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To simulate the progressive failure of slope, a block particle coupled model is introduced. Particle
oriented  cell  mapping  (POCM)  algorithm  is  used  to  enhance  the  search  efficiency,  and  particle-
point,  particle-edge,  particle-face  contact  detecting  method  is  adopted  to  establish  contact  pair
between particles and blocks precisely. Strain softening Mohr Coulomb model with tensile cutoff is
adopted  for  blocks,  and  brittle  Mohr  Coulomb  model  is  used  for  particles.  The  particle-block
replacement  approach  is  used  to  describe  the  fracture  and  fragmentation  process  of  continuum
media. Once the cohesion or tensile strength of one block reaches zero, the block will be deleted,
and  particles  are  generated  at  the  same  place  with  all  information  inherited  from  the  deleted
block. Some numerical cases related to landslides demonstrate the precision and rationality of the
coupled model.
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The process of landslide involves the damage, fracture, frag-
mentation  and  movement  of  geological  body.  Finite  element
method (FEM) and discrete element method (DEM) are two ef-
fective numerical methods to simulate such problems.

FEM  is  good  at  simulating  continuous  problems,  such  as
elastic and plastic deformation of soil and rock slope under stat-
ic or dynamic loads [1, 2]. In this method, the macro mechanical
parameters  and  constitutive  laws  obtained  from  experiments
will be used. With the development of experimental technology,
the  macro  mechanical  parameters  of  various  materials  can  be
measured  accurately.  When  use  FEM  to  simulate  fracture  or
fragmentation problems, some numerical problem will happen,
although there are lots of numerical ways (death element meth-
od [3], adaptive remeshing [4, 5], extended finite element meth-
od (XFEM) [6, 7], etc. to deal with it.

Particle DEM is widely used to simulate the progressive fail-
ure and movement of slope [8, 9]. The region in particle DEM is
discretized  by  rigid  particles  (spheres  or  ellipsoids,  et  al)  and
particle contacts. In particle DEM, the contacts are used to rep-
resent  the deformation and crack,  and the particles  are  used to

calculate the  evolvement  (translational  and  rotational  move-
ment). When using particle  DEM, the relationship between mi-
cro  parameters  (such  as  stiffness,  damp,  strength)  and  macro
parameters  (such  as  elastic  modulus,  Poisson  ratio,  and
strength) are difficult to established, sometimes hundreds of nu-
merical cases are needed [10, 11].

An alternative method is to couple FEM and particle DEM to-
gether, so  the  advantage  of  FEM  and  particle  DEM  will  be  as-
sembled. Oñate and Rojek [12] suggested thus combined meth-
od, and a contact algorithm considering the contribution of rota-
tion  was  adopted  between  FEM  and  DEM  interface.  Rojek  and
Oñate [13] introduced an overlapping algorithm to deal with the
force  transmission  between  FEM  and  DEM  based  on  Ref.  [12],
and  0–1  interpolation  function  was  used  in  the  overlapping
zone.

By combing the advantage of FEM and particle DEM togeth-
er, a block particle coupled model with replacement approach is
proposed in  this  paper.  The  contact  detect  algorithm  and  con-
stitutive  laws  related  to  blocks  and  particles  are  introduced.
Then  the  particle-block  replacement  approach  is  discussed  in
detail. Some  numerical  cases  related  to  landslides  are  demon-
strated.

To  find  neighbours  between  particles  and  blocks  efficiently
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and robustly, two steps should be taken generally, namely glob-
al contact searching and local contact resolution.

The  purpose  of  global  contact  searching  is  to  enhance  the
searching  efficiency  by  dividing  the  particles  and  blocks  into
some  independent  parts  based  on  the  space  position  of  each
particle. The particle oriented cell mapping (POCM) algorithm is
adopted here.

In  POCM  algorithm,  the  axis-aligned  bounding  box  (AABB)
for  each  particle  and  each  block  are  created  first.  Then  the
particles  and  blocks  are  mapped  to  background  cells  based  on
the AABB boxes. When execute contact searching, each particle
is  considered  as  a  detecting  master,  and  the  target  blocks  are
checked from  the  cells  which  the  AABB  of  master  particle  loc-
ated in. POCM is a linear complexity algorithm, very effective for
large simulations, and not sensitive to the spatial distribution of
objects.

The purpose of  local  contact  resolution is  to  find the neigh-
bours and  contact  position  for  each  particle  and  block  accur-
ately. Generally, blocks in 3D consists of points, edges and faces,
while  blocks in 2D is  formed by points  and edges.  So,  there are
three  contact  patterns  between  particles  and  blocks,  which  are
particle-point  contact,  particle-edge  contact  and  particle-face
contact,  respectively.  For  3D  problems,  all  the  three  patterns
need  to  be  checked.  However,  for  2D  problems,  only  particle-
point check and particle-edge check is needed.

The  contact  state  between  particle  and  point  of  block  could
be described as

di j ≤ Ri + tol , (1)

where dij  means  the  distance  between  particle i  and  point j  of
one  block, Ri  is  the  radius  of  particle i,  tol  denotes  the  contact
tolerance.

Here, tol  is a global parameter,  which is suitable for all  con-
tact patterns. Generally, Eq. (2) is used to select a suitable value
for a specific numerical model. In this paper, the tol is set to zero.

tol < min(dmin,Lmin), (2)

where dmin  is  the  minimal  diameter  of  particles,  and Lmin

denotes the minimal characteristic length of blocks.
If one particle contacts with an edge (Fig. 1), two conditions

should be satisfied at same time. They are

d = ∣∣Vi p ·n
∣∣< R + tol , (3)

Vki ·Vk j < 0, (4)

where d means the distance between center of particle p and the
edge ij,  R  is  the  radius  of  particle p,  Vip  is  the  position  vector
pointing  from  point i  to  the  center p,  n  denotes  the  vector
pointing from k to p, k is the projection point of p lies in edge ij,
Vki denotes the unit vector pointing from k  to i,  and Vkj  denotes
unit vector pointing from k to j.

The weighted coefficient of point i and j in Fig. 1 could be cal-
culated by

wi = d j k /di j ,

w j = di k /di j , (5)

where dij, dik, and djk  mean the distance between point i  and j, i

and k, j and k, respectively.
For checking particle-face contact pattern, the local coordin-

ate  system  of  the  face  should  be  established  first.  All  the  global
coordinates  of  vertexes  on  the  face  of  block  and  coordinate  of
particle  (Fig.  2)  should  be  transformed  to  this  local  coordinate
system.

The distance between particle and block face could be calcu-
lated by

d = xp−3 −xi−3, (6)

where xp–3 and xi–3 is the third component of local coordinate of
particle p and vertex i, respectively.

If  particle contacts  with a block face Eq.  (7) should be satis-
fied first

d ≤ R + tol . (7)

The local  position vector  of  projection point m  could be ex-
pressed as

xm = {xp−1, xp−2, xi−3}. (8)

The topological relationship between the projection point m
and the block face could be detonated by

Ji j k =
(
Vmi ×Vm j

) · (Vm j ×Vmk

)
, (9)

where Vmi  is  the unit  vector pointing from m  to i ,  and the same
as Vmj, Vmk and Vml. If point m locates inside the block face, then
Eq. (10) should be satisfied for any composition of i, j, k

Ji j k = 1. (10)

If Eqs.  (7) and  (10)  are  satisfied  at  same  time,  the  particle p
and the block face ijkl contact with each other.

An elastic-plastic  model  with  strain  softening  effect  is  pro-
posed to describe the linear elastic stage and strain localization
stage of the blocks.

In linear elastic stage, Hooke’s law is adopted

 

R

d

i

j

k

p

n

Vip

i

j

kVki

Vkj

i

j

 

Fig. 1.   Point-edge contact
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Fig. 2.   Contact detection between particle and block face
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σi j = 2Gεi j +
(
K − 2G

3

)
θδi j , (11)

where σij  and  εij  denotes  stress  and  strain  tensor, θ  means  bulk
strain, K and G mean bulk modulus and shear modulus, and δij is
Kronecker delta.

In  strain  softening  plastic  stage,  the  incremental  method  is
adopted,  and  softening  Moh–Coulomb  criterion  with  tensile
cutoff is used.

Three principal stresses σ1, σ2 and σ3 will be calculated based
on trial  stress  tensor,  and then failure status of  this  block is  de-
termined by

f s =σ1 −σ3Nϕ+2σs (t )
√

Nϕ,

f t =σ3 −σt (t ),

h = f t +αP (σ1 −σP ), (12)

where σs(t),  ϕ,  σt(t )  denote  cohesion,  inner  friction  angle  and
tensile  strength  in  current  step. Nϕ,  αp ,  and σp  are  constants,
expressed as

Nϕ = 1+ sinϕ

1− sinϕ
,

αp =
√

1+N 2
ϕ+Nϕ,

σp =σt (t )Nϕ−2σs (t )
√

Nϕ. (13)

If f s ≥ 0 and h ≤ 0, shear failure will happen, and if f t ≥ 0 and h >
0, tensile failure will appear.

Simultaneously,  according  to  the  equivalent  shear  plastic
strain  and  bulk  plastic  strain  in  current  step,  the  new  cohesion
and tensile strength used in next step is calculated by

σs (t +∆t ) =−σs 0 ×γp /γu +σs 0,

σt (t +∆t ) =−σt0 ×θp /θu +σt0, (14)

where, σs(t+Δt )  and σt(t+Δt )  denote  cohesion  and  tensile
strength  in  next  step,  Δt means  time  step, σs0  and  σt0  are
cohesion  and  tensile  strength  at  initial  state. γp  and  θp  are
equivalent shear plastic strain and bulk plastic strain in current
step, γu  and  θu  represent  the  ultimate  bulk  plastic  strain  and
ultimate shear plastic strain.

A brittle  Mohr–Coulomb  model  with  tensile  cutoff  is  adop-
ted for particle-particle contacts and particle-block contacts.

Firstly,  relative incremental displacement between particles,
or  between  particles  and  blocks  in  global  coordinate  system
should be calculated.

Then  the  relative  incremental  displacement  vector  in  local
coordinate system is obtained

∆du = T∆dU, (15)

where T is the transform matrix.
The normal  and  tangential  relative  incremental  displace-

ment at contact is calculated by

∆dun =∆du3,

∆dus =
√

(∆du1)2 + (∆du2)2, (16)

where,  Δdun and  Δdus denote  normal  and  tangential
incremental  displacement,  respectively.  Δdu1,  Δdu2,  Δdu3 are

three  components  of  local  incremental  contact  displacement
vector Δdu.

An incremental explicit scheme is used to compute trail nor-
mal force and tangential forces

Fn(t ) = Fn(t −∆t )−Kn ×∆du3,
Fs1(t ) = Fs1(t −∆t )−K t ×∆du1,
Fs2(t ) = Fs2(t −∆t )−K t ×∆du2, (17)

where Fn,  Fs1  and  Fs2  denote  normal  force  (negative  in  tension)
and  two  component  of  tangential  force, Kn  and  Kt  are  normal
and tangential stiffness.

The magnitude of tangential force could be computed by

Fs (t ) =
√

[Fs1(t )]2 + [Fs2(t )]2. (18)

Equations (19) and (20) is used to judge the tensile and shear
failure and correct the normal and tangential contact force.

If −Fn(t ) ≥ T (t )Aeq ,

then F ′
n(t ) =−T (t )Aeq ,

T (t +∆t ) = 0.0,
C (t +∆t ) = 0.0. (19)

If Fs (t ) ≥ τmax,

then F ′
s1(t ) = Fs1(t )

Fs (t )
τmax,

F ′
s2(t ) = Fs2(t )

Fs (t )
τmax,

C (t +∆t ) = 0.0,
T (t +∆t ) = 0.0, (20)

where Aeq  is  the  equivalent  contact  area, T0,  T(t )  and T(t+Δt)
denote the tensile strength of contact in initial state, current step
and  next  step. C0,  C(t )  and C(t+Δt )  denote  the  cohesion  of
contact  in  initial  state,  current  step  and  next  step. τmax  is
expressed as

τmax = Fn(t ) tanφ+C (t )Aeq , (21)

where φ denotes inner friction angle of contact.
To simulate the fracture and fragmentation phenomenon of

continuum media  under  different  loads,  a  particle-block  re-
placement approach is suggested.

At  the  very  beginning,  the  numerical  model  is  filled  by
blocks. If one block’s tensile strength or cohesion reaches 0, the
element will  be killed, and the particles will  be generated at the
same place.  The particle  information will  be  inherited from the
deleted  element,  and  then  the  block-particle  contact  force  will
be  calculated.  By  the  deletion  of  elements  and  generation  of
particles, the initiation and propagation of crack could be simu-
lated,  and Fig.  3 shows  the  process  from  block  changing  to
particles.

There are two ways to create particles (Fig. 4). One is generat-
ing single particle in the deleted block, and the other is creating
random distributed particle cluster with little overlapping.

In  the  first  method,  the  center  of  particle  should  coincide
with  the  centroid  of  block,  the  radius  is  the  shortest  distance
from particle center to the sides of block, and the mass is equal
to the corresponding block.

In the  second  approach,  the  initial  packing  density  is  con-
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trolled  by  the  particle  number,  particle  distribution  mode,  and
the expectation and standard deviation of radius of particles. In
this paper, uniform distribution pattern with 30% standard devi-
ation coefficient is used. Generally speaking, particle number is
related  to  some  parameters  of  the  block,  such  as  strain  ratio,
peak stress, strength, and so on. However, to simplify the simula-
tion, a fixed particle number is adopted for each block in this pa-
per. Equation (22) is used to calculate the average radius.

R̄ =
{√

Ab/(πN ) (2D),
3
√

3Vb/(4πN ) (3D),
(22)

where Ab  denotes  the  area  of  block  in  2D,  and Vb  means  the
volume of block in 3D, and N  represents the number of particle
needed to be created.

In this  paper,  the  centroid  of  the  particle  clusters  isn’t  con-
trolled  to  coincide  with  the  centroid  of  the  deleted  block.
However, due to the large number of randomized particles in the
cluster, these two centroids are more or less the same.

When creating particle cluster, the mass conservation needs
to be met, and Eq. (23) is adopted to calculate the mass for each
particle.

mi = Si

Sp

Mb , (23)

where mi  and Si  mean the mass and area (volume) of particle i,
Sp is the total area (volume) of all particles in the cluster, and Mb

denotes the mass of the block.
After  creating  the  particles,  the  elastic  parameters,  strength,

velocity and contact forces of particles should be inherited from
deleted block.

The  normal  and  tangential  stiffness  between  two  contacted
particles could be calculated by

Kn−pp = E Ac−pp /D i j ,

K t−pp =G Ac−pp /D i j , (24)

where Kn-pp,  Kt-pp  are  normal  and  tangential  stiffness  between
particles, E  and  G  are  elastic  modulus  and  shear  modulus  of
block. Ac-pp is contact area between two particles, which could be
obtained by

Ac−pp =
{

min(2Ri ,2R j ) (2D),

π[min(Ri ,R j )]2 (3D).
(25)

Dij is the contact distance between two particles, which could
be computed by

D i j = Ri +R j −Oi j , (26)

where Ri  and  Rj  are  the  radius  of  particle i  and  j,  Oij  means  the
overlap width between two particles.

The  normal  and  tangential  stiffness  between  particles  and
blocks could be calculated by

Kn−pb = E Ac−pb/R,

K t−pb =G Ac−pb/R, (27)

where Kn-pb,  Kt-pb  are  normal  and  tangential  stiffness  between
particles  and  blocks, R  means  the  radius  of  the  particle. Ac-pb

denotes contact area, which could be obtained by

Ac−pb =
{

2R (2D),

πR2 (3D).
(28)

The  strength  parameters  of  particle-particle  contact  and
particle-block  contact  are  the  same  as  the  ones  of  the  deleted
block. So, the cohesion, tension, and inner friction angle of con-
tacts could be inherited from the corresponding block directly.

The velocity  and  contact  force  of  particle  also  should  be  in-
herited.  The  velocity  could  be  calculated  by  Eq. (29) ,  and  the
contact force could be calculated by Eq. (30).

V P
i =

N∑
j=1

W j V
E− j

i , (29)
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Fig. 3.   Process from block changing to particles
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Fig. 4.   Two particle creation ways
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F P
i = Acσ

E
i j n j , (30)

V P
i V E− j

i

F P
i

σE
i j n j

where  is i component of particle velocity,  is i component
of j node's velocity in block, Wj is the interpolation coefficient of
nod j, N is the node number of block,  is the i component force
of  one  particle  contact,  is  the  element  stress,  is  the j
component of unit normal vector of contact.

When some blocks change to particles, block and block con-
tacts will  appear,  and  semi-spring  &  semi-edge  combined  con-
tact  model  will  be  adopted  to  detect  the  contact  and  compute
the contact force [14].

A triangular block is created with one internal angle 30°, and
one particle with the radius 0.5 m is placed on this block (Fig. 5).
The direction of gravity is downward, and the value is –9.8 m/s2.
The density of the particle is  2500 kg/m3,  the elastic modulus is
30 GPa, and the Poisson's ratio is 0.25. The block is only used to
provide contact boundary, so the block is totally fixed.

Numerical cases  only  considering  sliding  are  (without  rota-
tion)  executed  first.  The  sliding  curves  with  different  friction
angles  are  shown  in Fig.  6, and  the  analytical  solution  is  com-
puted  by  Eq. (31) .  From  this  figure,  with  the  increase  of  time,
sliding  distance  increases  gradually,  the  greater  of  the  friction,
the slower of the sliding. When friction angle exceeds 30° (slope
angle), the particle will remain stationary. Numerical results co-
incide well with theoretical ones, which demonstrate the accur-
acy of contact detecting algorithm and sliding calculation

s = 1

2
at 2 = 1

2
(g sinθ− g cosθ tanϕ)t 2. (31)

Numerical  cases  both  considering  sliding  and  rotation  are
executed then, and in these cases, the rolling friction is not con-
sidered.  The  sliding  curves  with  different  friction  angle  are
shown  in Fig.  7.  In  this  figure,  when  friction  angle  exceeds  10°,
sliding curves are almost the same, even if the friction angle is far
greater  than  slope  angle.  When  friction  angle  equals  0  degree,
due  to  without  moment,  only  sliding  occurs,  and  the  sliding
curve is the same as the one in Fig. 6.

A  rock  uniaxial  compression  numerical  test  is  executed  to
validate the precision. Single particle creating approach is adop-
ted  in  this  case  when  one  block  reaches  the  critical  state  (the
tensile strength or cohesion reaches 0).  The size of rock sample
is 0.1 m × 0.2 m, which is formed by 7580 triangle FEM elements.
The material parameters of the rock sample are elastic modulus
30 GPa, Poisson ratio 0.25, initial cohesion 3 MPa, initial tensile
strength 1  MPa,  friction  angle  45°,  and  dilation  angle  10°.  Ulti-
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Fig. 9.   Numerical model of RSA slope
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mate  value  of  equivalent  shear  plastic  strain  and  maximum
tensile  plastic  strain  are  1%  and  0.1%  respectively.  In Fig.  8,  Y-
type shear failure could be clearly observed, and the peak stress
of numerical simulation (14.6 MPa) is the same as the analytical
one (14.5 MPa) obtained

σc = 2C tan

(π
4
+ ϕ

2

)
. (32)

A  generalized  rock-soil  aggregate  (RSA)  slope  is  established
first (Fig. 9), and 19 rock blocks with 728 triangular FE elements,
and 23408 particles are created. Linear elastic model is adopted
for rock blocks, with the density 2500 kg/m3, Young's modulus 10
GPa,  and  Poisson's  ratio  0.25.  A  brittle  Mohr  Coulomb  model
with tensile cutoff is applied on soil, with the density 2000 kg/m3,
Young's  modulus  0.1  GPa,  Poisson's  ratio  0.3,  cohesion  10  kPa,
tensile strength 10 kPa, and inner friction angle 20°. Three mon-
itoring point is set on blocks, namely P1, P2 and P3.

Due  to  the  low  strength  of  soil,  failure  firstly  occurs  in
particles. With the movement of particles, the rock blocks begin
to  move.  At  very  beginning,  translation  is  the  main  movement
mode of  block.  After  about  3  minutes,  rotation  gradually  ap-
pears.  After  10  minutes,  the  sliding  finished,  with  the  maximal
sliding  distance  90  m  approximately.  From Fig.  10,  there  are
large  number  of  contacts  between  particles  and  particle,  and
between particles  and  blocks.  The  numerical  results  demon-
strate the  robust  and  accuracy  of  the  contact  detection  al-
gorithm proposed in this paper.

The  time  history  of  displacement  magnitude  of  P1,  P2,  and
P3  is  shown  in Fig.  11.  From  this  figure,  the  movement  of  the
rock block experiences three stages, acceleration stage, constant
speed  stage  and  deceleration  stage.  After  8.5  minutes,  these
three blocks are stable basically.

A novel bedding rock slope model (Fig. 12) with 145 triangu-

lar  blocks  are  created.  Particle  cluster  creation  way  is  adopted,
and when one block reaches the critical  state,  100 particles  will
be generated. Strain softening Mohr Coulomb model with tensile
cutoff  is  adopted,  with  the  density  of  slide  body  2500  kg/m3,
elastic  modulus  30  GPa,  Poisson's  ratio  0.25,  cohesion  1  MPa,
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Fig. 10.   Failure process of RSA slope
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Fig. 11.   Displacement magnitude history of P1, P2 and P3
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Fig. 12.   Numerical model of bedding slope
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tensile strength 1 MPa, inner friction angle 30°. The deformation
of sliding bed is ignored, and rigid model is  adopted. The inner
friction angle between slide bed and slide body is set as 15°, with
zero cohesion and tensile strength.

The  fragmentation  and  movement  process  of  bedding  rock
slope  is  shown  in Fig.  13.  From  this  figure,  with  the  sliding  of
rock  mass,  the  block  gradually  breaks  into  a  series  of  small
pieces  (particles).  The  particles  and  blocks  are  mixed  together
forming the macro flow. The numerical results show the ration-
ality  of  particle-block  replacement  approach  suggested  in  this
paper.

The particle block coupled model combines the advantage of
FEM  and  DEM  together.  The  deformation  and  plastic  flow  are
simulated by FEM, crack propagation, friction and movement is
simulated  by  particle  DEM.  According  to  the  deletion  of  FEM
element  and  creation  of  DEM  particle,  the  initiation  and
propagation  of  crack  in  geological  body  could  be  simulated.
Some numerical cases related to landslides are demonstrated to
show the validity and accuracy of the model.

However, the model requires further more study, such as the
contact constitutive  law  between  particles  and  blocks,  the  re-
placement algorithm from blocks to particles, et al.
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