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Abstract 
We propose a global optimization method to automatically search for the correlation peak instead of computing the entire 
cross-correlation map throughout an interrogation window (IW) using a fast Fourier transform (FFT)-based method. The 
proposed method, named globally optimized cross-correlation for particle image velocimetry (GOCCPIV), minimizes an 
objective function consisting of a residual term for cross-correlation and a penalty term for smoothness to solve the optimal 
velocity field. A very small IW is adopted in GOCCPIV to obtain a dense velocity field with a high spatial resolution. The 
proposed method is quantitatively validated on synthetic particle image pairs with different flow patterns and is compared 
with the mainstream FFT-based cross-correlation method (FFTCCPIV) and physical-based optical flow (OpticalFlow). We 
consider the influences of the IW size, particle concentration, particle image diameter, large displacements and image noise on 
the velocity measurements. Error analysis indicates that GOCCPIV outperforms FFTCCPIV in resolving small-scale vortices 
and reducing the measurement error. Finally, the proposed method is applied to a real PIV experiment with an impinging jet. 
The results indicate that GOCCPIV is more suitable than FFTCCPIV for resolving high-velocity-gradient regions.

Graphic abstract

1 Introduction

The particle image velocimetry (PIV) technique (Adrian 
1991; Willert and Gharib 1991) is widely used to estimate 
flow motions in the field of experimental fluid mechanics. 
The greatest advantage of PIV is that it can simultaneously 
measure many points in a planar or volumetric domain. In 

a planar PIV experiment, the tracer particles seeded in the 
flow field are illuminated by a sheet of laser light. Particle 
images are then recorded at two consecutive instants using 
a CCD or CMOS camera. Image analysis methods, such as 
region-based cross-correlation (Huang and Fiedler 1993; 
Scarano 2002), particle tracking (Adamczyk and Rimai 
1988; Maas et al. 1993) or optical flow (Horn and Schunck 
1981; Barron et al. 1994; Corpetti et al. 2002), are adopted 
to estimate the velocity field from the image sequence. 
Recently, neural networks have also been used to estimate 
flow motions by learning from acquired datasets (Lee et al. 
2017; Cai et al. 2019).

Correlation-based methods are a simple and robust 
means of assessing displacement by finding the maximum 

 * Shizhao Wang 
 wangsz@lnm.imech.ac.cn

1 The State Key Laboratory of Nonlinear Mechanics, 
Institute of Mechanics, Chinese Academy of Sciences, 
Beijing 100190, China

2 School of Engineering Sciences, University of the Chinese 
Academy of Sciences, Beijing 100049, China

http://orcid.org/0000-0002-0397-413X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00348-020-03062-x&domain=pdf


 Experiments in Fluids (2020) 61:228

1 3

228 Page 2 of 17

of the cross-correlation map within a given interrogation 
window (IW). The velocity obtained in this way is approx-
imately the average value of the velocity field over the 
IW, which can be simply modeled as a moving average 
(Nogueira et al. 1999). To correct for the effects of out-of-
plane motion, image noise and low particle concentrations, 
data validation and smoothing methods are always applied 
following correlation-based methods (Adrian 2005; Garcia 
2011; Wang et al. 2015). For a correlation-based method, 
choosing an appropriate size for the IW is crucial. If the 
IW is too small, the resulting field will be contaminated 
by many outliers and random noise caused by unreliable 
correlation peaks. If the IW is too large, the resulting field 
will be oversmoothed by the modulation effect of the IW. 
This implies that the spatial resolution cannot be improved 
simply by reducing the size of the IW. To overcome this 
limitation, the window deformation iterative multigrid 
(WIDIM) technique (Scarano 2002) has been developed 
for flow motion estimation. Image deformation techniques 
can improve the accuracy of velocimetry; however, the 
spatial resolution is still limited by the IW size because the 
amplitude response is negative when the size of the IW is 
larger than the local wavelength of the velocity (Nogueira 
et al. 1999). To obtain a “super-resolution” flow field, an 
approach based on second-order velocity gradients has 
been proposed by Scarano (2004). Susset et al. (2006) used 
an iterative process to resize the IW in accordance with 
vector validation, followed by particle tracking velocime-
try (PTV) to further determine the displacement of each 
particle. Data assimilation, which combines the physical 
models and measured data can also be used to enhance 
the resolution of velocity fields and passive scalar images 
(Schneiders and Scarano 2016; Zille et al. 2016). Instead 
of finding the maximum of the correlation map as per-
formed in correlation-based techniques, the FOLKI-PIV 
method proposed by Champagnat et al. (2011) uses an 
iterative gradient-based cross-correlation optimization 
approach to obtain a dense velocity field (one vector per 
pixel). This approach has been shown to be as accurate 
as state-of-the-art standard PIV software while being 50 
times faster due to GPU implementation. However, the 
spatial resolution is almost the same as that of standard 
PIV due to the same IW.

Optical flow methods are another way to extract flow 
motion by minimizing a local or global cost function. 
Generally, this objective function consists of two terms: 
one is a data modeling term deduced from an assumption 
of brightness or gradient conservation (Drulea and Ned-
evschi 2013), and the other is a regularization term used 
to control the degree of smoothness of the velocity field. 
Taking the brightness conservation as an example, it is 
mathematically expressed by a first-order Taylor expan-
sion as follows:

where � = (u, v) represents the two-component velocity 
field in the image plane, �I∕�t is the partial time deriva-
tive of the image intensity I , and ∇ represents the spatial 
gradient operator. The assumption of brightness conserva-
tion seems inappropriate under the conditions of many real 
PIV experiments. Even for the cross-correlation method, 
the achievable accuracy is strongly limited by the individ-
ual intensity variations of particle images caused by out-of-
plane motion (Nobach 2011). To overcome this weakness, 
a direct approach to optical flow estimation with zero-mean 
normalized cross-correlation (ZNCC) was proposed by 
Drulea and Nedevschi (2013). This approach was shown to 
be very robust to illumination changes. Moreover, Liu and 
Shen (2008) explored the relationship between fluid flow 
and optical flow and provided a physically based data term 
for image-based fluid velocity measurements. Cassisa et al. 
(2011) used a scalar transport equation to define the flow 
equation and modeled the small scales using a subgrid-scale 
model. Because a data term such as Eq. 1 is ill posed, a 
regularization term must be incorporated to solve for the 
velocity field � . This term can be reconstructed using a 
local approach such as the Lucas-Kanade method (Lucas 
and Kanade 1981) or a global approach such as the Horn-
Schunck method (Horn and Schunck 1981) and the div-curl 
smoothing term (Corpetti et al. 2006; Zhong et al. 2017). 
With these regularization terms, the dense velocity field can 
be iteratively solved in the frame of optical flow. Further 
discussions can be found in the papers by Zhong et al. (2017) 
and Seong et al. (2019).

Between correlation-based and optical flow methods, the 
former represent a kind of intensity integration approach 
to finding the displacement, while the latter represents an 
intensity differential approach, as shown in Eq. 1. Currently, 
correlation-based methods are more commonly used than 
optical flow methods for PIV. Additionally, the smoothness 
of a correlation-based method is determined by the size of 
the IW instead of by the regularization term, as in optical 
flow methods. To refine the measured velocity fields, efforts 
have been made to combine the advantages of both types of 
methods. Heitz et al. (2008) defined a new energy function 
to constrain the estimated displacements to be close to a 
sparse-correlation-based vector field. Becker et al. (2012) 
proposed a variational adaptive correlation method to jointly 
optimize the displacement field and the shape of a Gaussian 
IW; the displacement field is solved by maximizing the cor-
relation object function, and the IW shapes are steered by the 
error model function. Seong et al. (2019) proposed a method 
to enhance the measured resolution by using the global opti-
cal flow along with the image deformation deduced via cor-
relation-based PIV.

(1)
�I

�t
+ � ⋅ ∇I = 0,
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For a correlation-based PIV method, the spatial reso-
lution is limited by the number of particles in the IW. A 
potential way to reduce the size of the IW is to use the vari-
ational method of optical flow to constrain the velocity field. 
Therefore, in this study, a global optimization method with 
a regularization term is used to directly find the maximum 
of the cross-correlation map. This approach, named glob-
ally optimized cross-correlation particle image velocimetry 
(GOCCPIV), uses a gradient-based optimization algorithm 
to minimize an objective function consisting of a cross-
correlation term and a smoothness term. The GOCCPIV 
method not only avoids the assumption of brightness conser-
vation but also improves the spatial resolution by enabling 
the adoption of a very small IW. Notably, this idea of com-
bining cross-correlation and global optimization is similar to 
the combined local-global optical flow method proposed by 
Bruhn et al. (2005), where the local Lucas-Kanade method 
is integrated into the global Horn-Schunck technique. This 
approach is used in the field of computer vision. The rest of 
this paper is organized as follows. In Sect. 2, we first present 
our globally optimized cross-correlation approach, which 
is efficiently computed using a state-of-the-art optimization 
algorithm and integrated with image deformation. In Sect. 3, 
the proposed method is compared with the correlation-based 
PIV algorithm and physics-based optical flow approach on 
synthetic images. In Sect. 4, some real experimental images 
are used to evaluate this new method. Finally, we conclude 
in Sect. 5.

2  Methodology

2.1  Globally optimized cross‑correlation

In the original PIV algorithm, the displacement is obtained 
by searching for the maximum peak in the cross-correlation 
map and then applying subpixel interpolation to estimate 
the precise displacement. This procedure is actually an opti-
mization process for seeking a displacement by maximiz-
ing the intensity match. As proposed by Champagnat et al. 
(2011), cross-correlation maximization can be achieved 
by means of a gradient-based optimization method instead 
of by calculating the cross-correlation scores of all possi-
ble displacements, as in the original PIV algorithm. The 
cross-correlation is replaced by the sum of the squared dif-
ferences (SSD) in the IW, and the Gauss–Newton iteration 
is derived in accordance with the first-order Taylor expan-
sion. A detailed explanation of the relationship between 
the cross-correlation and SSD can be found in the paper 
by Drulea and Nedevschi (2013). In contrast to the method 
proposed by Champagnat et al. (2011), we still compute 
the cross-correlation as defined in the original correlation-
based methods; however, a regularization term is added to 

the correlation-based algorithm to overcome the problems 
caused by a small IW. This can be achieved by optimizing 
the following formula:

where � = (�, �) represents the displacement field, ��,� is 
the correlation map corresponding to the displacement field, 
and the parameters �1 and �2 are real positive scalars that 
control the degree of smoothness. The objective function is 
minimized over the whole measurement domain � . Given 
the displacement field, the normalized cross-correlation 
coefficient is calculated over the IW at each grid node as 
follows:

where the size of the IW is m × n . The parameters f ′ and g′ 
are the gray intensity fluctuations obtained by subtracting the 
mean value over the IW. The value range of � is between -1 
and 1. Mean value subtraction can eliminate the contribu-
tion of the mean intensity to the cross-correlation (Scarano 
2002; Raffel et al. 2018; Scharnowski and Kähler 2020). Fig-
ure 1 presents a schematic diagram of the cross-correlation 
computation at one location. A and B represent the IW in 
the image pair, and the Cu,v at this location can be directly 
computed by substituting A and B into Eq. 3. The terms on 
the right-hand side of Eq. 2 consist of a correlation residual 
term and a penalty term that controls the smoothness of the 
velocity field. This global smoothness term can constrain the 
neighboring vectors when the IW is small. In this work, the 
second-order divided difference form proposed by Garcia 
(2010) is adopted; this is denoted by the Laplace operator 

(2)

R(�, �) = ∫�

⎛
⎜⎜⎜⎝

�
1 − ��,�

�2
⏟⏞⏞⏞⏟⏞⏞⏞⏟
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1
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Fig. 1  Schematic diagram of the computation of Cu,v and Cu+1,v at one 
location
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Δ in Eq. 2. Another form of smoothness term used in opti-
cal flow can also be adopted in the proposed method, such 
as Horn-Schunck regularization (Horn and Schunck 1981) 
or a div-curl constraint term (Corpetti et al. 2006; Zhong 
et al. 2017). To construct a linear system, the velocity field 
is reshaped as a column vector, and the Laplace operator is 
replaced with the difference matrix Dxx + Dyy , where Dxx 
and Dyy are the square second-order difference matrices 
along the x and y directions, respectively. Repeated border 
elements are adopted to address the boundary conditions 
(Garcia 2010).

2.2  Gradient‑based minimization

To solve for the velocity field, we must minimize the objec-
tive function R(�, �) . Many state-of-the-art algorithms can 
be used to solve this nonlinear least-squares problem. In this 
work, we use the Levenberg–Marquardt method (Levenberg 
1944; Marquardt 1963), which is a damped Gauss–Newton 
method, to solve this problem. The residual array � is writ-
ten as follows:

where � is a vector with dimensions of 3N × 1 , and N is the 
total number of vectors. To reduce the computation time, 
the Jacobian array � of the residuals is also given as follows:

The size of � is equal to 3N × 2N . The terms −���,�∕�� and 
−���,�∕�� represent the gradients of the correlation coef-
ficients with respect to the displacement. To compute the 
Jacobian array with high efficiency, the displacement field 
� is rounded to integer values, and a finite central differ-
ence calculation with a step size of ±1 pixel is adopted to 
estimate the gradients ���,�∕�� and ���,�∕�� , as shown in 
Fig. 1. Taking ���,�∕�� as an example, ��+�,� and ��−�,� 
are calculated by shifting the IW by ±1 pixel in the x direc-
tion around the point (�, �) ; then, ���,�∕�� is estimated as 
(��+�,� − ��−�,�)∕2 . To reduce the computation time for 
cross-correlation, the calculated correlation coefficients are 
stored in memory and will not be repeatedly computed. Note 
that the arrays ���,�∕�� and ���,�∕�� are diagonal matrices 
because the correlation coefficients are assumed to be inde-
pendent of the adjacent vectors.

The Jacobian array � and the residual array �  can be 
computed from the initial displacement field �0 . The 

(4)� =

⎛⎜⎜⎝

1 − ��,�

�1Δ�

�2Δ�

⎞⎟⎟⎠
,
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��
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=
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���,�

��
−
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�
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�
�
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�
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�
⎞⎟⎟⎠
.

displacement field � can then be iteratively updated by solv-
ing the following equations:

where the damping parameter � (𝜇 > 0) influences both the 
direction and size of the velocity step �lm and is controlled 
by the Levenberg–Marquardt method itself. This system of 
equations is solved using the least-squares QR factorization 
method. This process can be repeated many times until the 
convergence condition is satisfied. Only 10 iterations are 
adopted in the present globally optimized cross-correlation 
method. Note that in this type of optimization, if the initial 
displacement is far from the real solution, there is a risk 
of obtaining results that are even farther away through fur-
ther iteration. Figure 2 illustrates an example of a cross-
correlation function with a IW size of 25 × 25 pixels, which 
contains a distinct highest peak corresponding to the particle 
displacement and many lower noise peaks due to the image 
noise, velocity gradient and out-of-plane motion. Because 
the optimization performance is determined by the local 
gradient of cross-correlation coefficients ( ���,�∕�� and 
���,�∕�� ), the optimization will converge to the local noise 
peak with a wrong initialization. As illustrated in Cham-
pagnat et al. (2011), however, when the search is initialized 
at a value that is not too far (e.g., 2–3 pixels) from the true 
displacement, such an optimization method can obtain an 
accurate result within only a few iterations.

2.3  Parameter optimization

The parameters �1 and �2 are positive scalar weights that 
control the degrees of smoothness of � and � , respectively. 
With proper smoothing parameters, over- and undersmooth-
ing can be avoided as much as possible. For fluid motion 

(6)
(
�
�
� + ��

)
�lm = −��� ,

� = �0 + �lm,
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Fig. 2  Example of cross-correlation map with a IW size of 25 × 25 
pixels
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estimation, the use of �1 and �2 values that are invariant over 
different types of flow fields or even different snapshots of 
the same flow field is impractical. To match the range of 
residuals in Eq. 4, the residual terms Δ� and Δ� are normal-
ized with respect to their absolute maxima. This means that 
the parameters �1 and �2 can be expressed as follows:

 where the value of � is between 0 and 1. The effect of � 
on the error is evaluated with the one-dimensional sinu-
soidal shear displacement, which is introduced in detail in 
Sect. 3.2, and the results are presented in Fig. 3. This figure 
shows that the error first decreases and then increases as 
� increases. In this case, the optimal � values for IW = 5, 
11, 17, and 23 pixels are approximately 0.9, 0.5, 0.4, and 
0.2, respectively, and decrease with increasing IW size. This 
implies that the value of � should be inversely proportional 
to the IW size due to the smoothing effect of the IW. In 
this work, an empirical value of � is linearly calculated as 
follows:

If the IW is larger than 32 pixels (a size that is commonly 
used in the PIV community), then the GOCCPIV algorithm 
will be equivalent to the original PIV algorithm. The IW 
size is related to the particle concentration. If the particle 

(7)�1 =
�

max(|Δ�|) , �2 =
�

max(|Δ�|) ,

(8)𝛼 =

⎧
⎪⎪⎨⎪⎪⎩

1, IW ≤ 5,

IW − 32

5 − 32
, 5 < IW < 32,

0, IW ≥ 32.

concentration is very high and an IW with a size of 16 pixels 
is reliable for estimating the displacements, then the value of 
� can be set to 0 at IW = 16 pixels. As the IW decreases in 
size, the smoothing parameter � gradually increases to 1 to 
suppress the noise caused by a small IW. This simple con-
figuration can yield a more robust and accurate estimation 
of the velocity field, as shown in the next section.

Notably, the velocity field obtained by solving Eq. 6 usu-
ally is not accurate at the subpixel level because the gra-
dients of the correlation coefficients are calculated based 
on rounded pixels. Therefore, interpolation of the subpixel 
displacements by performing Gaussian fitting on the correla-
tion map ��,� is necessary.

2.4  Overall algorithm and general comments

The overall GOCCPIV algorithm is summarized in Table 1. 
The step size defines the space between adjacent vectors. If 
the step size is 1, then all vectors at each pixel are estimated. 
GOCCPIV not only is a gradient-based optimization algo-
rithm for finding the maximum of the correlation map but 
also can constrain the vectors to a smooth field by means 
of a penalty term that reflects the roughness of the data. 
The greatest benefit provided by the penalty term is that the 
IW can be set to a much smaller size than is possible in the 
original PIV algorithm. For GOCCPIV, the optimal IW size 
is between 5 pixels and 15 pixels, depending on the particle 
concentration and image noise. Before setting the param-
eters, the computational efficiency of GOCCPIV, which is 
determined by the IW size and step size, must be considered. 
A larger IW will require more time to compute the normal-
ized cross-correlation coefficients. Therefore, the computa-
tion time increases with increasing IW size. The step size 
determines the number of vectors. If the step size is large, 
Eq. 6 can be quickly solved due to the low array dimensions. 

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

Fig. 3  Error as a function of � for different IW sizes. The y-axis is the 
error simulated based on the one-dimensional sinusoidal shear dis-
placement, which is introduced in detail in Sect. 3.2. No image pyra-
mids are adopted

Table 1  Pseudocode for GOCCPIV
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However, it is inefficient in solving a high-dimensional sys-
tem of linear equations. To balance the computation time 
and density of the vector field, the step size is proposed to 
be between 2 and 6 pixels. A detailed time comparison is 
given in Sect. 4 for a real PIV experiment. The GOCCPIV 
method is 5.8 times faster than FFTCCPIV in terms of the 
time cost per vector. In GOCCPIV, a fixed number of opti-
mization iterations ( Iter = 10 ) is adopted because the con-
vergence of the Levenberg-Marquardt method is very fast. 
Compared to the original PIV algorithm, another potential 
benefit of GOCCPIV is that the GOCCPIV algorithm can 
be implemented on a GPU device with high parallelization 
to further greatly reduce the computation time (Champagnat 
et al. 2011).

2.5  Image pyramids for large displacements

As stated in Sect. 2.1, due to the limitations of the optimi-
zation algorithm, GOCCPIV can find the correlation peaks 
correctly only if the displacement is less than 2–3 pixels 
(when the initial field is zero). However, in practice, larger 
displacements are common in PIV experiments. There are 
two ways to address this problem. One is to calculate the 
displacement from two successive images using the orig-
inal PIV algorithm and then use GOCCPIV to refine the 
velocity field based on the small displacement after image 
deformation. This method is similar to that proposed by 
Seong et al. (2019) where the velocity is refined based on 
the global optical flow with a constant brightness gradient. 
The second method, which is applied in this work, is to 
construct multiresolution image pyramids from coarser to 
finer resolutions, as performed in optical flow analysis (Burt 
and Adelson 1983; Champagnat et al. 2011; Cassisa et al. 
2011). At pyramid level k, the image is obtained by applying 
a low-pass filter and downsampling by a factor of 2 to the 
image at level k − 1 . Figure 4 shows such a multiresolution 
scheme with K = 3 , where K is the total number of layers 
of the image pyramid. K is determined from the maximum 
displacement as follows: 2K ≤ max(�) . The image resolution 

is reduced as the level k increases. At pyramid level k, the 
velocity field is �k = 2�k+1 + �̃k , where �̃k is the incremen-
tal velocity field estimated from the deformed images at the 
current level. The detailed steps are as follows: 

1. Create the image pyramids from level 0 (original 
images) to level K − 1 (coarsest images).

2. Estimate the displacement �k at level k = K − 1 using 
GOCCPIV with zero initialization.

3. Deform images A and B at pyramid level k in accord-
ance with the velocity field 2�k+1 . Both images A and 
B are deformed to the center time in accordance with 
the interpolated displacements obtained with the center 
difference pattern.

4. Estimate the incremental velocity field �̃k from the 
deformed images using GOCCPIV with zero initializa-
tion.

5. Refine the velocity field at level k as follows: 
�k = 2�k+1 + �̃k.

6. Repeat steps 3 to 5 until k = 0.

3  Numerical evaluation

3.1  Synthetic images

The performance of the proposed method is first evaluated 
using synthetic images generated in accordance with the 
framework of the EUROPIV Synthetic Image Generator 
(SIG) proposed by Lecordier and Westerweel (2004). The 
CCD resolution is set to 512 × 512 pixels and the ratio of 
the sensitive area of one pixel to the pixel pitch is fixed at 
1. The intensity distribution is calculated by integrating the 
2D Gaussian intensity distribution over the pixel area with 
a particle image diameter dp and a standard deviation of 0.2 
pixels (Sciacchitano et al. 2013). Unless otherwise indicated, 
the number of particles per pixel ppp and particle diameter 
dp are set to 0.1 and 2 pixels, respectively, and 10% out-of-
plane motion is applied to the particles. The peak intensity 
level of the particles is 255, with a standard deviation of 
50 counts. Noisy images are generated by adding Gaussian 
white noise with different standard variances to the original 
images. The noise level �noise is defined as the ratio between 
the standard variance of the noise and the maximum image 
intensity. The intensity values of the particle images are con-
verted into 8-bit unsigned integers. Figure 5 displays two 
examples of synthetic particle images. The left is generated 
in accordance with ppp = 0.1 and dp = 1 pixel without noise, 
and the right is generated with ppp = 0.1 and dp = 2 pixels 
with Gaussian white noise of �noise = 10%.

The results of the proposed global optimization method will 
be compared with those of the WIDIM technique (Scarano 
2002) and physics-based optical flow (Liu 2017; Liu et al. 

image 
deformation

2U

1U% 1 2 1=2 +U U U%

image 
deformation 0U% 0 1 0=2 +U U U%

GOCCPIV

k=2

k=1

k=0

Fig. 4  Flowchart of iterative image deformation with GOCCPIV in a 
three-level image pyramid
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2020). Because the WIDIM method is based on FFT-based 
cross-correlation, we refer to this method as FFTCCPIV. The 
physics-based optical flow is referred to as OpticalFlow. For 
FFTCCPIV, the number of iterations of image deformation 
is denoted by ND . If ND is equal to 1, this implies that only a 
single-pass cross-correlation is adopted in FFTCCPIV. If ND is 
larger than 1, an iterative analysis at a fixed IW size is utilized 
to perform image deformation (Schrijer and Scarano 2008). 
A square IW is adopted for both FFTCCPIV and GOCCPIV 
to estimate the velocity fields. The open Matlab programs of 
OpticalFlow can be downloaded from https ://githu b.com/Tians 
hu-Liu/OpenO ptica lFlow . This approach is actually a hybrid 
optical-flow-cross-correlation method (Liu et al. 2020). The 
cross-correlation method is used to estimate a coarse-grained 
displacement field, and then, an optical flow estimation with 
the Horn-Schunck estimator and Liu-Shen estimator is applied 
to refine the field based on deformed images. Therefore, the 
parameters used in OpticalFlow contain the IW size for the 
PIV algorithm and Lagrange multipliers for optical flow esti-
mators. The default parameters in the open source program in 
Matlab are adopted except that the filter size for the image is 
modified to 3. A statistical analysis is conducted by consider-
ing the root mean square error (RMSE) and average angular 
error [AAE, Barron et al. (1994)] between the calculated field 
�c and the exact field �e as follows:

where |�| represents the velocity length of � , the opera-
tor ⋅ represents the inner product, N is the number of grid 
nodes of the velocity field (excluding the boundary) over the 
measurement region � and x represents the vector locations.

(9)

�RMSE =

√
1

N

∑
x∈�

(
�c(x) − �e(x)

)2
,

�AAE =
1

N

∑
x∈�

{
arccos

(
�c(x)

||�c(x)
||
⋅

�e(x)

||�e(x)
||

)}
,

3.2  One‑dimensional sinusoidal shear displacement

One-dimensional sinusoidal shear displacement is consid-
ered to evaluate the performance of the proposed GOC-
CPIV algorithm as well as FFTCCPIV and OpticalFlow. 
The amplitude of the ground-truth velocity field U0 varies 
from 0 to 8 pixels, and the wavelength � is set to 80 pix-
els. To draw a fair comparison of the effect of the IW size, 
particle concentration ppp, and particle image diameter dp , 
the number of image pyramid levels K is set to 1, meaning 
that only the original image pairs are used to evaluate the 
displacement in GOCCPIV. A standard single-pass correla-
tion without image deformation is adopted in FFTCCPIV. 
For comparison of the effect of maximum particle displace-
ment U0 , three image pyramid levels ( K = 3 ) are adopted 
for GOCCPIV, and image deformation with ND = 3 is used 
within FFTCCPIV.

Figure 6 presents the displacement distributions obtained 
with FFTCCPIV (a, b), GOCCPIV (c, d) and OpticalFlow 
(e, f) with and without image noise for � = 80 pixels and 
U0 = 2 pixels. The IW size and step size for both FFTC-
CPIV and GOCCPIV are 5 pixels and 2 pixels, respectively. 
Gaussian white noise with �noise = 10% has been added to 
the images in the right panels of Fig. 6b, d and f, while 
no image noise is present in Fig. 6a, c and e. The num-
ber of image pyramid levels, K, is equal to 1 due to the 
small maximum displacement for GOCCPIV, and no image 
deformation is adopted in FFTCCPIV. Note that the spuri-
ous vectors detected by the normalized median test (West-
erweel et al. 2004) are removed from the velocity fields, so 
some locations have no red vectors. In the case of images 
without noise, the displacement distribution of GOCCPIV 
is almost the same as that of FFTCCPIV, and both results 
present good agreement with the ground truth. The outlier 
rates for FFTCCPIV and GOCCPIV are approximately 12% 
and 4% . For the image with noise, the result of GOCCPIV is 
much better than that of FFTCCPIV, as presented in Fig. 6b, 
d. Approximately 60 percent of the vectors of FFTCCPIV 
are outliers due to the small IW and image noise, while this 
value for GOCCPIV is as small as 6% . The mean profile 
of GOCCPIV presents good agreement with the ground 
truth both with and without image noise. The RMSEs (red 
dashed line) of FFTCCPIV, GOCCPIV and OpticalFlow are 
approximately 0.7 pixels, 0.3 pixels and 0.16 pixels when 
considering image noise, respectively. The velocity field 
obtained by OpticalFlow is smoother than the others and 
performs best among all three methods. In this comparison, 
the performance of GOCCPIV is slightly worse than that 
of OpticalFlow while much better than that of FFTCCPIV.

The influences of the IW size on the outlier rate and 
RMSE are presented in Fig. 7a and b, respectively. The 
outlier rate is less than 3% even considering the image 
noise of �noise = 10% when the IW size is larger than 10 

Fig. 5  Synthetic particle images with size of 100 × 100 pixels. a ppp 
= 0.1, particle diameter dp = 1 pixel without noise. b ppp = 0.1, dp = 
2 pixels with Gaussian white noise at a level of �noise = 10%

https://github.com/Tianshu-Liu/OpenOpticalFlow
https://github.com/Tianshu-Liu/OpenOpticalFlow
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pixels. According to the given ppp of 0.1, there are 10 
particle image pairs within the IW of 10 × 10 pixels. This 
result confirms that the IW should contain sufficient parti-
cles (generally greater than 10) to ensure a reliable corre-
lation peak (Adrian 1991; Scharnowski and Kähler 2020). 
The outlier rate dramatically increases when the IW size is 
smaller than 10 pixels for FFTCCPIV. Especially for the 
images containing noise, the outlier rate of FFTCCPIV 
reaches approximately 60% when the IW size decreases to 
5 pixels. The outlier rate of GOCCPIV, by contrast, is less 

than 6% in the whole range. The RMSEs as a function of 
IW size are shown in Fig. 7b. The errors of OpticalFlow 
are also indicated as the lines with square symbols in this 
figure. As the IW decreases in size from 30 pixels to 5 
pixels, the RMSEs of both GOCCPIV and FFTCCPIV first 
decrease and then increase. When the IW is larger than 20 
pixels, the performances of these two methods are compa-
rable. When the IW is smaller than 20 pixels, the RMSE of 
GOCCPIV increases much more slowly than that of FFTC-
CPIV. This is because GOCCPIV uses a smoothness term 

Fig. 6  Displacement distributions of FFTCCPIV (a, b), GOCCPIV 
(c, d) and OpticalFlow (e, f) for sinusoidal shear displacement with 
a wavelength of � = 80 pixels and U0 = 2 pixels. The IW size for 
FFTCCPIV and GOCCPIV are 5 pixels, and the step size is 2 pixels. 
The left panels show the results without image noise, and the right 
panels show the results with image noise at a level of �noise = 10% . 
The left side of each panel shows the vector plot (vectors are dis-
played every 8 × 8 pixels), and the right side shows the mean sinusoi-
dal curves. The solid black and red lines represent the ground-truth 
and calculated values, respectively. The dashed red lines represent the 

RMSE estimated using Eq. 9. a Velocity field calculated via FFTC-
CPIV with an IW size of 5 pixels and no image noise. b Velocity 
field calculated via FFTCCPIV with an IW size of 5 pixels and image 
noise at a level of �noise = 10% . c Velocity field calculated via GOC-
CPIV with an IW size of 5 pixels and no image noise. d Velocity field 
calculated via GOCCPIV with an IW size of 5 pixels and image noise 
at a level of �noise = 10% . e Velocity field calculated via OpticalFlow 
without image noise. f Velocity field calculated via OpticalFlow with 
image noise at a level of �noise = 10% . The missing red vectors are 
detected outliers
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to optimize the velocity field. Considering the outlier rate 
given in Fig. 7a, most vectors are obtained by interpolation 
in FFTCCPIV for a small IW size. Moreover, the RMSE 
of OpticalFlow is smallest among these three methods.

Detailed quantitative comparisons of the effects of parti-
cle concentration ppp, particle diameter dp , maximum parti-
cle displacement U0 and image noise level �noise are presented 
in Fig. 8. The top plane and bottom plane are the RMSE and 
AAE results, respectively. The curves with circles, triangles 

Fig. 7  Quantitative compari-
sons showing the effects of the 
IW size on the outlier rate (a) 
and error � (b) for FFTCCPIV 
(circle), GOCCPIV (triangle) 
and OpticalFlow (square). 
Only a standard single-pass 
cross-correlation is adopted for 
FFTCCPIV ( ND = 1 ), and the 
image pyramid level of K = 1 
is adopted for GOCCPIV. The 
results without and with image 
noise are presented by solid and 
open symbols, respectively 5 10 15 20 25 30
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Fig. 8  RMSEs and AAEs as a function of particle concentration 
ppp (a, d), particle diameter dp (b, e) and particle displacement U0 
(c, f) for FFTCCPIV (circle), GOCCPIV (triangle) and OpticalFlow 
(square). The results without and with image noise are presented by 
solid and open symbols, respectively. For figures (a, b, d, e), only 
a standard single-pass cross correlation is adopted for FFTCCPIV 

( ND = 1 ), and the image pyramid level of K = 1 is adopted for GOC-
CPIV. For figure (c, f), image deformation with ND = 3 is used within 
FFTCCPIV, and three image pyramid levels ( K = 3 ) are adopted for 
GOCCPIV. For all cases, the IW size and step size are 7 pixels and 2 
pixels, respectively
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and squares represent the results of FFTCCPIV, GOCCPIV 
and OpticalFlow, respectively. In Fig. 8a, the RMSEs of 
FFTCCPIV and GOCCPIV present exponential decay as ppp 
increases from 0.01 to 0.2. The error level of GOCCPIV is 
smaller than that of FFTCCPIV when considering image 
noise. It can be observed that the RMSE of OpticalFlow first 
decreases and then increases with increasing ppp. The effect 
of dp is investigated in Fig. 8b. An optimal particle diameter 
is approximately dp = 1.5 pixels for both FFTCCPIV and 
GOCCPIV. This is consistent with known results from the 
reports of Sciacchitano et al. (2013) and Wieneke (2015). 
The error of OpticalFlow monotonically increases as the 
particle diameter increases. We also consider the effect of 
the particle displacement U0 in Fig. 8c. To assess the effect 
of a large displacement, three image pyramid levels ( K = 3 ) 
are adopted for GOCCPIV. For FFTCCPIV, image deforma-
tion with ND = 3 is used to resolve the velocity fields. The 
IW sizes of GOCCPIV and FFTCCPIV are both 7 pixels, 
and the step size is 2 pixels. We compare the RMSEs for 
GOCCPIV and FFTCCPIV with and without image noise 
as the maximum displacement increases from 0 pixels to 8 
pixels. The RMSE of GOCCPIV is almost the same as that 
of FFTCCPIV in the range of 0 pixels to 6 pixels. When U0 is 
larger than 6 pixels, the performance of GOCCPIV is much 
better than that of FFTCCPIV when considering image 
noise. OpticalFlow outperforms FFTCCPIV and GOCCPIV 
at small displacement ( U0 ≤ 5 pixels) but deteriorates with 
larger displacement (Liu et al. 2015; Seong et al. 2019). 
Figure 8d–f shows the AAE as a function of ppp, dp and U0 , 
respectively. The effects of ppp on the AAE are almost the 
same as those on the RMSE, as are the effects of dp . How-
ever, in Fig. 8f , the AAE decreases as U0 increases. This is 
because the definition of the AAE in Eq. 9 is relative to U0.

At the end of this part, we would like to give two remarks 
about the performance of GOCCPIV. First, GOCCPIV has 
the capability to resolve the velocity using a very small 
IW, which breaks the rule of “ten particles in the IW” for 
conventional FFTCCPIV. Second, GOCCPIV outperforms 
FFTCCPIV, while the performance of OpticalFlow is the 
best among all three methods under some conditions.

3.3  Two‑dimensional sinusoidal vortices

An analysis of the spatial resolution is performed on test 
images of two-dimensional sinusoidal vortices. This test case 
was provided in the third PIV challenge, and the purpose of 
this case is to quantitatively determine the spatial resolu-
tion of the different methods. The images were downloaded 
from the challenge website (http://www.pivch allen ge.org/) 
and have been described in detail in the literature by Stan-
islas et al. (2008). We use only the lower-left 1000 × 1000 
pixels of the image region, which presents a set of random 
two-dimensional sinusoidal vortices. According to Stanislas 
et al. (2008), the sinusoids have different wavelengths vary-
ing from 8 to 200 pixels, and the amplitude varies around 
2 pixels. Figure 9 illustrates the resolution test. From left 
to right, the V-component displacement fields evaluated by 
FFTCCPIV, GOCCPIV and OpticalFlow are displayed in 
Fig. 9a–c, respectively. Image deformation with ND = 3 is 
adopted for FFTCCPIV with an IW size of 32 pixels and 
75% overlap. GOCCPIV with an IW size of 5 pixels and a 
step size of 2 pixels is used to evaluate the velocity field. 
The number of pyramid levels, K, is set to 2. All large-scale 
vortices are well resolved by these three approaches. How-
ever, GOCCPIV recovers more small flow structures without 
introducing significant errors. From visual inspection of the 

Fig. 9  V-component contour maps of two-dimensional sinusoidal vortices calculated via FFTCCPIV with ND = 3, IW size of 32 pixels and 75% 
overlap (a), GOCCPIV with K = 2, IW size of 5 pixels and step size of 2 pixels (b), and OpticalFlow (c)

http://www.pivchallenge.org/
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contour of OpticalFlow, the small-scale vortices are visible, 
but the magnitude of the V-component is much less than in 
the result of GOCCPIV. Both the results of FFTCCPIV and 
OpticalFlow are oversmoothed compared with GOCCPIV.

3.4  Two‑dimensional homogeneous turbulence

A 2D homogeneous and isotropic turbulent flow is also used 
to evaluate the performance of the proposed method. The 
data sequence was downloaded online from http://fluid .irisa 
.fr/data-eng.htm, and a detailed description has been given 
by Carlier and Wieneke (2005). Fifty snapshots are used to 
generate synthetic images with a resolution of 512 × 512 
pixels. The maximum displacement is set to 6 pixels. Gauss-
ian white noise with a level of 5% is added to all synthetic 
images to assess the influence of noise on the proposed 
method.

Figure 10 displays instantaneous vortex maps (top) and 
error distributions (bottom) calculated using FFTCCPIV (a, 
d), GOCCPIV (b, e) and OpticalFlow (c, f). For FFTCCPIV, 
the number of iterations of image deformation is ND = 3 , 
and the IW size is 32 pixels with 75% overlap. For GOC-
CPIV, the number of pyramid levels is set to 3, and the IW 
size and step size are 9 pixels and 2 pixels. The error shown 
in Fig. 10 is defined as follows:

where uref  and vref  are the exact reference u-component and 
v-component, respectively, and the parameters i and j are 
the vector indices for different locations. In Fig. 10d, the 
largest errors always appear in regions with a high velocity 
gradient due to the modulation effect caused by the large 
IW (32 pixels). The mean error in Fig. 10d is 0.21 pixels. 
A weak modulation effect is still observed for OpticalFlow 

(10)e(i, j) =

√[
u(i, j) − uref (i, j)

]2
+
[
v(i, j) − vref (i, j)

]2
,

Fig. 10  Instantaneous raw vortex fields (top) and corresponding error 
distributions (bottom) for an image with 5% noise. The left panels (a, 
d) show the results of FFTCCPIV with ND = 3, IW size of 32 pixels 
and 75% overlap, the center panels (b, e) show the results of GOC-

CPIV with K = 3, IW size of 9 pixels and step size of 2 pixels, and 
the right panels (c, f) show the results of OpticalFlow. Filled contour 
maps are presented to display the vortex field and the error magni-
tude. All computed velocities are raw data without smoothing

http://fluid.irisa.fr/data-eng.htm
http://fluid.irisa.fr/data-eng.htm
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in Fig. 10f, and the mean error is 0.21 pixels, the same as 
that of FFTCCPIV. By contrast, in the GOCCPIV results 
shown in Fig. 10e, no modulation effect is evident, and the 
influence of random noise is acceptable. The mean error is 
approximately 0.24 pixels. Note that some large errors arise 
at the computation boundaries.

Figure  11 compares the results for the power spec-
tral density (PSD) obtained from the velocity fields using 
FFTCCPIV, GOCCPIV and OpticalFlow. The images used 
in Fig. 11a have been generated with image noise, while 
images without any noise are also evaluated in Fig. 11b. 
k represents the streamwise wavenumber. All spectra fol-
low the same trend as the reference in the low-wavenumber 
domain. The energy spectrum of FFTCCPIV (IW=32 pixels) 
exhibits an obvious modulation effect in the high-wavenum-
ber domain due to the large size of the IW (Foucaut et al. 
2004; Atkinson et al. 2013). Although all spectra diverge 
from the reference spectrum, the spectra of GOCCPIV and 
OpticalFlow are much closer to the reference than that of 
FFTCCPIV. By carefully checking the spectrum of Opti-
calFlow, an underestimation can be observed in the range 

of 0.016 ≤ k ≤ 0.036 , which may be caused by a slightly 
strong smoothness constraint. The spectrum of GOCCPIV 
presents good agreement with the reference at k ≤ 0.03 , with 
a divergence toward higher energy at larger wavenumbers 
due to the random error, as shown in Fig.10e.

4  Experiment with an impinging jet

In this section, the proposed method is verified based on a 
real PIV experiment with an impinging jet. The impinging 
jet was formed as a synthetic jet vortex ring impinging on a 
solid wall (Xu et al. 2017). As shown in Fig. 12, this experi-
ment was conducted in an acrylic water tank with dimen-
sions of 600 mm × 600 mm × 600 mm. The height of the 
water was 550 mm to ensure no boundary disturbance. An 
L-shaped hollow circular cylinder with an exit orifice diam-
eter D of 10 mm was placed under the water, and the exit 
orifice was approximately 300 mm from the sidewall and 
approximately 316 mm from the bottom of the tank. The 
L-shaped hollow cylinder was connected to a piston-cylinder 

Fig. 11  Energy spectra of a 
two-dimensional turbulent flow 
obtained from images with (a) 
and without (b) noise. The com-
putational configurations are the 
same as in Fig. 10

Fig. 12  Schematic diagram of 
the experimental setup
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arrangement by Teflon tubing, and the piston was connected 
to an eccentric disk driven by a high-precision servo motor. 
A detailed description of the configuration used in this 
experiment can be found in the paper by Xu et al. (2017). 
After activation of the motor, a periodic synthetic jet per-
pendicularly impinges on the sidewall. In the present work, 
we consider only the case of Resj = 332, where the Reynolds 
number Resj is defined as Resj = VsjD∕� . The parameter Vsj 
is the characteristic velocity of the synthetic jet, estimated 
as the time-averaged orifice blowing velocity over an entire 
cycle, and � is the kinematic viscosity of the water, which 
was estimated at a temperature of 20 ◦ C. According to the 
parameters given by Xu et al. (2017), Vsj and the maxi-
mum orifice fluid velocity are 33.3 mm/s and 104.6 mm/s, 
respectively.

A time-resolved PIV system was used to acquire the par-
ticle images (Xu et al. 2017). Hollow glass beads with a 
diameter of 10 � m were seeded into the water tank as tracer 
particles. These particles were illuminated by a continuous 
laser sheet with a thickness of 1 mm at a power of 5 W. The 
laser sheet was emitted across the centerline of the synthetic 
jet. A high-speed CMOS camera (FastcamSA2/86K-M3) 
with a sampling frequency of 240 Hz was used to capture 
the particle images, and the measurement region is repre-
sented by the green domain in Fig. 12. A raw particle image 
is also shown in this figure; its size is 1536 × 836 pixels, 
with approximately 0.06 mm per pixel, corresponding to a 
field of view of approximately 90 mm × 50 mm. The maxi-
mum particle displacement between adjacent snapshots is 
approximately 10 pixels, and the particles in the high-speed 
region exhibit a slight tailing effect due to the relatively long 
exposure time. Although many periods of vortex ring evolu-
tion were recorded, only one period of the jet is used here to 
analyze the performance of GOCCPIV. Before calculating 
the velocity field, the historical minimum value over the 
image sets is taken as an estimate of the background and 
subtracted from the raw image to reduce the image noise. 
The particle concentration ppp is found to be approximately 
0.0527, corresponding to approximately fifty particles on 
average in an IW of 32 pixels × 32 pixels. Note that, as indi-
cated in Fig. 12, the synthetic jet region and wall jet region 

are challenging to analyze using the classical PIV algorithm 
due to the high-velocity gradient in these regions.

To validate GOCCPIV, the results of FFTCCPIV and 
OpticalFlow are also presented in this section. The IW of 
FFTCCPIV is set to the common dimensions of 32 pixels × 
32 pixels, and the number of iterations of image deforma-
tion is 3. The step size is set to 8 pixels, corresponding to 
an overlap factor of 75% . For GOCCPIV, because the maxi-
mum displacement is greater than 8 pixels, the number of 
pyramid layers, K, is set to 4 to generate the image pyramids. 
The IW size and step size of GOCCPIV are 9 pixels and 2 
pixels, respectively. For OpticalFlow, the cross-correlation 
method with three passes (64 × 64, 32 × 32 to 16 × 16 pixels 
with 50% overlap) is used to initialize the large displace-
ment field, and then, the Horn-Schunck estimator with a 
Lagrange multiplier of 20 and Liu-Shen estimator with a 
Lagrange multiplier of 2000 are used to refine the flow field. 
The parameters used for each approach are listed in Table 2. 
No postprocessing is applied to the output velocity fields 
for either GOCCPIV or FFTCCPIV. The left side of one 
instantaneous velocity magnitude field computed via FFTC-
CPIV and GOCCPIV is presented in Fig. 13, and the contour 
map of GOCCPIV is plotted in mirror symmetry. The peak 
velocity of GOCCPIV is higher than that of FFTCCPIV, 
and the flow structure is well resolved via GOCCPIV with 
an increased spatial resolution.

Figure 14 shows the profiles of the v-component velocity 
at the center of the measurement domain as a function of 

Table 2  PIV parameters and execution times for the impinging jet experiment

IW size (pixels) Step size (pixels) Number of iterations/
levels

Number of vectors CPU time (s) Time per vector (s)

FFTCCPIV 32 8 3 75×188 14 9.9 × 10−4

GOCCPIV 9 2 4 310×760 39 1.7 × 10−4

PIV parameters (pixels) Step size (pixels) Lagrange multipliers Number of vectors CPU time (s) Time per vector (s)

OpticalFlow (64, 32, 16) with 50% overlap 1 (20, 2000) 636×1536 28 0.29 × 10−4

Fig. 13  Instantaneous velocity magnitude fields computed via FFTC-
CPIV (left) and GOCCPIV (right)
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time obtained via FFTCCPIV, GOCCPIV and OpticalFlow. 
The v-component is perpendicular to and points toward the 
sidewall. One circle of the synthetic jet is shown in this fig-
ure. The peak velocity, which corresponds to the time when 
the jet passes through the center location, is higher in the 
profiles obtained with GOCCPIV and OpticalFlow than in 
that obtained with FFTCCPIV. The peak velocity of GOC-
CPIV is the same as that of OpticalFlow, except that the 
random fluctuations of the GOCCPIV profile are slightly 
larger than those of OpticalFlow. In this figure, three differ-
ent flow states at different times are indicated by times t1 , 
t2 and t3 . At time instant t1 , the vortex ring generated by the 
synthetic jet is close to the orifice exit and is moving toward 
the wall. At time t2 , the vortex ring is exactly in the center of 
the measurement domain. At time t3 , the impinging vortex 
ring is spread over the wall, leading to the generation of a 
secondary vortex ring and a tertiary vortex ring (Xu et al. 
2017). The performance of the proposed method will be 
compared with FFTCCPIV and OpticalFlow at these three 
different instants of time.

The vorticity maps and vector distributions at times t1 , t2 
and t3 obtained using the different methods are displayed in 
Fig. 15 from top to bottom. The contours show very good 
agreement in general, except for the higher random noise 
caused by the small IW in GOCCPIV. The smoothness 
degree of OpticalFlow is almost the same as that of FFTC-
CPIV with an IW size of 32 pixels. The specific region at 
each time instant is indicated by a gray dashed line, and 
quantitative comparisons at these locations are presented 
in Fig. 16. The horizontal lines at times t1 and t2 are located 
in the regions with a high velocity gradient and the center 
of the vortex ring, respectively. The vertical line at time t3 
is located in the wall jet region. From Fig. 16, the velocity 
is underestimated by FFTCCPIV due to the large IW. The 

results of GOCCPIV present good agreement with those of 
OpticalFlow in Fig. 16a, b. At the location of the wall jet as 
shown in Fig. 16c, the maximum u-component displacement 
of wall jet for OpticalFlow is larger than that for GOCCPIV, 
but, the profile of GOCCPIV is closer to the no-slip condi-
tion on the wall surface. Both the profiles of OpticalFlow 
and GOCCPIV present a higher velocity gradient than that 
of FFTCCPIV. By contrast, the profile of GOCCPIV indi-
cates an improvement in resolving the vortex structures 
near the wall. Furthermore, the computation times with the 
different approaches are listed in Table 2. Both programs 
were coded and tested on a laptop with one CPU core in 
MATLAB, and the code performance was not optimized. 
The efficiency of OpticalFlow is the highest among all three 
methods, approximately 34 times that of FFTCCPIV. Note 
that the overlap factor in FFTCCPIV is 75% , which is much 
larger than the value of 50% in OpticalFlow. The efficiency 
of GOCCPIV is approximately 5.8 times that of FFTCCPIV 
according to the time costs per vector listed in Table 2.

5  Conclusions and future work

In this paper, we propose a novel PIV algorithm, GOC-
CPIV, for the assessment of velocity fields with high spatial 
resolution from particle image pairs. This method uses an 
optimization algorithm to globally minimize an objective 
function consisting of a cross-correlation term and a pen-
alty term for smoothness. An empirical smoothing parameter 
is also presented to suppress the noise caused by a small 
IW. With this penalty term, a very small IW can be used in 
GOCCPIV to calculate a dense velocity field with a high 
spatial resolution. The performance of the proposed method 
is compared with those of an FFT-based cross-correlation 
technique and a physics-based optical flow approach on syn-
thetic image pairs representing one-dimensional sinusoidal 
shear displacement, two-dimensional sinusoidal vortices and 
homogeneous turbulence. An error analysis considering the 
IW size, particle concentration, particle image diameter, 
large displacements and image noise indicates that GOC-
CPIV outperforms FFTCCPIV under identical conditions. 
OpticalFlow performs best among these three methods for 
small displacement. In particular, in the spatial resolution 
test based on two-dimensional sinusoidal vortices, the IW 
size in GOCCPIV can be reduced to 5 pixels to resolve 
more small-scale vortices, Both FFTCCPIV and Optical-
Flow fail to resolve these small vortices. The test based on 
two-dimensional homogeneous turbulence shows that the 
modulation error of GOCCPIV is much smaller than that 
of conventional FFTCCPIV. An application of GOCCPIV 
to a real PIV experiment with an impinging jet flow shows 
that GOCCPIV can successfully resolve the velocity in the 
high-velocity-gradient regions of the synthetic jet and wall 
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Fig. 14  Time evolution profiles of the v-component velocity at the 
center of the measurement domain. The blue, red and orange curves 
represent the results of FFTCCPIV,  GOCCPIV and OpticalFlow, 
respectively. Three different flow states at different times are indi-
cated by times t1 , t2 and t3
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Fig. 15  Instantaneous vorticity maps and vector distributions 
obtained via FFTCCPIV with an IW size of 32 pixels (a, d, g), GOC-
CPIV with an IW size of 9 pixels (b, e, h) and OpticalFlow (c, f, i) 
at time instants t1 (a, b, c), t2 (d, e, f) and t3 (g, h, i). For clarity, one 

in every three vectors, one in every twelve vectors and one in every 
24 vectors are shown for FFTCCPIV, GOCCPIV and OpticalFlow, 
respectively. The gray dashed lines in (b, e, h) represent the locations 
of the curves shown in Fig. 16
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Fig. 16  Comparisons of the v-component displacement (a, b) and u-component displacement (c) profiles at the locations indicated by the gray 
dashed lines in Fig. 15. From left to right, the times are t1 , t2 and t3
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jet compared with FFTCCPIV and OpticalFlow, and is more 
efficient than FFTCCPIV. Thus, the proposed method is 
useful for obtaining high-resolution velocity fields for data 
analysis and flow structure extraction.

We note that GOCCPIV can still be further improved in 
our future work. First, the random error of GOCCPIV must 
be further reduced. Most of this random error originates 
from the subpixel fitting procedure in the case of a small 
IW. Second, a physically based smoothness constraint on 
the penalty term will be required to accurately estimate flow 
motion. Third, the computational efficiency of GOCCPIV 
must be further improved. This can be achieved by develop-
ing parallelized GPU code. In brief, GOCCPIV is a novel 
way to obtain high-resolution, dense velocity fields.
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