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A B S T R A C T

Fault diagnosis based on vibration signals in active magnetic bearing-rotor systems is an important research
topic. However, it is difficult to obtain discriminative features to represent faults due to the nonlinear and non-
stationary characteristics of the vibration signals and diverse sources of failures. Hence, this paper proposes
a novel end-to-end learning mechanism of multi-sensor data fusion to learn fault representation based on the
structural characteristics of active magnetic bearings. Taking the five displacement sensors of active magnetic
bearing as signal sources, generalized shaft orbits are constructed and converted into discrete 2D images.
Based these 2D images, a multi-branch convolutional neural network is designed to achieve high discriminative
features and fault types. The experiments are performed on the rig supported by active magnetic bearings, and
the effectiveness of the proposed algorithm is verified, proving it suitability in cases with changing rotating
speeds and sample lengths.
. Introduction

Active Magnetic Bearing (AMB) has been developed in the past
0 years, using electromagnetic force as the supporting force to achieve
on-contact support with the rotor. Due to the characteristics of non-
ubrication and friction-free, AMBs are widely used in many industrial
roducts. In the main circulator of the high-temperature gas-cooled
eactor nuclear power plant, the usage of AMBs avoids the contami-
ation of the circulating medium helium with lubricating oil [1]; Due
o its active control capability, AMB can suppress the rotor vibration at
he bending frequency and enable the operation of high-speed motors
bove the critical speed; AMB can produce a large bearing capacity and
re suitable in large-scale rotors or rotating machinery with complex
erodynamic characteristics and high loads [2]. AMBs are generally
pplied in cases of high safety, high speed, and heavy load; therefore,
nce the machines malfunction, it will cause serious consequences and
osses. Automatic fault diagnosis research on the AMB-Rotor system
AMB-R) is required to provide maintenance decisions and failure
arnings.

The working principle of AMB is as follows. The displacement
ensors of the AMB measure the position of the rotor and transmit
he displacement signals to the controller. Compared with reference

∗ Corresponding author at: Institute of Nuclear and New Energy Technology, Tsinghua University, China.

signals, the controller computes the deviations and adjusts them in the
feedback system and then sends commands to the power amplifiers. Ac-
cording to the commands, the power amplifiers change currents in the
electromagnet to generate an electromagnetic force, drawing the rotor
back to the center position [3]. Due to complexity of AMB-R, automatic
fault diagnosis methods have rarely appeared in the literatures. The
research on rotor dynamics based on the failure of AMB-R is helpful in
understanding the failure mechanism but is hardly applied in a direct
manner to the automatic judgment of failure. At present, the automatic
diagnosis method of AMB-R commonly used in engineering is mainly
based on ISO14839 [4]. According to the amplitude of signals threshold
collected by the sensors, the state of AMB-R is judged as normal or
faulty, which is easily implemented and linked to a distributed control
system. However, this method is prone to noise interruptions, lacks
ease in issuing early warnings and provides virtually no possibility to
distinguish the type of faults.

The AMB-R is a typical type of rotating machinery. In recent years,
the combination of signal processing and machine learning has devel-
oped rapidly in the intelligent fault diagnosis of rotating machinery.
Zhao [5] performed wavelet transform on the vibration signal, con-
verted the transformed data into a two-dimensional form and used the
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data as input for a deep residual neural network to analyze the fault
type of the rolling bearings. Ou [6] calculated the Laplacian energy
of the fault signals as features, used the weighted 𝐾 nearest neighbor

ethod with the Mahalanobis distance metric to diagnose the bearing
aults. Zhao [7] applied the Hilbert–Huang transform to the vibration
ignal as the fault feature and combined it with a deep convolutional
eural network to realize the fault classification of a planetary gearbox.
ei [8] selected features with small intra-class dispersion and large
nter-class dispersion from 43 sets of time-domain, frequency-domain
nd time–frequency-domain features, and classified faults together with
n adaptive neuro-fuzzy inference system. In general, based on signal
rocessing technology, the manually designed features merge the do-
ain knowledge but have certain limitations in terms of fully reflecting

he difference in characteristics between fault types.
Different from the methods of manually designed features using

ignal processing technology, deep neural networks can automatically
earn features with informative semantics from the raw data even with-
ut domain knowledge, and the representation learning mechanism for
btaining fault features is called end-to-end learning. Shao [9] input the
riginal vibration signal fragments into a series of deep autoencoders
ith different activation functions, aggregated the output results of the
idden layers in the autoencoders to obtain the fault diagnosis results
f rolling bearings. Wen [10] divided the time-domain signal captured
y the vibration sensor into a series of equal-length segments serving
s a row of pixels in a two-dimensional image, and LeNet5 was used
o identify the image to achieve bearing fault classification. Jiang [11]
ampled vibration signals according to different sampling rates to form
hree signal sequences with different sampling rates, and used a Con-
olutional Neural Network(CNN) to classify the faults under varying
orking conditions. Wang [12] captured the fragments of the original

ignals by sliding windows, and adopted a bidirectional gated recurrent
nit network to obtain two hidden layers that were combined as a
eature to predict the wear of CNC machine tools. Hu [13] compressed
he signal into the coefficients of the basic vectors by using compressed
ensing technology, and intercepted the fragments from the compressed
ignal to form a 2D image to achieve fault classification results by a
ultiscale network. Zhang [14] reshaped the acoustic signals into a 2D

mage, and viewed each point in the image as a vertex on the graph
hat was related to its 8 neighbors by edges, transforming the image
nto graph, and a graph convolutional neural network was employed
or further feature learning. Generally, it is necessary to reconstruct
he data form of the original signals when using end-to-end learning
o learn an effective feature representation under the conditions of the
imited samples and varying working conditions.

Compared with signals captured by a single sensor, those signals
aptured by multiple sensors provide more information of the oper-
ting states of the system. Through an effective fusion mechanism, a
ore distinguishable fault representation can be obtained. Duan [15]
roposed that the multi-sensor data fusion methods in fault diagnosis of
otating machinery can be divided into data level, feature level and de-
ision level. Safizadeh [16] installed two acceleration and load sensors
n the bearing-rotor system, extracted time-domain and frequency-
omain features, classified faults according to the K-nearest neighbor
nd used the waterfall model for data fusion. Yan [17] regarded the
ampling points captured by multiple sensors at the same time as
ibration points in a high-dimensional space, and acquired a histogram
escription of faults by calculating the distance from all vibration
oints to the zero center. Wang [18] placed the multiple signals side
y side, cut signals into several segments along the time axis, and
onnected them in a 2D matrix which was input into a CNN to achieve
lassification results. Te [19] captured spatial–temporal relationship
nformation between multiple sensors, and the series of signals were
onverted into a symbol sequence. The symbol transfer matrix between
ifferent sequences was constructed, and the result was merged as a
D image input to a CNN. Xia [20] directly took each signal as a
2

aw of an image, and the multiple signals were constructed into a 2D
image and classified by CNN. Jin [21] used various types of sensors
to capture signals, performed Fast Fourier Transform (FFT) and joined
feature vectors input to a 1D CNN. Liu [22] calculated low-dimensional
features of signals captured by each sensor and then combined features
into high-dimensional vectors. Deep auto-encoder and full-connected
deep neural network were used to separately reduce the feature di-
mensionality and classify faults. Zhao [23] placed the signals captured
by different sensors side by side, cut them into several consecutive
segments, and extracted the time- and frequency-domain features of the
corresponding segments. These features were directly connected, and
the characteristics of the time segment sequence were used as inputs
to a Recurrent Neural Network(RNN) to assess the health states of the
mechanical system. Wang [24] implemented a CNN to extract features
from multi-level signals captured by vibration and current sensors and
used RNN to fuse the information in one framework. Although the
fusion algorithms have achieved good results, it still needs to install
additional sensors in the system, which increases the complexity of the
system. Moreover, the contribution of the installation positions of the
sensors is usually neglected resulting in information loss.

The shaft orbit is considered as a representation of the information
fusion of two sensors placed vertically in the same plane and contains
substantial intuitive information about the operation state of the rotor.
Shi [25] extracted the high-resolution spectrum of the signal to obtain
a pure shaft orbit that removes interference terms, calculated moment
and curve features, and determined misalignment, imbalance, and rub-
impact failure; Yan [26] divided the area covered by the shaft orbit into
sub-regions such as grids, sectors, and counted the number of sampling
points of the shaft orbit in sub-regions to construct a histogram as
features, and used the improved AdaBoost algorithm to classify the
faults. Wen [27] obtained the entropy values on each sub-regions the
points of shaft orbit falled and used fuzzy C-means clustering algorithm
as a tool for fault discrimination. Wu [28] divided the five types of
shaft orbits into 15 subcategories associated with the severity of the
faults, and utilized the fine-tuned LeNet5 to classify the faults according
to the images corresponding to the shaft orbits. The requirements for
the sensor installation locations limit the application of shaft orbits.
Moreover, features based on the shaft orbit are manually extracted and
are easily susceptible by noise interference, such that preprocessing
steps are necessary to remove noises.

Intelligent fault diagnosis is essentially a pattern recognition prob-
lem, and feature extraction is the key problem. Compared with mechan-
ical bearings, AMBs are mechatronic equipment; therefore, the sources
of AMB-R failures are complex, which may come from rotors, couplings,
gear boxes in mechanical components, or from power amplifiers and
sensors, or be generated due to the lack of robustness of the control
algorithm. The fault phenomenon of AMB-R is highly complicated, and
the nonlinearity and non-stationarity of the fault signals are prominent
and difficult to identify, which presents more great challenges for
the fault description of the AMB-R than that of traditional rotating
machinery supported by mechanical bearings.

To overcome the abovementioned problems, the manuscript pro-
poses a fault diagnosis algorithm based on the generalized shaft orbit
combined with the characteristics of AMB-R to achieve multi-sensor
fusion, and implements end-to-end learning with CNN to classify fault
types. The main contributions are threefold as follows:

First, the signals captured by the five displacement sensors inte-
grated in AMB are used for analysis, which avoids installing additional
vibration sensors and reduces the complexity of the system. Moreover,
based on the special positional relationship between the sensors, the
traditional concept of shaft orbit is expanded, and the generalized shaft
orbits by any two sensors in AMB are constructed, which provide sensor
coupling information for multi-sensor fusion.

Second, the Multi-branch CNN(MCNN) is designed to fuse the in-
formation of multiple sensors without the need to manually extract
features, and to obtain a high-level representation of the fault in an end-

to-end learning manner. To our best knowledge, it is the first time that
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Fig. 1. Sensors arrangement in AMB.
Fig. 2. The simulation of shaft orbits.
deep learning methods have been introduced into the fault diagnosis
research of AMB-R.

Third, it is verified that the proposed algorithm can be used in
a variety of working conditions through experiments, such as speed
changes, and can also be utilized for training samples with different
lengths, which improves the application scope of the algorithm.

The manuscript is organized as follows. Section 2 introduces the
Shaft Vibration Image (SVI). MCNN is detailed in Section 3. A series
of experiments are performed on the test rig in Section 4. Section 5
presents the summary and outlook.

2. Shaft vibration image

The five displacement sensors of AMB have two functions: one is to
feedback deviation information in the control loop, and the other is to
monitor the operating state of AMB-R. Fig. 1 shows positions of sensors,
which are named X1, Y1, X2, Y2 and Z. Z is an axial displacement
sensor, and the others are radial sensors. X1/Y1 and X2/Y2 are both
installed orthogonally. X1/X2, Y1/Y2 are located in the same axis line
along the rotor. According to the definition of traditional shaft orbit,
two shaft orbits are obtained by the signals captured by X1/Y1, X2/Y2.
Obviously, they do not fully show the coupling relationship between
the five sensors, leading to information loss of the fault representation.
Hence, the generalized shaft orbit constructed by the signals is captured
by any two sensors in AMB and its discretized data form will be given
to describe faults comprehensively.

2.1. Generalized shaft orbit

Shaft orbit is a two-signal combination requiring two vibration
sensors placed orthogonally in the same plane perpendicular to the axis.
It not only reflects the motion orbit of the geometric center of the rotor,
but also fuses the information of the two sensors and embodies the
correlation between the two channels of signals. As the shape of the
shaft orbit varies under different health states of rotating machinery,
shaft orbit is an effective tool to describe faults and often employed in
monitoring.
3

Essentially, shaft orbit is a kind of Lissajous figure and reflects the
combination result of two signals. Under normal circumstances, two
vibration sensors 𝑆1, 𝑆2 capture two signals 𝑥1, 𝑥2 denoted as:

𝑥1 = 𝐴1𝑠𝑖𝑛(𝜔𝑡 + 𝜑)

𝑥2 = 𝐴2𝑠𝑖𝑛(𝜔𝑡 + 𝜑 + 𝜃)
(1)

where 𝜔 is the rotational angular frequency, and 𝜃 is the phase dif-
ference of the two signals, i.e., the angular difference of the 𝑆1, 𝑆2
positions relative to the axis center.

When 𝑆1, 𝑆2 are placed orthogonally in the same plane perpen-
dicular to the axis, i.e., 𝜃 = 𝜋∕2, 𝑥1, 𝑥2 are synthesized into a shaft
orbit.

If 𝐴1 = 𝐴2 = 𝐴:

𝑥1
2 + 𝑥2

2 = 𝐴2 (2)

and the shape of the shaft orbit in Eq. (2) is a circle (see Fig. 2(a)) in
the coordinate system.

If 𝐴1 ≠ 𝐴2:

𝑥12

𝐴1
2
+

𝑥22

𝐴2
2
= 1 (3)

and the synthesized orbit in Eq. (3) is an ellipse (see Fig. 2(b)).
When an abnormality occurs, the shaft orbit is no longer a circle. For

example, if there is a large number of triple fundamental components
in 𝑥1 as follows:

𝑥1 = 𝐴1𝑠𝑖𝑛(𝜔𝑡 + 𝜑1) + 𝐴2𝑠𝑖𝑛(3𝜔𝑡 + 𝜑2)

𝑥2 = 𝐴1𝑠𝑖𝑛(𝜔𝑡 + 𝜑1 + 𝜋∕2)
(4)

the shaft orbit is distorted compared to that of a normal circle (see
Fig. 2(c)).

However, the shaft orbit has strict requirements on the positions of
the two sensors. If the position limitation is relaxed, the two signals 𝑥1
and 𝑥2 captured by any arbitrary sensors in AMB-R can also synthesize
an orbit 𝐺 which is defined as ‘‘generalized shaft orbit’’ (GSO) as
Eq. (5):

𝐺 = 𝑥 + j𝑥 (5)
1 2
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Fig. 3. Sensors arrangements, simulated signals and their synthetic orbits. (a) Conventional shaft orbit (b) GSO.
Fig. 4. The formation process of the SVI.
where j =
√

−1.
Analogous to the conventional shaft orbit, the amplitudes of any two

signals make up coordinate points that are connected into GSO in the
Cartesian coordinate system. Taking X1 and X2 in AMB as an example,
the two sensors are located on the same line along the axial direction
of the rotor, i.e., 𝜃 = 0. In the normal state, the synthetic GSO is

𝑥1 =
𝐴1
𝐴2

𝑥2 (6)

As Eq. (6) indicates, the GSO is a straight line. When a failure occurs
in the system, the GSO is distorted and no longer a straight line.

Fig. 3 shows the comparison of the shaft orbit and a kind of GSO,
including their sensor arrangements and simulated signals. It can be
concluded that shaft orbit is a special case of GSO. From the shaft
orbit to the GSO, it extends the usage of the shaft orbit and explores
the coupling relationship in more combinations of sensors, providing
abundant information for diagnosing faults.
4

2.2. Shaft vibration image

The GSO contains discriminative information and can be adopted as
a basis for determining the health states of AMB-R. To input GSOs into
machine learning models, it needs to transform GSO into a discretized
representation as follows.

First, the signals 𝒙𝟏 = [𝑥11, 𝑥12,… , 𝑥1𝑛], 𝒙𝟐 = [𝑥21, 𝑥22,… , 𝑥2𝑛] are
captured by two sensors 𝑆1, 𝑆2 fixed at arbitrary positions. A series
of vibration points (𝑥1𝑡, 𝑥2𝑡), 𝑡 = 1, 2,… , 𝑛 are drawn in the coordinate
system 𝑋1-𝑋2 to form GSO 𝐺.

Then, 𝒙𝟏,𝒙𝟐 are mapped to the range of [0,1] separately and the
coverage of 𝐺 in the coordinate system is normalized in two directions,
implying 𝐺 is constrained to a square area named the orbit area. The
orbit area normalizes the amplitude of the signals and eliminates the
difference in the absolute magnitude of various GSOs. It should be
noted that the absolute magnitude of the amplitude is also an important
criterion, and faults can be identified according to a simple threshold
in some cases, which is out of our scope. The relationship between the
amplitudes of different signals is mainly considered in this paper.
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Fig. 5. Illustration of SVIs at various speeds.
Fig. 6. The SVIs constructed by samples with variable lengths.
Finally, the coordinates are discretized, and the orbit area is divided
into 𝐿2 grids. The grids where the vibration points fall are set as active
areas, vice versa, are set as inactive areas. Specifically, the active area is
assigned with a value 1, and the inactive area is represented by 0. The
orbit area can be regarded as a black-and-white image with 𝐿2 pixels
called shaft vibration image, which is essentially a 1–0 matrix.

Fig. 4 shows the formation process of the SVI.

2.3. Discussion

The SVI is based on the concept of the GSO and derives the fusion
of two-sensor data, reflecting the coupling relationship between the
signals captured by two arbitrary fixed sensors in AMBs. The SVI
discretizes the two signals into a black-and-white image and compresses
raw data, which transforms the problem of fault diagnosis into a shape
recognition task. From the formation process of the SVI, the following
characteristics can be summarized:

First, the SVI is independent of the rotating speed of the rotor.
As the AMB-R operates normally, the SVI stably presents a standard
shape regardless of the speed. Fig. 5 gives some SVIs collected at
different rotating speeds during the speed increasing process of a high-
speed motor and the shapes of SVIs are almost consistent. Hence,
the algorithms based on SVIs can be utilized under the conditions of
varying speeds.

Second, as long as the length of sample signals is greater than one
cycle, the SVI presents a whole shape, as exhibited in Fig. 6. In a normal
operating state, the shape of the SVI does not change significantly
as the number of sampling points increases. Hence, when the signal
length is greater than one cycle, the SVI can be constructed from signals
with variable lengths or variable sampling rates, and still maintain a
relatively fixed shape. It provides the opportunity to detect faults in
the shortest time while making it unnecessary to collect enough data
points.

Third, SVI represents the shape of the GSO with a clear physical
meaning. The distinguishability of the image shapes makes it possible
to achieve a high accuracy of fault classification.

Strictly speaking, the SVI is a reorganization of the raw data,
which is a kind of data-level fusion. The description ability of SVI is
still limited; thus, it requires further information mining in machine
learning models.
5

Fig. 7. Convolutional layer.

3. Multi-branch CNN

As mentioned previously, SVI is a discrete form of GSO that converts
two signals into a black-and-white image to provide an input for
machine learning models. It is necessary to utilize deep learning models
to further extract high-level semantic information to carry out effective
fault classification. CNN, as a successful deep learning model, is chosen
as the basic model. We combine SVI with improved CNN to achieve
end-to-end learning.

3.1. SVI-CNN

LeCun [29] first applied the backpropagation algorithm to CNN
and designed LeNet to succeed in handwritten digit recognition. With
the development of new deep learning technologies such as ReLu and
dropout, AlexNet became the first modern deep convolutional network
and achieved a major breakthrough in image classification [30]. Com-
pared to fully connected deep neural networks, CNN is structurally
composed of convolutional layers, activation functions, pooling layers,
and fully connected layers, and its input can be 1D signals or 2D images.

Convolutional layer—Convolution is an important operation for
extracting features in image understanding. A plurality of convolution
kernels is introduced in the convolutional layer, and the convolution
kernel is convolved with the input images to extract feature information
such as edges and textures in the images. At the same time, the mecha-
nism of weight sharing is adopted, which computes much less than the
fully connected layer. The working principle of the convolutional layer
is shown in Fig. 7

Activation functions are adhered after convolutional layers or fully
connected layers to handle nonlinear problems. Since deep neural
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Fig. 8. Activation function: ReLu.

Fig. 9. Maximum pooling.

networks require that the interior of the network is everywhere, it
demands activation functions that are differentiable, such as tanh,
ReLu, and sigmoid. ReLu is used in this paper (see Fig. 8).

The pooling operation is essentially a downsampling technique to
reduce the dimensionality of the output feature vector of the convolu-
tional layer, reducing the possibility of overfitting and improving the
robustness of the model. Typical operations include average pooling
and maximum pooling. The principle of maximum pooling used in the
proposed algorithm is shown in Fig. 9.

Through a series stacked combinations of convolutional layers and
pooling layers, the features of the input data are obtained. At the end
of CNN, one or more fully connected layers are added to enable the
network achieve high-order reasoning ability and act as a ‘‘classifier’’.
The last fully connected layer is always activated by softmax in the
classification task, and the loss function is generally based on cross
entropy.

The proposed algorithm, named SVI-CNN, consists of a series of
alternately stacked convolutional and pooling layers, and a number
of fully connected layers. The input and output of SVI-CNN are SVIs
and fault types separately corresponding to the SVIs. The framework of
SVI-CNN is presented in Fig. 10.

The procedure for fault diagnosis using SVI-CNN is summarized as
follows. First, the vibration signals are obtained under different fault
states during the operation of AMB-R, and are cut into a series of
samples, which are further divided into a training set and a testing set.
Second, the SVI is calculated according to the signals in each sample.
6

Third, SVIs and the fault category of each samples in the training are
set as input and output of the CNN respectively to train the network
parameters of the CNN. Finally, the SVI of the testing samples are input
to the trained CNN and fault categories are determined.

As an end-to-end learning mechanism, SVI-CNN effectively mines
the fault feature information in SVIs. However, for AMB-R, there are
five sensors, and 10 SVIs can be obtained at the same time. Conse-
quently, the information of these 10 SVIs can be integrated to fully
reflect the fault information; however, this situation create an impossi-
ble scenario for SVI-CNN to address. Therefore, it is necessary to design
a new network structure and merge the information of SVIs composed
of more than 2 sensors.

3.2. MCNN

As only two vibration sensors are installed in the rotating machin-
ery, one SVI can be constructed and the diagnosis result is gained
by SVI-CNN. However, when the system is equipped with 𝑁 sensors
satisfied 𝑁 > 2, more SVIs are generated so that SVI-CNN cannot handle
this circumstance. For AMB-R, 𝑁 = 5. Accordingly, a multi-branch
CNN is designed to merge multiple SVIs. Unlike the conventional CNN,
MCNN consists of a multi-branch part and a combination part.

The multi-branch part of MCNN comprises 𝑁(𝑁 − 1)∕2 branches.
Every branch is independent of each other and is made up of several
convolution layers and pooling layers alternately. The input of each
branch is one SVI 𝐬𝑖, 𝑖 = 1, 2,… , 𝑁(𝑁 − 1)∕2, and there are

𝐳𝑖 = 𝐹𝐵𝑖
(𝐬𝑖) (7)

where 𝐹𝐵𝑖
and 𝐳𝑖, 𝑖 = 1, 2,… , 𝑁(𝑁 − 1)∕2 represent the 𝑖th branch

network and its output respectively.
The combination part of MCNN is composed of a series of fully

connected layers, and the input of the first fully connected layer is

𝐳 = [𝐳1, 𝐳2,… , 𝐳𝑁(𝑁−1)∕2] (8)

where 𝐳 is concatenated by the output of multiple branches. The fault
type 𝑐 corresponding to the input sample is acquired as Eq. (9):

𝑐 = 𝐹𝐶 (𝐳) (9)

where 𝐹𝐶 denotes the combination part of MCNN.
The framework of SVI-MCNN is depicted in Fig. 11 and the proce-

dure of SVI-MCNN is as follows:
Step 1: Capture samples containing 𝑁 channels of vibration signals

from sensors installed at diverse positions of the rotating machinery
system.

Step 2: Divide the samples into two parts, one part for training and
the other for testing.

Step 3: In the training set, combine the signals in pairs to construct
𝑁(𝑁 − 1)∕2 SVIs for each sample.

Step 4: Train the MCNN model with 𝑁(𝑁 − 1)∕2 branches.
Step 5: Construct 𝑁(𝑁 −1)∕2 SVIs for each sample in the testing set

and input these SVIs into the trained MCNN model to obtain the fault
category.

Compared with CNN, MCNN is employed to situations when the
number of sensors is larger than 2. When 𝑁 = 2, SVI-MCNN degen-
erates into SVI-CNN, thus SVI-CNN is a special case of SVI-MCNN.

3.3. Discussion

Compared to other fusion algorithms, there exist three advantages
of SVI-MCNN.

First, there exist relations as follows:

𝑆 =
𝑁(𝑁 − 1)

⋅ 𝐿2 (10)
𝑖𝑛𝑝𝑢𝑡 2
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Fig. 10. The framework of SVI-CNN.
Fig. 11. The framework of SVI-MCNN.
where 𝑆𝑖𝑛𝑝𝑢𝑡 is the size of the input parameters of MCNN. Set the length
of samples as 𝑆𝐿 which should satisfy:

𝑆𝑖𝑛𝑝𝑢𝑡 < 𝑆𝐿 ⋅𝑁 (11)

where 𝑆𝐿 ⋅ 𝑁 characterizes the number of points in one raw sample
containing multi-sensor data. Eq. (11) indicates that 𝑆𝑖𝑛𝑝𝑢𝑡 can be
smaller than the dimension of the raw data by selecting proper 𝑁 and
𝐿, which may bring the benefits of less training time, high recognition
accuracy and robust generalization ability.

Second, the multi-branch structure of MCNN is a secondary fusion
of sensor information while SVI is the first fusion of two sensor infor-
mation. Each branch of MCNN extracts the high-level semantics of SVI
through the stacking of multiple convolution and pooling layers. The
combination part of MCNN concatenates the high-level semantics of
multiple SVIs and then further merges the information of all sensors
through a series of fully connected layers. The fault representation
obtained includes richer information and are more discriminative .

Third, compared with the traditional algorithms based on shaft
orbit, SVI-MCNN is an end-to-end learning framework that does not
require the manual extraction of features based on SVIs. Through the
stacked layers of CNN, the algorithm can automatically obtain more
discriminative features than those that are manually extracted.

4. Experiments

To verify the performance of the proposed algorithm, a series of ex-
periments are carried on the AMB-R1 dataset, which contains samples
collected from a vertical rig with the rotor supported by AMBs (see
Fig. 12).

The dataset consists of four types of samples, including normal, un-
balanced, misalignment and rub-impact, which are all common health
states in the AMB-R. Each sample contains five channels of signals and
each signal consists of 15,000 points under a sampling rate of 25 kHz.
The number of each type of samples is presented in Table 1. The
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Table 1
AMB-R1 dataset settings.

Fault type Normal Unbalance Misalignment Rub-impact

Training number 150 150 150 150
Testing number 260 358 172 55

Table 2
CNN structure.

Layer name Model

L1 Conv(40*3*3), Activation(Relu)
L2 Maxpool(2*2)
L3 Conv(60*3*3), Activation(Relu)
L4 Maxpool(2*2)
L5 Conv(100*3*3), Activation(Relu)
L6 Maxpool(2*2)
L7 Fulllayer(36), Activation(Relu)
L8 Fulllayer(4), Activation(Softmax)

samples are randomly divided into training samples and test samples
for each trial, and all experimental results are the average of 20 trials.

To facilitate the experimental comparison, we specify the network
structure of the CNN and MCNN as listed in Tables 2 and 3, where
the batch size is set to 50, and the cross-entropy is selected as the loss
function of the neural networks.

4.1. Comparison with other multi-sensor fusion algorithms

We have implemented four multi-sensor fusion algorithms in other
literatures for comparison. Table 2 provides the results of these algo-
rithms and SVI-MCNN outperforms the others.

Both CNN-A and CNN-B use CNN’s end-to-end learning mechanism,
the structure of CNN are consistent with that shown in Table 4, and
the size of the input parameter scale is 75 000, which is equal to the
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Fig. 12. Test rig.

Fig. 13. Performance under a series of 𝐿.

Fig. 14. Effect of the number of multiple sensors on algorithm performance.
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Table 3
MCNN structure.

Layer name Branches Model

L1 N(N-1)/2 Conv(40*3*3), Activation(Relu)
L2 N(N-1)/2 Maxpool(2*2)
L3 N(N-1)/2 Conv(60*3*3), Activation(Relu)
L4 N(N-1)/2 Maxpool(2*2)
L5 N(N-1)/2 Conv(100*3*3), Activation(Relu)
L6 N(N-1)/2 Maxpool(2*2)
L7 1 Fulllayer(100), Activation(Relu)
L8 1 Fulllayer(36), Activation(Relu)
L8 1 Fulllayer(4), Activation(Softmax)

Table 4
Comparison of SVI-MCNN and other fusion algorithms.

Algorithms Accuracy

SVI+MCNN 98.6%
CNN-A [18] 92.9%
CNN-B [20] 96.3%
Orbit-A [17] 97.3%
Orbit-B [26] 93.6%

number of sampling points in raw sample. Yet, the input size of the
SVI-MCNN is only 25 601 when the length 𝐿 = 16 and 𝑁 = 5, which is
only 3.41% of the raw data points. Of course, the comparison of deep
learning algorithms depends on multiple factors including initial values
and parameter commission, and the comparison of the algorithms
with different network structures is not rigorous. However, it shows
that the SVI-MCNN can at least achieve a similar performance to the
algorithms with the same number of layers. Furthermore, the parameter
size is much smaller, which inevitably leads to a smaller probability of
overfitting and a shorter training time.

The algorithms Orbit-A and Orbit-B also achieve good performance;
however, they both need to manually design and extract features
based on the shaft orbit, while the SVI-MCNN can automatically learn
discriminative features from GSO without denoising, and incorporate
the feature extraction and decision fusion process into one framework.

4.2. The influence of parameter 𝐿

Fig. 13 shows the results of SVI-CNN under various two-sensor
combinations and different 𝐿 values. When the sensor combination is
fixed, the recognition accuracy gradually increases as the value of 𝐿
increases. When 𝐿 increases further, the recognition accuracy increases
slightly.

From the above phenomenon, it can be concluded that the increase
of 𝐿 leads to a larger resolution of the SVI and the more information
extracted from the samples. However, as 𝐿 increases to a certain
extent, the recognition accuracy is not further improved and it may
cause overfitting. Meanwhile, the input parameter size 𝐿2 grows fast
to boost the training time. Therefore, choosing a proper 𝐿 can ensure
the performance, avoiding overfitting and long training time.

4.3. The influence of the number of sensors 𝑁

From Fig. 13, it can also be concluded that different sensor combina-
tions have various abilities to discriminate faults. The X1/Y2 combina-
tion has the strongest discriminative power and the highest recognition
accuracy exceeding 95%. The performance of the Z-related sensor
combinations is not higher than 90%, even lower than 80%. Hence,
the performance of different sensors can be complemented and better
results can be achieved through the fusion algorithm.

To verify the influence of the number of sensors 𝑁 on the proposed
algorithm, the SVI-MCNN is tested under variable 𝑁 . There are 𝐶𝑁

5
kinds of sensor groups and the results are averaged and presented in
Fig. 14. As 𝑁 increases, the number of branches increases, and the
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Fig. 15. The illustration of parameters 𝛼 and 𝛽.
amount of information contained in 𝑁(𝑁−1)∕2 SVIs as the input of the
MCNN also increases. In particular, from 𝑁 = 2 to 𝑁 = 3, the accuracy
increased from 74.4% to 94.3% with an obvious improvement, which
shows that the SVI-MCNN achieves a deeper information integration
of multiple sensors. When 𝑁 ranges from 3 to 5, the performance of
the algorithm is improved slightly, reaching 98.6%, and the standard
deviation of the results is further reduced under diverse sensor groups
and iterations. Hence, as 𝑁 increases, the provided information be-
comes richer, and the SVI-MCNN can effectively mine and fuse more
information, leading to better results.

Hence, we can conclude that different sensor combinations have
obvious differences in diagnosing faults. As more sensor combinations
are added into SVI-MCNN, more sensor information are fused and the
risk brought by some sensor combinations with poor performance is
reduced.

4.4. The influence of samples with variable lengths

From Fig. 6, it can be concluded that when the sample length is
greater than one cycle, the shape of SVI does not change substantially
with the length of the sample. To verify the above characteristic of the
SVI, some samples in AMB-R1 are instead short samples that are cut
from the original samples. Two parameters are set as 𝛼 and 𝛽 that both
range from 0 to 1. 𝛼 indicates the length of the short sample relative to
the original sample (as shown in Fig. 15(a)). When 𝛼 = 1, the sample
length is consistent with the original sample length. In the experiment,
𝛼 is set to 0.2, 0.5, and 0.8, satisfying that the length of short samples
is greater than 1 cycle. 𝛽 denotes the proportion of the short samples
to the whole dataset of samples (as shown in Fig. 15(b)). When 𝛽 is 0,
all samples in the dataset are original samples. When 𝛽 is equals to 1,
the transformed dataset is full of short samples. The original and short
samples are randomly distributed in the training and testing samples.
The SVI-CNN is utilized after setting 𝐿 = 40 and selecting two sensor
combinations X1/Y2 and X2/Z to construct SVIs.

From Fig. 16, the following conclusions can be drawn:

(1) Overall, when short samples are mixed into the dataset, although
the performance of the algorithm is reduced, the proposed algo-
rithm still achieves good results.

(2) Essentially, 𝛼 indicates the amount of information contained in
the short sample. Under the same conditions, as 𝛼 decreases, the
recognition rate of the algorithm decreases.

(3) Generally, when the dataset is full of original samples, the
performance of the algorithm is the best. As 𝛽 increases, the
performance of the algorithm decreases, and while 𝛽 is close to
1, the performance of the algorithm improves again. Therefore,
the better the sample length consistency in the dataset is, the
better the performance of the algorithm becomes.
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Fig. 16. Performance of the proposed algorithm under the condition of the dataset
with variable-length samples.

4.5. The influence of samples with variable sampling rates

In practice, the sampling rate of the samples is often required to
be fixed. To evaluate the influence of samples with variable sampling
rates, AMB-R1 is converted into three different datasets named mode
1, mode 2 and mode 3. Each sample in the mode 1 dataset takes the
first 5000 points of each original sample in AMB-R1. In mode 2, the
sampling rate is reduced to 1/3 of AMB-R1. Mode 3 dataset is mixed
with half of mode 1 and half of mode 2. The organization of the three
datasets is illustrated in Fig. 17. Mode 1 and mode 2 both consist of
samples at a constant sampling rate, while mode 3 is a mixture dataset
consisting of samples with various sampling rates.

Two sensor combinations, X1/Y2 and X2/Z, are selected for testing,
and the results of SVI-CNN are shown in Fig. 18. In most cases, the
recognition accuracy of mode 3 is higher than that of mode 1 and
slightly lower than that of mode 2, which suggests that the proposed
algorithm can be applied to the datasets with different sampling rates.

According to the principle of FFT, the frequency analysis results of
signals depend on the sampling rate and sample length. In Fig. 19, (a)
and (b) show two signals with the same sampling rate but different
rotating speeds. The signal in (b) is cut and stretched to form the signal
in (c) which has the same period as the signal in (a), while the signal
in (c) keeps the same amplitude and phase characteristics as the signal
in (b). The signals in (a) and (c) have approximate frequency analysis
results including the main frequency component, i.e., rotating speed.
Therefore, the problem at different speeds can be converted into the
problem at various sampling rates. The previous experiment indirectly
proves that the algorithm can be applied to datasets with samples at
different rotating speeds, which is consistent with what Fig. 5 shows.
Of course, these experiments are not completely equivalent to the test at
different speeds, but it provides a new idea to study the characteristics
of the algorithms under various speeds.
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Fig. 17. The organization of mode 1, mode 2 and mode 3 datasets.
Fig. 18. Experimental results under various sampling rates.
Fig. 19. Illustration of the relationship between the sampling rate and rotating speed. The sampling rate is set as fs, and rotation speed as 𝜔 (a) fs = k, 𝜔 = v (b) fs = k, 𝜔 =
2v (c) fs = k/2, 𝜔 = v.
4.6. Discussion

Through the above experiments, the effectiveness and efficiency of
the proposed algorithm is verified, and the following conclusions can
be drawn.

First, compared to other multi-sensor fusion algorithms, SVI-MCNN
can better integrate multi-sensor information and achieve a higher
accuracy and a smaller network parameter size.

Second, SVI-MCNN mainly includes two parameters: the resolution
of the SVI 𝐿 and the number of sensors 𝑁 . By selecting the proper 𝐿
10
and 𝑁 , it can obtain a high accuracy, a short training time and a robust
generalization ability.

Third, SVI-MCNN is suitable for samples with different sampling
rates, variable speeds and changeable lengths, which provides the
possibility to make full use of operating data and provide sufficient
samples for training better models.

In summary, SVI-MCNN yields excellent performance and can han-
dle under variable operating conditions, which is an effective tool for
fault diagnosis of AMB-R.



Measurement 171 (2021) 108778X. Yan et al.
5. Conclusions

To address the issue that are encountered in AMB-R, such as mul-
tiple sources of faults, the obvious non-linearity and non-stationarity
of vibration signals and the resulting difficult representation of fault
characteristics, this paper proposes an end-to-end learning algorithm
based on GSO for fault diagnosis of AMB-R. According to the results
obtained, we can conclude our paper as follows:

(1) The proposed algorithm fully incorporates the characteristics
of AMB-R without using additional sensors, and uses the information
captured by the five displacement sensors in AMB. The concept of
traditional shaft orbit is expanded to GSO, which is discretized into SVI
as the data representation of multi-sensor signals;

(2) With the designed MCNN implemented as an end-to-end deep
learning method, there is no need to manually extract features and
perform denoising of the SVI. Through multiple branches of stacked
layers and combination layers, the features are uncovered deeply and
multi-sensor information is fused from both the data level and decision
level. Compared with that of algorithms that use raw data as input, the
parameter size of the SVI-MCNN are much smaller, leading to resistance
to overfitting and shortening the training time.

(3) Due to the characteristics of SVI and the good generaliza-
tion of MCNN, the proposed algorithm is applicable to a variety of
working conditions. Through experimental verification, it has a good
performance at different speeds, sampling rates, and sample lengths.

In the future, we will further study characteristic of the GSO and
combine it with the deep learning algorithms to apply in the early fault
detection of AMB-R.
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