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Abstract
Purpose  Periodic solutions of a harmonically forced Duffing oscillator with time-delay state feedback are investigated using 
the incremental harmonic balance method.
Method  In the process of solving, the explicit effect matrix of the time delay term was derived. The stability of the periodic 
solutions was determined by a method which combines the continuous time approximation and multivariable Floquet theory.
Results and Conclusion  On this basis, the frequency–amplitude response curve and stability characteristics of the primary 
resonance and the 1/3 subharmonic resonance were obtained. The stable results were compared with results obtained by the 
numerical method, which demonstrated the effectiveness and accuracy of the incremental harmonic balance method for the 
analysis of strongly nonlinear equations with time delays. The influence of the time delay and feedback control parameters on 
the primary and 1/3 subharmonic resonance is investigated. The periodicity of the effect of the time delay is also discussed.

Keywords  Incremental harmonic balance method · Duffing oscillator · Time delay · Primary and 1/3 subharmonic 
resonance · Continuous time approximation

Introduction

Duffing equation is a representative differential equation in 
the nonlinear dynamic system, and many nonlinear vibra-
tion problems in engineering practice, such as the nonlinear 
behavior of the rotor, the rolling motion of the ship, and 
the vertical vibration of the vehicle, can be studied using 
this equation. For example, Naik and Singru [1] studied a 
quarter-car model under active control using duffing equa-
tion. Hui and Jun [2] studied an active nonlinear control-
ler emulating a pendulum‑type auto‑parametric vibration 
absorber by Duffing oscillator. With the rapid development 
of active control system, the inevitable time delays in the 
control loops have drawn much attention. In recent years, 
more and more scholars pay attention to the study of Duffing 

system with time delay feedback control. Periodic solution 
of Duffing system is an important object of study, and there 
are two main types of study on periodic solution. One is to 
establish a dynamic model that is more in line with engineer-
ing practice which considers the complexity of structure, the 
other is to study the dynamic behavior of the system under 
complex excitation.

Hu et al. [3] studied the primary and 1/3 sub-harmonic 
resonance of a harmonically forced Duffing oscillator under 
state feedback control with a time delay using the method 
of multiple scales. Cantis´an et al. [4] analyzed the delay-
induced resonance in a harmonically forced Duffing oscilla-
tor under position feedback control. Qiang et al. [5] analyzed 
the two-degree-of-freedom coupling Duffing system with 
time delay by multi-frequency homotopy analysis method. 
Based on the singular perturbation theory, Bellizzi et al. [6] 
studied a linear oscillator subject to periodic excitation cou-
pled to a nonlinear energy sink with piecewise-quadratic 
damping characteristics. Oishi [7] conducted a research 
on the periodic solution of a time delay Duffing equation. 
Amer et al. [8] and Siewe et al. [9] studied the parametrically 
excited vibration of duffing vibrator with time delay feed-
back control, and the studies were both conducted by asymp-
totic perturbation theory. Rusinek et al. [10] investigated 
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the periodic solution and its stability of time delay Duffing 
equation. Wang and Li [11] studied the nonlinear character 
of a Duffing–van der Pol oscillator subjected to forced and 
parametric excitation using the method of multiple scales. 
Mitra et al. [12] studied the limit cycle oscillations and mul-
tiple entrainment phenomena in a Duffing oscillator under 
time-delayed displacement feedback. Jin and Hu [13] 14 
studied the primary resonance of a class of Duffing system 
with delay feedback under narrow-band random excitation 
and the feedback control of a class of double time-delay 
system under narrow-band random excitation. Jiang et al. 
[15] analyzed the dynamic response of a Helmholtz–Duffing 
energy harvester in the region of the primary resonance by 
the harmonic balance method.

It is found that studied on periodic solution and its stabil-
ity of Duffing system with delayed feedback control were 
conducted in terms of weak-nonlinearity, and primary reso-
nance was the main object of analysis. Moreover, singular 
perturbation theory is the dominating analytical method, 
including the multi-scale method, method of averaging, 
energy analysis, and singularly perturbed pseudo-oscillator 
analysis. In practical engineering, strong nonlinear prob-
lems and sub-harmonic resonance are often encountered. 
The analysis of the periodic solutions of a strongly nonlin-
ear time delay Duffing system has rarely been reported. In 
addition, singular perturbation theory has good adaptability 
to low-dimensional and weak nonlinearity systems, but it 
is very difficult to deal with high-dimensional and strong 
nonlinearity systems. Therefore, the periodic solution and its 
stability of a harmonically forced strong nonlinearity Duff-
ing oscillator with time delay state feedback is analyzed in 
this paper, and the incremental harmonic balance (IHB) 
method which can be used effectively in strong nonlinear 
system is adopted in our study.

The IHB method was proposed by Lau and Cheung [16] 
in 1981. This method combines the incremental method in 
numerical calculations and the harmonic balance method, 
and it has been widely applied on the research of high-
dimensional strong nonlinearities [17–26]. Many advantages 
of the IHB method have been listed in the literatures men-
tioned above. The most important one is that it can easily 
deal with strongly nonlinear problems. And this method is 
actually a semi-numerical and semi-analytical method, so 
with the help of computers, it can also easily deal with high-
dimensional nonlinear problems. In addition, by analyzing 
the stability of the periodic solution obtained by the IHB 
method, the unstable solution of the nonlinear system can 
be obtained.

In this paper, a theoretical process for applying the IHB 
method to solve the harmonically forced Duffing oscillator 
with time-delay state feedback is presented. A method that 
combines the continuous time approximation (CTA) and 
multivariable Floquet theory to determine the stability of 

the periodic solution is introduced. The periodic solution of 
the primary resonance and 1/3 subharmonic resonance, as 
well as its stability, are investigated. The effectiveness and 
accuracy of the IHB method were verified by comparing the 
results with those of a numerical integration method. The 
influence of the feedback control parameters and time delay 
on the nonlinear resonance is discussed.

IHB Method Applied to Nonlinear System 
with Time‑Delay State Feedback

To introduce the IHB method to analyze the nonlinear 
dynamics of a delayed system, the harmonically forced Duff-
ing oscillator with time-delay control [3] is considered:

In Eq. (1), ζ denotes the damping ratio, μ is the nonlinear 
stiffness coefficient, u is the displacement feedback param-
eter, υ is the velocity feedback parameter, td is the time delay 
in the control loop, f is the excitation amplitude, and ω is the 
excitation frequency. In our research, k = 1.

Letting τ = ωt, τd = ωtd, Eq. (1) can be transformed to the 
following:

where xd = x(τ–τd), and xd’ = x’ (τ–τd).
(1) The first step of the IHB method is a Newton–Raph-

son incrementation procedure. Let x0, x0d, f0, and ω0 denote 
a vibration state, the neighborhood state can be expressed 
by increments, denoted by Δ:

Substituting Eqs. (3)–(6) into Eq. (2), and neglecting all 
small high-order terms, the linearized incremental equation 
is obtained as follows:

(1)

d2x

dt2
+ 2�

dx

dt
+ kx + �x3 = 2u ⋅ x

(
t − td

)
+ 2� ⋅

dx
(
t − td

)
dt

+ f cos�t.

(2)�2x�� + 2��x� + x + �x3 = 2u ⋅ xd + 2�� ⋅ x�
d
+ f cos �,

(3)x = x0 + Δx,

(4)xd = x0d + Δxd,

(5)f = f0 + Δf ,

(6)� = �0 + Δ�.

(7)

�2
0
Δx�� + 2��0Δx

� + Δx + 3�x2
0
Δx − 2uΔxd − 2��0 ⋅ Δx

�
d

= R −
[
2�0x

��
0
+ 2�x�

0
− 2�x�

0d

]
Δ� + Δf cos �,

(8)
R = f0 cos � −

[
�2
0
x��
0
+ 2��0x

�
0
+ x0 + �x3

0
− 2u ⋅ x0d − 2��0 ⋅ x

�
0d

]
,
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where R̄ is a corrective value, which will equal zero when 
x0, x0d, f0, and ω0 are the exact solution.

(2) The second step of the IHB method is the Galerkin pro-
cedure, i.e., the harmonic balancing process. In the harmonic 
balancing process, the solution, including the increments, must 
be expanded as Fourier series, which are substituted into the 
linearized incremental equation (Eq. (7)). The coefficients of 
the Fourier series can be obtained by setting the coefficients 
of the harmonic terms on both sides to be equal.

We expand the steady state and its increment into a Fourier 
series,

where

In this paper, the key problem of using the IHB method to 
carry out delayed nonlinear analysis is determining how to 
obtain the Fourier series expression of the delayed terms xd 
and ∆xd. Based on Eq. (9), the Fourier series expression of the 
delayed terms xd and ∆xd can be expressed as

Assuming Nc = Ns = N0, Eq. (11) can be obtained.

(9)

x0(�) = a0 +

Nc∑
k=1

ak cos k� +

Ns∑
k=1

bk sin k� = CA

Δx(�) = Δa0 +

Nc∑
k=1

Δak cos k� +

Ns∑
k=1

Δbk sin k� = CΔA

,

C =
[
1, cos �, cos 2�,⋯ , cosNc�, sin�, sin2�,⋯ , sinNs�

]
,

A =
[
a0, a1, a2,⋯ , aNc

, b1, b2,⋯ , bNs

]T
,

ΔA =
[
Δa0,Δa1,Δa2,⋯ ,ΔaNc

,Δb1,Δb2,⋯ ,ΔbNs

]T
.

(10)

x0
(
� − �d

)
= a0 +

Nc∑
k=1

ak cos
(
k� − k�d

)
+

Ns∑
k=1

bk sin
(
k� − k�d

)
,

Δx
(
� − �d

)
= Δa0 +

Nc∑
k=1

Δak cos
(
k� − k�d

)
+

Ns∑
k=1

Δbk sin
(
k� − k�d

)
.

In Eq.,

Гd is the effect matrix of the time delay on the steady-state 
solution and its increment. It is obvious that the matrix is peri-
odic, and we can infer that the variation of the steady-state 
solution is periodic as the time delay increases.

Substituting Eqs. and into Eq., we obtain the following:

Applying Galerkin’s procedure for one time-period of 2π 
yields

We can obtain a set of linear algebraic equations in terms 
of ∆A, ∆ω, and ∆F, as follows:

where

(11)

x0
(
� − �d

)
= a0 +

N0∑
k=1

ak cos
(
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)

+
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bk sin
(
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(
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Δak cos
(
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+
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k=1

Δbk sin
(
k� − k�d

)
= C� dΔA.

� d =
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.
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0
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(15)KmcΔA = R + RmcΔ� + RfΔF,
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M, C, K, K3, Kd, Cd, F, Rf, and ∆F are given in detail as 
follows:

In Eq. (15), the number of incremental unknowns is greater 
than the number of equations available due to the presence 
of ∆F and ∆ω. If we are primarily interested in the ampli-
tude–frequency response curves for a certain excitation ampli-
tude, then excitation amplitude f is a constant, ∆f can be set to 
zero. ∆F = 0 can be obtained. Therefore, Eq. (15) is reduced to.

Eq. (20) is a set of linear algebraic equations, the number 
of unknowns is one more than the number of equations. In the 
process of solving, we can choose one of the unknowns as the 
control increment, such as ∆ω or one component of ∆A. The 
Newton–Raphson iterative method can be used to calculate 
the solution when the frequency ω or one component of the 
amplitude A is given. The criterion for stopping an iteration is 
that the corrective vector R is small enough.

It is noted that incrementing the frequency ω or increment-
ing one component of the amplitude A is generally success-
ful in calculating the response curves. However, it may not 
converge at the sharp peaks of the response curves. To auto-
matically track the amplitude–frequency response curve, an 
increment arc-length method as shown in Fig. 1 is adopted in 
this paper. This method can overcome this shortcoming and 
reduce the number of iterations.

Letting x0, x1, x2, and x3 be known points, the next point 
x4 can be predicted by increasing by a prescribed arc-length 
Δs to extrapolate the next point. If the arc length δ is used as 
a parameter, then with δi corresponding to xi, δ0 = 0, δ1 = s1, 
δ2 = δ1 + s2, δ3 = δ2 + s3, and δ4 = δ3 + Δs, one has

where

(16)Kmc = �2
0
M + 2�0C + K + 3K3 − 2Kd − 2�0Cd,

(17)R = F −
[
�2
0
M + 2�0C + K + K3 − 2Kd − 2�0Cd

]
A,

(18)Rmc = −
[
2�0M + 2C − 2Cd

]
A.

(19)

M = ∫
2�

0

C
TC��

d�,C = ∫
2�

0

C
T�C�

d�,K = ∫
2�

0

C
T
Cd�,

K3 = ∫
2�

0

C
T�x2

0
Cd�,Kd = ∫

2�

0

C
TuC� dd�,Cd = ∫

2�

0

C
T�C�Γdd�,

F = ∫
2�

0

C
T f0 cos �d�,Rf = ∫

2�

0

C
T
cos �d�,ΔF = Δf .

(20)KmcΔA = R + RmcΔ�

(21)x4 =

3�
i=0

⎛
⎜⎜⎜⎝

3�
j=0
j≠i

�4 − �j

�i − �j

⎞
⎟⎟⎟⎠
xi,

and Nf is the number of increments, i.e., the number of 
total degrees of freedom in Eq. (20). Further details about 
the arc-length increment method can be found in Cheung 
et al. [27].

Stability Analysis of Periodic Solutions

The stability of the steady-state solution is usually inves-
tigated by introducing a small perturbation. We let x0 be 
the obtained steady-state periodic solution and introduce an 
offset ∆x. Substituting x = x0 + ∆x into Eq. (2), the perturba-
tion equation can be obtained by omitting the small items 
of higher order,

This formula can also be obtained by setting R̄ , ∆ω, and 
∆f to zero in Eq. (7). Therefore, the stability of the periodic 
solution of Eq. (2) corresponds to the stability of the delayed 
ordinary differential equation with periodic coefficient 3μx2.

For a time-delay system with periodic coefficients, we 
first transform the delay differential equation into a differ-
ential equation without a time delay using the finite differ-
ence CTA method. Multivariable Floquet theory can then be 
used to study the stability of the differential equation without 
a time delay and with periodic coefficients [28]. This pro-
cedure can handle systems with multiple independent time 
delays or systems whose periods are not integer multiples 
of the time delays.

(1)	 The finite difference CTA method.

We let

Eq. (23) can be re-written as

The state variable of the system is expressed as q(τ), 
q(τ–τ1), 0 < τ1 ≤ τd. Because of the delay, the state vari-
able is infinite. The state variables with time delay q(τ–τ1), 
0 < τ1 ≤ τd can be discretized using the finite difference 
scheme. N is an integer, and Δ�d = �d∕N . The derivative of 
q(τ–i·τd) is replaced with the difference:

(22)si =
||xi − xi−1

|| =
√√√√√

Nf+1∑
j=1

[
xi(j) − xi−1(j)

]2
,

(23)
�2Δx�� + 2��Δx� + Δx + 3�x2Δx − 2uΔxd − 2�� ⋅ Δx�

d
= 0.

(24)q =
[
q1, q2

]T
=
[
Δx�,Δx

]T
.

(25)
q̇ = f

(
q(𝜏), q

(
𝜏 − 𝜏d

)
, 𝜏
)
= Gq(𝜏) + Gdq

(
𝜏 − 𝜏d

)
,

G =

[
−

2𝜁

𝜔
−

1

𝜔2

(
1 + 3𝜇x2

)
1 0

]
,Gd =

[ 2𝜐

𝜔

2u

𝜔2

0 0

]
.
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A finite dimensional state variable is defined as follows:

A state equation based on the extended state variable 
can be obtained:

in which

The stability of the Eq. (23) can be determined by the 
stability of the new state equation given by Eq. (28). In Eq. 
(28), R is a periodic function with a periodic coefficient 
3μx2, and we apply Floquet theory to analyze its stability.

(2) Multivariable Floquet theory.
Because x0 is a periodic function of τ, the period is 2π. 

Hence, R also is a periodic function with the same period 
as x0. For Eq. (28), there exists a fundamental solution Ф 
that satisfies the following matrix equation:

where C is the transition matrix. According to the Floquet 
theory, the stability criteria for the system is related to the 
eigenvalues of the transition matrix C. If all the moduli of 
the eigenvalues of C are less than 1, the motion is bounded, 
and therefore the solution is stable. Otherwise, the motion 
is unbounded, and the solution is unstable.

We can numerically calculate a fundamental solution of 
Eq. (28) using the initial condition Ф(0) = I. Then,

(26)

q̇
(
𝜏 − i ⋅ Δ𝜏d

)
=

1

Δtd

[
q
(
𝜏 − (i − 1) ⋅ Δ𝜏d

)
− q

(
𝜏 − i ⋅ Δ𝜏d

)]
.

(27)

p(�) =
[
q(�), q

(
� − Δ�d

)
, q
(
� − 2Δ�d

)
,⋯ , q

(
� − NΔ�d

)]T

=
[
p1(�), p2(�), p3(�),⋯ , pN+1(�)

]T
.

(28)ṗ(𝜏) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f
�
q(𝜏), q

�
𝜏 − 𝜏d

�
, 𝜏
�

1

Δ𝜏d

�
p1(𝜏) − p2(𝜏)

�

⋮

1

Δ𝜏d

�
pN(𝜏) − pN+1(𝜏)

�

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= R ⋅ p(𝜏),

(29)R =

⎡
⎢⎢⎢⎢⎢⎢⎣

G 0 ⋯ 0 Gd
1

Δ�d
I −

1

Δ�d
I

⋱

⋱
1

Δ�d
I −

1

Δ�d
I

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(30)
�̇(𝜏) = R(𝜏)�(𝜏),

�̇(𝜏 + T) = R(𝜏)�(𝜏 + T),

�(𝜏 + T) = C�(𝜏),

(31)C = �(T).

Following Friedmann’s method [29], we suppose that 
each period T is divided into Nk intervals, and the k-th inter-
val is denoted by ∆k = τk – τk-1. In the k-th interval, the peri-
odic coefficient matrix R(τ) is replaced by a constant matrix 
Rk,

The transfer matrix is given by the following formula,

Comparison and Verification

Other scholars carried out some studies on Eq. (1) by dif-
ferent methods. To verify the accuracy and precision of the 
method proposed in this paper, we compared the analysis 
results with those of two scholars.

Oishi[7] proposed a numerical method and obtained 
the amplitude-frequency response curve when ζ = 0.05, 
μ = 0.25, u = 0.125, υ = 0, k = 2.25, td = 0.1, f = 0.76. We 
made a comparison between our method and the method 
of Oishi, as shown in Fig. 2. The comparison results are in 
good agreement.

Rusinek et  al.[10] analyzed the primary resonance 
when ζ = 0.05, μ = 0.25, u = 0.025, υ = 0, k = 1, td = 4.833, 
f = 0.2 by multiscale method and Runge–Kutta integra-
tion. Figure 3 compares the amplitude frequency curve 
obtained by the method in this paper with the results of 
Rusinek et al. Comparatively, it is found that the calcula-
tion results of our method are consistent with the results of 
Runge–Kutta integration, and that it has higher precision 

(32)Rk =
1

Δk
∫

�k

�k−1

R(�)d�.

(33)

C = �(T) =

Nk�
i=1

�
exp

�
ΔiRi

��
=

Nk�
i=1

⎡
⎢⎢⎣
I +

Nj�
j=1

�
ΔiRi

�j
j!

⎤
⎥⎥⎦
.

Fig. 1   Cubic extrapolation to predict the next solution point
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compared with the first and the second approximations of 
multiscale method.

To achieve high precision, the multi-scale method 
needs high order approximation, which requires tedious 
derivation. However, the method proposed in this paper 
can easily achieve high order approximation analysis with 
the help of computer. However, compared with the multi-
scale method, the method presented in this paper has some 
shortcomings. It can only analyze the steady-state solution 
or the periodic solution, but cannot obtain the transient 
solution.

Primary Resonance

The amplitude–frequency curves of the primary resonance 
were obtained, as shown in Fig. 4. In the solution process, 
the number of harmonic terms was taken as Nc = Ns = 8, 
ζ = 0.05, μ = 4.0, u = 0.05, υ =  − 0.05, f = 0.5, and td = 0.0 or 
0.5. In this figure, the regions where the lines are solid are 
stable, i.e., the periodic solution is stable. The regions where 
the lines are dotted are unstable, i.e., the periodic solution 
is unstable. The stiffness nonlinearity μ was taken as 4.0, 
which indicated that the Duffing oscillator was a strongly 
nonlinear system with a hard spring.

Because of the positive cubic nonlinearity, the resonance 
peak of the amplitude–frequency curve is skewed to the 
right. The amplitude–frequency curve is divided into three 
segments. The first segment (A–C) is stable, and there are 
two peaks. The second segment (C–D) is unstable, and the 
third segment (D–E) is stable.

As the excitation frequency increases, when the second 
peak (point C) is reached, the periodic solution will jump 
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from the first segment to the third segment, and the ampli-
tude will suddenly decrease. If the excitation frequency 
starts large (to the right of D) and decreases to point D, the 
periodic solution will jump from the third segment to the 
first segment, and the amplitude will suddenly increase. The 
hysteresis loops is plotted in Fig. 4 to help understand how 
the system jumps between branches as the excitation fre-
quency is varied. After the time delay is taken into account, 
the amplitude–frequency curve is shifted further to the right, 
and the nonlinearity becomes more evident.

The results obtained by the fourth-order Runke–Kutta 
numerical integration method are plotted in Fig.  4 as 
square markers for comparison. The results obtained by the 
improved IHB method were in excellent agreement with 
those from Runge–Kutta method. The comparison proves 
that the improved IHB method is an efficient and accurate 
method for nonlinear systems with time delay state feedback. 
In addition, one of the advantages of the IHB method over 
the numerical integration method is that is can efficiently 

determine the unstable periodic solutions of nonlinear sys-
tems with time delays.

Figures 5 and 6 show the time histories and phase dia-
grams of the periodic solutions in the first and third seg-
ments, respectively, for u = 0.05, υ =  − 0.05, and ω = 1.8. In 
these two figures, the time history and phase diagram are 
very close to simple harmonic motion, because the first-
order harmonic response of the periodic solutions (i.e., the 
main harmonic whose frequency is equal to the excitation 
frequency) plays a dominate role in the primary resonance.

The frequency–amplitude curves for different feed-
back control parameters are shown in Fig. 7. The results 
in the figure show that the amplitude of the periodic solu-
tion decreases with the increase in the feedback parameter, 
indicating that the amplitude of the periodic solution can 
be effectively suppressed by the increase in the feedback 
control parameter. In addition, compared to a case with 
large feedback parameters, the amplitude–frequency curve 
deviates more significantly to the high-frequency side when 
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the feedback parameters are small, indicating that when 
the feedback parameters are small, the nonlinearity is more 
evident. When the feedback parameter is large enough, the 
unstable segment of the amplitude–frequency curve will 
become stable, and the periodic solution will not jump with 
the increase or decrease of the excitation frequency. It is 
clear that there is a critical parameter choice for which hys-
teresis disappears and the solution becomes monotonic.

1/3 Subharmonic Resonance

To study the 1/3 subharmonic resonance of the controlled 
system, Eq. is rewritten as.

The improved IHB method was applied to analyze 
this formula. In this section, we set ζ = 0.05, μ = 0.05 or 
0.5, u = 0.05, υ =  − 0.05, f = 40, and td = 0 or 0.5. The fre-
quency–amplitude curves of the 1/3 subharmonic resonance 
when μ is taken as 0.05 and 0.5 are shown in Figs. 8 and 
9, respectively. The solid line segments are stable, and the 
dotted line segments are unstable. The results of the two fig-
ures show that the larger the excitation frequency, the larger 
the vibration amplitude. The amplitude–frequency curve of 
the 1/3 subharmonic resonance has the shape of a Fig. 8. 
The stable and unstable segments intersect each other, and 
the amplitudes of the stable and unstable periodic solutions 
change on either side of the intersection point.

In Fig. 8, μ is taken as 0.05. When td = 0.5, the ampli-
tude–frequency response curve is basically consistent with 
that for td = 0.0, but the excitation frequency range where 

(34)
�2x�� + 2��x� + x + �x3 = 2u ⋅ xd + 2�� ⋅ x�

d
+ f cos 3�.

the 1/3 subharmonic resonance occurs is shifted in the posi-
tive direction. However, the case when μ was taken as 0.5 
is shown in Fig. 9. In addition to this shift when td = 0.5, 
the excitation frequency range where the 1/3 subharmonic 
resonance occurs is much larger than the range when td = 0.0. 
This shows that the time delay has a great influence on the 
frequency range of the 1/3 subharmonic resonance.

In addition, the improved IHB method is also compared 
with the fourth-order Runge–Kutta method. The results of 
the two methods were in good agreement, which further 
verified the correctness of the method.

Based on Eq., the harmonic amplitude of the periodic 
solution for each order can be calculated by.

The curves relating the amplitudes of the first and third 
harmonics and the excitation frequency corresponding to the 
results in Figs. 8 and 9 are given Figs. 10 and 11, respec-
tively. The results show that there is a subharmonic vibration 

(35)Ai =

√
a2
k
+ b2

k
.
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(i.e., the first order harmonic) whose frequency is 1/3 the 
excitation frequency. This indicates that, due to the cubic 
nonlinearity, the Duffing oscillator exhibits 1/3 subharmonic 
resonance.

In Figs. 10 and 11, the amplitude–frequency curves of the 
first-order harmonic show that the larger the frequency is, 
the larger the amplitude is. On the contrary, the amplitude 
of the third-order harmonic decreases as the excitation fre-
quency increases. Under the same excitation frequency in 
the first-order harmonic, the amplitude of the stable solution 
is larger than that of the unstable solution. However, there is 
an intersection between the stable segment of the first-order 
harmonic and the unstable segment of the third-order har-
monic, the relative sizes of the stable and unstable solutions 
on either sides of the intersection are opposite.

As shown in Figs. 8 and 9, the amplitude–frequency curve 
of the 1/3 subharmonic resonance has a Fig. 8 shape, and the 
stable and unstable segments intersect each other. Based on 

Figs. 10 and 11, this is caused by the third-order harmonic 
vibration.

Figures 12 and 13 show the time history curves and 
phase diagrams of the stable periodic solution in Fig. 7 
when the excitation frequency is 4.5 and 6.0, respectively. 
Figures 14 and 15 show the time history curves and phase 
diagrams of the stable periodic solution in Fig. 9 when the 
excitation frequency is 7.5 and 10.0, respectively.

Comparing Figs. 12 and 13 as well as Figs. 14 and 15, 
it is evident that the time-history curves and phase dia-
grams are closer to a simple harmonic vibration if the fre-
quency is larger. This can be explained by Figs. 10 and 11. 
With the increase in the excitation frequency, the ampli-
tude of the first-order harmonic (i.e., the vibration whose 
frequency is 1/3 the excitation frequency) becomes larger 
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and larger, while the amplitude of the third-order harmonic 
become smaller. Therefore, when the excitation frequency 
is larger, the first-order harmonic will become dominant in 

the periodic solution, and the time-history curve and phase 
diagram become closer to the single-frequency simple har-
monic vibration.

Periodicity of the Effect of Time Delay

As shown by Eq. (11), the effect matrix of the time delay Гd 
is a periodic function of td, and its period is 2π/ω. Thus, we 
infer that effect of the time delay on the nonlinear response 
is periodic. The relationship between the periodic solu-
tion amplitude and the time delay with different excitation 
frequencies ω was calculated and is shown in Fig. 16. The 
amplitude of the periodic solution varies periodically with 
the time delay, and the period is 2π/ω.

Xu [30] investigated the periodic solutions of nonlinear 
systems with delays by applying averaging methods, and the 
periodicity of the effect of the delay on the periodic solu-
tion and its stability were proven in their studies. Based on 
the analysis of the IHB method, the same conclusion was 
obtained. This mechanism for this effect was further con-
firmed in this analysis.

Conclusion

In this paper, the explicit effect matrix of the time delay 
is obtained by deriving the harmonic expansion formula. 
A method that combines the CTA and Floquet theory to 
analyze the stability of the periodic solution is introduced. 
On this basis, the primary and 1/3 subharmonic resonance 
of a harmonically strongly nonlinear Duffing oscillator with 
time-delay state feedback is presented. The stability results 
are compared with the results obtained by the Runge–Kutta 
integration technique. The results obtained by both methods 
were in good agreement. The results demonstrated that the 
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improved IHB method can efficiently and accurately obtain 
periodic solutions for nonlinear systems with time-delay 
state feedback. In addition, the IHB method can efficiently 
probe the unstable solution branches of nonlinear systems 
with time delays, whereas a numerical solver misses them 
entirely.

For the harmonically forced hard-spring Duffing oscil-
lator with time-delay state feedback, the following can be 
concluded:

(1)	 When the time delay is considered, the peak of the pri-
mary resonance amplitude–frequency curve is shifted 
to the right. Furthermore, the whole amplitude–fre-
quency curve of the 1/3 subharmonic resonance is 
shifted in the positive direction, and the frequency 
range of the 1/3 subharmonic resonance becomes much 
larger. This indicates that the nonlinearity of the system 
will become stronger after the time delay is considered.

(2)	 When the 1/3 subharmonic resonance occurs, the 
amplitude of the first-order harmonic will increase 
as the excitation frequency increases. Otherwise, the 
amplitude of the third-order harmonic decreases as 
the excitation frequency increases. The amplitude–
frequency curve of the 1/3 subharmonic resonance is 
Fig. 8 shaped, and the stable and unstable segments 
intersect each other. Analysis showed that this is caused 
by the third-order harmonic vibration.

(3)	 The amplitude of the periodic solution can be effec-
tively suppressed by increasing the feedback param-
eter, and the effect of the nonlinear spring is naturally 
weakened. There is a critical parameter for which the 
unstable periodic solution will disappear and hysteresis 
disappears.

(4)	 It can be intuitively seen from the time-delay effect 
matrix that the periodic solution changes periodically 
with the time delay, and the calculation results also 
verified this conclusion.

The conclusion of this paper can explain some non-
linear phenomena in actual mechanical system. In addi-
tion, the method proposed in this paper provides a reliable 
means for scholars to carry out quantitative analysis of 
nonlinear systems with time-delay feedback control, it can 
also be applied to high-dimensional strong nonlinear sys-
tems, thereby providing a foundation for the further study 
of time-delay nonlinear systems.
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