 100 000; and (c) x/h = 6, Re = 100 000.
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FIG. 18. Predictions of the mean x-direction velocity (Ux/UB) profile using the
modified model compared with the predictions using LES and the original RANS
model at Re = 100 000. The blue and red numbers are the RMSE values from the
modified model and the original RANS model, respectively, and the black numbers
are the deviation reduction.

APPENDIX A: PREDICTION UNDER A GREATER
DEGREE OF EXTRAPOLATION MODIFICATION

To further explore the generalization of the modified model in
a high-Reynolds-number flow field, a greater degree of extrapola-
tion of case P3 in Table V is performed. The flow at Re = 100 000
is modified. Figure 17 presents the Reynolds stress anisotropy for
the case of Re = 100 000. It can be seen that the modified model is
still superior to the original RANS model in capturing the anisotropy
of the Reynolds stress with a greater degree of Reynolds number.
Figure 18 shows that the velocity prediction accuracy of the mod-
ified model is not significantly improved compared with LES but

FIG. 19. Computation domain for the ramp.

is better than that of the original RANS model. The RMSE for the
modified model compared with the LES result is 0.080, which is
significantly lower than the corresponding RMSE values for the orig-
inal RANS model (0.109). Therefore, the constructed Reynolds stress
discrepancy model not only has satisfactory prediction performance
for the low Reynolds and medium Reynolds numbers but also has
better prediction accuracy for a greater degree of Reynolds numbers
than the original RANS model.

APPENDIX B: RAMP

In order to verify the applicability of the modified model, in
addition to the interpolation and extrapolation modification based
on the Reynolds number, a modification computation of 2D ramp

FIG. 20. Predictions for the Reynolds
stress u′1u′1/k and u′1u′2/k obtained by
(a) LES, (b) the modified model, and (c)
the original RANS model.
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FIG. 21. Predicted mean velocity (Ux/UB) contours simulated by (a) LES, (b) the
modified model, and (c) the original RANS model.

is also carried out. The computation domain is shown in Fig. 19,
which extends 8h along the x direction, and its left side is the velocity
entrance with a height of 1.62h, where h is the height of the diffusion
section. The corner of the diffuser is 10○. The 2D RANS model is
used for baseline simulation, the inlet velocity is UB = 10 m/s, and
the Reynolds number is 104.

Using the training model corresponding to P3 in Table V, com-
bined with the modification method in Sec. II B, the 2D ramp is
modified. The predictions for the Reynolds stress u′1u′1/k and u′1u′2/k
simulated by LES, the modified model, and the original RANS model
are presented in Fig. 20. Compared with the RANS model, the pre-
diction accuracy of the modified model for Reynolds stress is closer
to the LES result. The improved prediction accuracy of the modi-
fied model is manifested in the separation of the flow field on the
lower wall and the flow field characteristics of the upper wall are
captured.

The velocity field is solved using the modified Reynolds stress,
and the result of the mean velocity contour is shown in Fig. 21(b).
In comparison with the target velocity data obtained by LES, the
RMSE was computed by our modified model as 0.049, which
is significantly lower than the RMSE computed by the original
RANS model (0.060). Meanwhile, compared with the results of
LES and the original RANS model [see Figs. 21(a) and 21(c)], it
can be seen that when 2.5 < x < 6, the prediction performance of
the velocity field obtained by the modified model is most signif-
icant. Therefore, this paper continues to analyze the prediction
results of the velocity profiles. Figure 22 demonstrates the pre-
dictions of the mean x-direction velocity (Ux/UB) profiles using
the modified model compared with the predictions using LES and
the original RANS model at four different locations (x/h = 3, 3.5,
4.5, and 5). It can be seen from the profile curves at four loca-
tions that the results of the modified model are in better agreement

FIG. 22. Predictions of the mean x-direction velocity
(Ux/UB) profiles using the modified model compared with
the predictions using LES and the original RANS model at
four different locations (x/h = 3, 3.5, 4.5, and 5) with (a)
x/h = 3, (b) x/h = 3.5, (c) x/h = 4.5, and (d) x/h = 5.
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with the results of the LES model than those of the original RANS
model.

DATA AVAILABILITY
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