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Abstract. In this work, we develop a neural network model for predicting the instantaneous
wake position, which is crucial for a wake meandering model. The data used for training are
from the large-eddy simulation of a utility-scale wind turbine. A neural network of four hidden
layers with 128 units for each layer is found to be effective when training the model. Effects
of different input features on the accuracy of the trained model are systematically tested. It is
found that the input features including the downwind and crosswind velocities at two locations
upwind of the turbine and the thrust and torque acting on the turbine are enough to guarantee
the accuracy of the trained model. Without using the thrust and torque as the input features,
the accuracy of the model is significantly worse.

1. Introduction
Wake meandering, which describes the large-scale, low frequency motion of turbine wakes, affects
the power output and dynamic loads of downwind turbines. Turbine wake meandering is a
complex flow phenomenon affected by incoming atmospheric turbulence, wind farm turbulence
as well as turbine operating conditions [1, 2, 3, 4]. The dynamic wake meandering (DWM)
model developed by researchers at the Technical University of Denmark [5] is one of the most
widely used wake meandering models. In the DWM model, the wake meandering is modeled
by considering wake deficits as passive scalars advected by incoming large-scale eddies of the
atmospheric turbulence, for which the downwind variation is neglected based on Taylor’s frozen
flow hypothesis. Besides the large-scale eddy mechanism, the bluff body shear layer instability
is also shown to be the cause for wake meandering based on wind tunnel experiments [6]. In a
recent LES study of a utility-scale wind turbine [7] the authors found that the two mechanisms
coexist in the meandering of turbine wakes. A literature review of wake meandering can be
found in [8].

To develop site-specific wind farms with low levelized cost of energy (LCOE), effects of wake
meandering have to be properly taken into account when designing and operating the wind farm.
High-fidelity models, e.g., large-eddy simulation (LES), have shown to be able to predict wake
meandering [9]. However, high-fidelity simulations are computationally expensive and cannot be
directly applied to the design of utility-scale wind farms. Development of predictive engineering
models [10] for turbine wake meandering is essential for bridging the gap between the academia
research and the industrial practice. Machine learning has been widely used in many fields
of fluid mechanics [11, 12, 13]. The neural network is one of the most widely used machine
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learning techniques [14]. It also has been employed in wind farm applications. For instance,
Li et al. [15] developed a model based on a neural network and measured wind farm data for
predicting the produced power of each turbine. In [16] a neural network model is used to reduce
the frequency fluctuation of wind farms. It is promising that the machine learning technique can
pave the way for developing predictive wake meandering models accurately taking into account
the complex meandering mechanism. As a key step towards predictive wake meandering models,
the objective of this work is to develop a model for predicting instantaneous wake positions based
on neural networks and the data from high fidelity simulations. Specifically, we will examine
effects of input features including the spatially and temporally filtered incoming velocity at
different locations upwind the wind turbine, and the thrust and torque acting on the wind
turbine on the effectiveness of model training and the accuracy of the trained model.

2. Methods
2.1. Description of the simulation data
The computational data from the large-eddy simulation of the University of Minnesota EOLOS
turbine [17, 18, 19] are employed for training the neural network model for predicting
instantaneous wake positions. The rotor diameter and hub height of the EOLOS turbine are 96
meters and 80 meters, respectively. The Virtual Flow Simulator (VFS-Wind) code [20] with the
actuator surface model for turbine blades [21], which has been successfully applied to simulate
turbulent flows over utility-scale wind turbines and wind farms [22, 23, 24, 25], is employed
for the large-eddy simulation of turbine wakes. In the simulation, the tip-speed ratio (which is
defined as λ = ΩR/Uh, where Ω is the rotor rotating speed, R is the rotor radius, and Uh is
the incoming wind speed at turbine hub height) is 8.3 close to the optimal operating condition.
Fully developed turbulent inflow obtained from a precursor simulation is applied at the inlet.
The simulation data, which include the flowfield data on a horizontal plane located at turbine
hub height and the turbine operational data, are saved for about 2000 rotor revolutions. The
wake center location is obtained by finding the position of the minimum of the spatially and
temporally filtered downwind velocity with the filter widths D (rotor diameter) and T (mean
rotor revolution period) in space and time, respectively. It is noted that in this work we only
consider the wake position at 7D (which is typical for turbine spacings in wind farms) downwind
of the turbine on the horizontal plane located at turbine hub height without considering its
position in the vertical location. Different combinations of the incoming velocity fluctuations
and the turbine operation data are tested as input features. For the wake position at location
x and time t, the turbine operation data at time t − (x − xt)/Uc and the incoming velocity at
time t − (x − xin)/Uc are taken as the corresponding input features, where xt is the turbine
coordinate and xin is the location for the incoming velocity, respectively, and the convection
velocity Uc = U (where U is the time-averaged incoming wind speed at turbine hub height).

2.2. Setup of the neural network
The feed-forward neural network with fully connected hidden layers, which uses MSE (mean
square error) as the loss function and ReLU (Rectified Linear Unit) without the dropout as the
activation function, is employed in this work. The learning rate is set at 0.001. The training will
stop when the maximum number of epochs is achieved or no improvement is observed after 10
epochs. A schematic of the employed neural network is shown in figure 1. The neural network
model is implemented using TensorFlow [26]. To build the model, the simulation data are divided
into two sets, in which the first 80% temporal series of the data are employed for training and
validation, and the rest 20% data are employed for testing. The first 80% of the data are further
randomly divided into 80% for training and 20% for validation. Before testing the effect of input
features, we examine different neural network architectures of different number of hidden layers
and different number of units for each layer in figure 2. As seen, the MAE significantly reduces
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Figure 1. Schematic of the neural network model for predicting instantaneous wake positions.

Figure 2. Variations of MAE (Mean Absolute Error) for (a) different number of hidden layers
(with the number of units fixed at 128) and (b) different number of units for each layer (with
the number of hidden layers fixed at 4). The case studied is c11 as shown in table 1.

as we increase the number of hidden layers from 1 to 2, while remains nearly the same as we
further increase the number of hidden layers to 5 and 6. A similar trend is observed for different
number of units in each layer. Based on this test, an architecture of four hidden layers with 128
units for each layer will be employed in all the cases for testing the effect of input features.

3. Results
We test the effect of different input features, including the spatially and temporally filtered
velocity fluctuations at different upwind locations, and the thrust and aerodynamic torque
coefficients, on the training effectiveness and the model performance. A complete list of the
tests is shown in table 1. It was found that with only the velocity at one position upwind of
the turbine, the training fails to converge (cases c1, c2 and c3). Using crosswind velocity and
thrust or torque( cases c5 and c6), and only the thrust and torque (case c7) as input features,
the training of the neural network also fails to converge. Using both downwind and crosswind
velocity at one upwind location and the thrust or torque as the input features (cases c8 and
c9), the neural network model is successfully trained. Having both the thrust and torque as
input features in case c8 or c9 (case c10) the MAE of the trained model is decreased by about
two times. Having the velocity at two positions, the trained model is also able to give some
reasonable predictions (case c4). By adding the velocity at one more location to the input
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Table 1. Model performance evaluated using the test data for different input features, where
u(−aD) and v(−aD) denote the downwind and crosswind spatially and temporally filtered
velocity fluctuations at aD upwind of the turbine, and CT and Cτ,aero are the thrust coefficient
and the aerodynamic torque coefficient of the turbine, respectively.

.

Case c1 c2 c3 c4 c5 c6 c7
Input
features

v(−2D) v(−2D),
v(−1.5D)

v(−2D),
u(−2D)

v(−2D),
u(−2D),
v(−1.5D),
u(−1.5D)

v(−2D),
CT

v(−2D),
Cτ,aero

CT ,
Cτ,aero

MAE 0.200D 0.190D 0.169D 0.026D 0.161D 0.168D 0.172D

Case c8 c9 c10 c11 c12 c13 c14
Input
features

v(−2D),
u(−2D),
CT

v(−2D),
u(−2D),
Cτ,aero

v(−2D),
u(−2D),
CT ,
Cτ,aero

v(−2D),
u(−2D),
v(−1.5D),
u(−1.5D),
CT , CT

v(−2D),
u(−2D),
v(−2.5D),
u(−2.5D),
CT ,
Cτ,aero

v(−2D),
u(−2D),
v(−2.5D),
u(−2.5D),
v(−1.5D),
u(−1.5D),
CT ,
Cτ,aero

v(−2D),
u(−2D),
v(−2.5D),
u(−2.5D),
v(−1.5D),
u(−1.5D)

MAE 0.049D 0.048D 0.022D 0.013D 0.013D 0.012D 0.023D

Figure 3. Histograms of error distributions for (a) case c4 and (b) case c11.

features of case c4 (case c14), no significant improvement is observed. On the other hand, by
adding the trust and torque to the input features of case c4, the performance of the trained
model is improved by about two times (case 11). Adding the incoming velocity at one more
position as input features to case 11, no further improvement is observed (case c13).

Figure 3 compares the histograms of error distributions from two cases, i.e. case 4 and case
11. It is seen that the prediction error can be as high as 0.3D for case c4, which is approximately
within 0.1D by adding the thrust and torque as input features. The predictions are compared
with the true values in figure 4. As seen, the predictions agree with the true values for all the
wake center locations for case c11. For case c4, on the other hand, the predictions deviate from
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Figure 4. Comparison of model predicted wake center positions with true values (LES data)
for (a) case c4 and (b) case c11.

the LES predictions (the true values) for yw/D < 0.2, while slightly agree better with the true
values for yw/D > 0.2 but sill with several outsiders significantly away from the true values
for yw/D close to 0.6. We now compare the predictions with true values for the whole dataset
in figure 5. As seen, the predictions agree very well with the LES data for the time series
used for train and validation. It is noticed that the train and validation data are randomly
divided instead of dividing in time. For the times series for testing, the agreement between
the predictions and the true values is still good but with some discrepancies observed for some
instances.

4. Conclusions
We developed a neural network model for predicting wake positions and tested the effects of
different input features on the model performance. We found that with only the incoming
velocity at one location as input features, the trained model is not able to predict wake
positions accurately. Using the incoming velocity at two positions and the turbine thrust and
aerodynamic torque coefficients as input features, the predictions from the trained model show
good agreements with the true values (LES data). A hypothesis explaining these results, which
needs further study, is briefly described in the following. The velocity fluctuations at one upwind
location tell the wake position at a “certain instant” based on Taylor’s frozen flow hypothesis.
With the velocity fluctuations at two locations or adding the turbine operating conditions can
help building the correlation between two locations and identify this “certain instant”.

The proposed model still cannot be directly applied to an operational environment. To build
such a model, more effects have to be taken into account, such as the effects from upwind turbine
wakes, complex terrain and ocean waves (for offshore wind). To provide a site-specific solution,
a hybrid approach using both field measurements and high-fidelity simulations is preferred to
provide the data for training the model. To apply the model to optimize a wind farm, the
incoming velocity data in addition to the turbine operation data are needed as input features.
It is suggested to take the incoming velocity upwind of the turbine as the input feature, which
is not affected by the turbine itself. However, such wind speed measurement upwind of each
turbine might not be available for each turbine in a utility-scale wind farm. In this case,
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Figure 5. Time series of model predicted wake center positions (red lines) compared with true
values (black lines) for case c11.

the incoming velocity can be obtained using the wind data collected at the turbine nacelle,
constructed using the power data, or from upwind turbines. Additionally, the thrust coefficient
and the aerodynamic torque coefficient might not be available from measurements. This can be
solved by calculating CT and Cτ,aero from the power coefficient CP and the generator torque
coefficient Cτ,gen based on some approximations, which are available from turbine’s SCADA
(Supervisory control and data acquisition) system, or training a new model based on input
features including CP and Cτ,gen. Systematic study on these issues will be carried out in the
future work.
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