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ABSTRACT
The evolution of solid shapes in dissolutive flows is studied using molecular dynamics simulations. The final self-similar structures of the
solid are distinct under the convection- and diffusion-dominated conditions. Introducing a dimensionless number, Ds, allows characterizing
the relative influence of convection and diffusion on the final structure. When convection dominates, the convergent shape of the solid is
approximately triangular, while the solid is more likely to be sculptured into a cylinder when diffusion dominates. There is a critical value
of Ds that controls the transition between convection- and diffusion-dominated cases. However, the convergent shapes are insensitive to
their initial states due to the solid assembly at the nanoscale. Furthermore, we discuss the influences of solid dissolution and assembly on the
liquid density along different directions and provide fitting curves for the theoretical density distribution as explained from the Smoluchowski
equation. Finally, the scaling laws are constructed to quantify the solid evolution, which can analytically forecast the shape evolution under
different dominant factors. We believe that these findings provide theoretical support for structure optimization and industrial applications.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0021805., s

I. INTRODUCTION

Shape evolution in dissolutive flow is an intricate dynamic
problem due to coupling between flowing fluids and receding solid
boundaries. However, its rising interest in industrial applications1

and academic research2 has culminated in significant attention. For
instance, the remarkable classical Stephen problem, which focuses
on phase changes at an interface, has a significant influence in both
physics3,4 and mathematics.5,6 The diffusion boundary condition
at the moving contact line also provides a new method to settle
the Huh–Scriven paradox.7 Besides, with the rapid development
of micro- and nanotechnology, the system of soluble nanoparticles
plays increasingly important roles in biological problems and phar-
maceutical preparations; if the dissolution of the drug can be con-
trolled, the drug utilization rate will be improved, which requires
focusing on interface behaviors and has stimulated many studies.8,9

Moreover, in shale gas exploitation, if the rock can be dissolved
simultaneously, when a supercritical fluid flows through a porous

channel, it will increase reservoir connectivity and also encourage
energy efficiency.10 The surface morphologies caused by the dissolu-
tive flow are also crucial when analyzing geological landscapes and
pattern evolutions,11,12 chemical and pharmaceutical efficiency,13,14

metal alloy formation,15,16 and other fields.17

Over the past few decades, some laboratory experiments at
the continuum scale have considered sculpted shapes from solids
in fast-flowing fluids.12,18–21 Scaling and free-streamline analy-
ses of hard candy and clay in fast-flowing water under differ-
ent initial shapes have been performed.12,20 The results show that
solid morphologies eventually converge to different self-similar
shapes under various solubilities and flow velocities. They also
analyzed the physical mechanisms during the dissolution process.
These analyses provide an intuitive understanding of the phys-
ical mechanisms for the self-similar evolution of solids at the
macroscale.

In contrast, the microscopic perception of solid evolution that
considers the factors of size, diffusion, interatomic forces, and solid
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assembly in dissolutive flows is still out of reach. Even if dramatic
breakthroughs were made when considering nanoscale fluid flowing
around insoluble solid,22,24 it would still be unfeasible to experimen-
tally consider the dissolution effects and track the changes to fluid
characteristics and soluble solid morphologies.25–27 Thus, numer-
ical simulations are the primary means of investigation. We pre-
viously simulated dissolutive flows in nanochannels with focus on
changes in the fluid structure.28 Nevertheless, further analyses and
studies are needed when discussing the receding boundary and solid
evolution.

This paper highlights the behaviors of soluble solids with differ-
ent initial configurations in flowing fluids using molecular dynamics
(MD) simulations. The evolution processes of the interface mor-
phology, flow field, fluid density distribution, and dissolution rate
at different fluid velocities and solubilities are given from a micro-
scopic perspective. Thus, we quantitatively explore the scaling laws
of solid regions with time. These findings help further understand
the mechanisms and characteristics of dissolutive flow and their
processes in nature. We believe that this work provides theoretical
support for structure optimization and industrial applications.

II. MOLECULAR DYNAMICS SIMULATIONS
As MD simulations are widely used to study interface prob-

lems,29,30 fluid flowing around the cylinder and rectangular prism
is simulated using the LAMMPS package. Our proposed model fol-
lows the concept of fluid flowing around insoluble bluff bodies23,31

but changes the solubility of the solid atoms. The geometry of our
model is illustrated in Figs. 1(a) and 1(b), where the atoms in red are
bluff bodies whose central particles are fixed and the liquid in blue
employs the extended single point charge water model.32,33 Simu-
lations of the fluid flow over the insoluble solid are performed as
a control group.34 ∼80 000 atoms are contained in the simulation
systems. Since it focuses on two-dimensional simulations, the sim-
ulation box is about 260 × 20 × 200 Å3 with periodic boundary

conditions. Two different initial configurations, cylinder and rectan-
gular prism, are employed, as illustrated in Figs. 1(a) and 1(b). The
diameter of the central solid is set as 60 Å.

The interactions between particles consist of two parts,

Eij = 4εij[(σij/rij)12 − (σij/rij)6] + qiqj/ε0rij. (1)

First, the van der Waals interactions between particles follow the
classical Lennard-Jones potential33 in which εij, rij, and σij indi-
cate the potential depth, distance, and effective molecular diameter
between two atoms i and j, respectively.28 Without changing the
wettability εij,35,36 we achieve variations in the solubility by alter-
ing the intrinsic properties of the solid particles. The dimensionless
ε = εsl/εss is employed to characterize the solubility of solid atoms. A
larger ε indicates easier dissolution of the solid. Besides, the specific
values of σij and εij when ε = 1.250 are given in the supplementary
material. Second, the Coulomb potential between liquid particles is
calculated as Eij = qiqj/ε0rij, where qO = −0.8476e and qH = +0.4238e
are the charges for oxygen and hydrogen atoms, respectively, and ε0
is the electrostatic constant.

After relaxation in the isothermal–isobaric (NPT) ensembles
for 100 ps, the simulations are run as canonical (NVT) ensembles,
and the Nose–Hoover thermostat is used to maintain the tempera-
ture at 350 K. Interactions between particles are truncated at 1 nm.
The velocity-Verlet algorithm is used to solve the particle equations
of motion with a time step of 1 fs, while the statistical time step is
105 fs. A total of 100–500 statistical time steps, corresponding to the
inflow velocity of 1 m/s–0.1 m/s, are simulated. As liquid exits down-
stream in the x-direction, it re-enters the upstream with a reassigned
velocity and no dissolved particles. A transverse force field, whose
magnitude is determined empirically based on the previous liter-
ature,31 is applied to maintain the flow. Previous experiments and
simulations show that the convection velocity profoundly affects the
dissolution process.12,20 Thus, simulations under different velocities
are performed (u = 0.1 m/s, 0.5 m/s, 1.0 m/s). The different impact
factors, including the solubility, initial geometry, and fluid velocity,

FIG. 1. Simulation domains. The inlet
flow is controlled as uniform with velocity
U0 labeled as the red arrows. Illustra-
tions of liquid flows over (a) an insolu-
ble cylinder and (b) an insoluble rectan-
gular prism. The convergent shapes of
the solid when (c) the convection dom-
inates and (d) diffusion dominates. The
red and blue parts depict the solid and
liquid, respectively.
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TABLE I. Different simulation conditions.

ε = 0.1 ε = 1.111 ε = 1.250 ε = 1.429

Circular Square Circular Circular Square Circular
Ds = u/U

ε−1 cylinder cylinder cylinder cylinder cylinder cylinder

u/U = 0.1 −0.111 0.111 0.901 0.400 0.400 0.233
u/U = 0.5 −0.555 0.555 4.505 2.000 2.000 1.166
u/U = 1.0 −1.111 1.111 9.009 4.000 4.000 2.331

are varied to obtain 18 different simulation conditions, as listed in
Table I. The main results are shown in the schematic of Figs. 1(c)
and 1(d).

III. RESULTS AND DISCUSSION
A. Evolution of solid morphology
1. Shape evolution

Figure 2 shows the evolution of the solid morphology in the
MD simulations. Previous macroscopic results show that the final

morphologies of the soluble solids differ when the dominant actions
are convection12 and diffusion.20 The main difference20 is the angle
formed at the stagnation points when the backs are both flat, and
the self-similar shapes occur when Re ∼ 104. In atomic simula-
tions, we find that a self-similar evolution of the solid is observed
when Re is less than 1. Moreover, macroscopic studies have found
that even in the absence of fluid flow, the soluble solid’s back is
nearly flat due to gravitational effects.37 However, in microscopic
cases, the planar structure of the back surface cannot be observed
without fluid flow. Thus, additional microscopic details need to be
considered.

FIG. 2. Shape evolution of solid in dissolutive flow. The cross-sectional change is determined every 20 statistical steps. (a) and (c) cylinders and (b) and (d) rectangular
prisms over time. The arrows in (c) and (d) point roughly in the direction of steepest descent.
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In our simulations, the characteristic time of the fluid to bypass
the cylinder is expressed as τ1 = R/u. Considering the kinematic
viscosity as the diffusion coefficient for momentum, the character-
istic time for momentum diffusivity is τ2 = ρR2/η. From the flow
field in Fig. 5, there is a slip boundary when the inflow velocity
is 1 m/s. As discussed previously,38,39 the viscosity of water at the
nanoscale is different from that at the macroscale so that viscos-
ity is of the order of 10−5 Pa s when the velocity is nearly 1 m/s at
350 K. The detailed calculation of the viscosity is provided in the
supplementary material. Introducing U as the characteristic veloc-
ity with Re ∼ 1 allows writing τ2 as τ2 = ρR2/ρUR = R/U. Thus,
τ1/τ2 = u/U, i.e., u/U represents the ratio of the characteristic time
of convection and momentum diffusivity, which reflects the convec-
tion effect. Moreover, (εsl − εss)/εss = ε − 1 is the ratio of energy
mentioned in Sec. II and can describe the diffusion capacity. To
specify the system properties, we combine the dimensionless time
and energy as a new dimensionless number Ds, which is similar
to the action that describes the inherent dynamics of physical sys-
tems. We define Ds as Ds = (u/U)/(ε − 1), where u is the convec-
tion velocity, U is the characteristic velocity with Re ∼ 1, and ε is
the dimensionless energy in our simulations. The solid is insolu-
ble when Ds < 0. However, when Ds > 0 the dissolution process
is gradually controlled by the inflow velocity with larger Ds. As
depicted in Fig. 2, when 0 < Ds < 1, the cylinder mostly retains
its initial shape, and the rectangular prism gradually approaches a
cylinder shape. Moreover, solids with different initial configurations
eventually converge to form a uniform quasi-triangular prism when
Ds > 1. In other words, the final solid shape is insensitive to the initial
state.

We analyzed positional changes of the particles included in the
final configuration, as shown in Fig. 3. Figures 3(a1) and 3(a2) show
the final shapes of the solid, Figs. 3(c1–j1) and 3(c2–j2) give the evo-
lution details, and Figs. 3(b1) and 3(b2) are the initial structures.
It is seen that some of the atoms (yellow) first dissolve during the
solid shape evolution and then self-assemble primarily at the two
corners at the back of the triangle. Near the solid wall, the first layer
of dissolved atoms is more likely to directly self-assemble. The sec-
ond layer of atoms tends to slide along the solid wall, and the third
layer of atoms flows along the flow field. Those different initial con-
figurations converge to their corresponding final structures and obey
different mechanisms, which necessitate quantitative calculations.

2. Behavior of dissolved particles and dissolution
rate along solid curves

Figures 4(a)–4(d) show the detachment and attachment parti-
cles at the initial time with different inflow velocities under various
initial configurations. As the two lines approach, the net number
of dissolved particles decreases. When Ds > 1, there is a stagnation
point in both the cylinder and rectangular prisms, as highlighted in
Fig. 3. The stagnation points correspond to the back two vertices
of the triangular prisms. In front of this point, the dissolution rate
(see the inset of Fig. 4) is relatively high, and the two sides of the
triangular prisms are formed. Behind this point, the fluid bypasses
the cylinder and rotates toward the tail, as shown in Figs. 5(e)–5(h),
which results in the back of the cross section evolving into a plane
(back of the triangle). In particular, as indicated in the red circles
of the inset of Fig. 4(c), there are two dissolution peaks at right
angles for the cross section of rectangular prisms. It is understood

FIG. 3. Positional changes for the particles that constitute the final configuration when Ds > 1. For the cylinder, (a1) and (b1) are the ultimate and initial configurations,
respectively. (c1)–(j1) give the configurations at different times and position changes of the self-assembled atoms. For the rectangular prisms, (a2) and (b2) are the ultimate
and initial configurations of the solid, respectively. (c2)–(j2) give the configurations at different times and position changes of the self-assembled atoms. The red part in the
center of the solid corresponds to the final configuration, the red area on the outside shows the undissolved configuration at the current time, and the yellow dots are atoms
that first dissolve and then self-assemble.
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FIG. 4. The number of initial detachment and attachment atoms along the solid wall for the (a) and (b) cylinders and (c) and (d) rectangular prisms. The black lines
with rectangles are the number of dissolved atoms, and the red lines with circles are the number of self-assembled atoms. The insets are the dissolution rate along
the solid curves at different times t1 and t2. The black lines with hollow rectangles are the initial dissolution rates, and the red lines with hollow circles are the dissolu-
tion rate after some time. The points circled in red correspond to the positions with maximum velocity, and the points circled in black correspond to the self-assembly
positions.

that these curvature singularities have lower dissolution activation
energies and higher dissolution rates.

When 0 < Ds < 1, the fluid flux is negligible, as shown in
Figs. 5(a)–5(d). The inset of Fig. 4(b) indicates that the dissolu-
tion rate is nearly the same along the solid wall for the cylinders
so that the solid remains at its initial configuration. For rectangu-
lar prisms, there are still curvature singularities, and the solid cross
section tends to become round. A self-similar structure is formed
after some time, and the dissolution rate decreases, as shown in
the red lines of the inset of Fig. 4. The detachment and attach-
ment particle curves are nearly parallel, as shown in Fig. S2 of the
supplementary material. The dissolution curves show that the posi-
tion of the stagnation points changes over time, and the particles
more easily self-assemble near these points. During the dissolutive
flow, the behavior of the particles and the dissolution rate along the
solid wall explain why the final configuration is insensitive to the
initial shape. The self-assembly of particles varies greatly based on

the properties of the liquid surrounding the solid, which is discussed
later.

B. Evolution of liquid density distribution
The diffusion effect on the fluid structure is significant when

the fluid flows around the soluble solid. The non-equilibrium MD
simulations are used to analyze the density distributions of the fluid
and water molecules along different directions. The area near the
solid is divided into small grids, and the number densities of par-
ticles inside the different grids are based on statistical averages, as
shown in Fig. 6. Typical insoluble and soluble solids for the circular
cross section are selected as comparisons. When the solid is insolu-
ble, a distinct high-density region in front of the solid is observed,
which is consistent with the previous results.40 The density distribu-
tion of water molecules shows a peak near the solid surface, which
is related to the fluid molecular structures at the nanoscale.41 The
Smoluchowski formula derived from the Onsager principle42 allows
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FIG. 5. Statistical average results of the flow field for the (a) initial and (b) convergent states for the flow fields with a cylinder when 0 < Ds < 1. The (c) initial and (d)
convergent states for the flow fields with a rectangular prism when 0 < Ds < 1. The (e) transitional and (f) convergent states for the flow fields with a cylinder when Ds > 1.
The (g) transitional and (h) convergent states for the flow fields with a rectangular prism when Ds > 1.

expressing the density distribution as

∂ρ
∂t
= D ∂

∂x
[∂ρ
∂x

+
ρ

kBT
∂U′

∂x
], (2)

where ρ, T, and kB are the liquid number density, absolute tem-
perature, and Boltzmann constant, respectively. Considering that
the total potential energy corresponds to the disjoining pressure,42

the fluid density distribution is expressed in exponential form as
ρ(r) = ρ0exp[(−ω)/kBT], where ω(r) is the total potential energy43

(a detailed derivation is given in the supplementary material). The
exponential fitting lines are shown as red in Figs. 6(a1)–6(a5) and
coincide with our previous results.27

The introduction of the dissolution affects the internal struc-
ture of the liquid, which further impacts its progress and makes
this an intractable problem. We analyze the variations in the den-
sity distributions of the fluid and water molecules along different
directions when the convection effect takes priority in the solid
evolution. First, near the front stagnation point, the solid par-
ticles barely dissolve and the incoming liquid particles accumu-
late, which leads to liquid pressurization and an increased density.
Therefore, as shown in Figs. 6(b1)–6(b5), increasing density peaks
and decreasing the peak pitch to 0○ is intuitive. Along the other
directions (from 45○ to 180○), the dissolution causes the disap-
pearance of the liquid layered structure. Thus, the density can be
expressed as

ρ(r) = ρ0 exp[(−ω + G)/kBT], (3)

where G is the dissolution energy.
For the insoluble cases, the various initial shapes result in differ-

ent density distributions. Figure 6(a) shows the liquid density with
an initial cylinder. In the rectangular prisms, there is no density

peak along the 45○ and 135○ directions due to the curvature-related
effects, and the density of water molecules continues to oscillate
along the other directions. The dissolution is nearly homogeneous
in all directions when 0 < Ds < 1 so that the layered structure of
the fluid is uniformly disturbed, i.e., there is no density peak. The
detailed density distributions in the above two cases are given in the
supplementary material.

C. Scaling analysis on the shape of the soluble solid
The scaling laws of the solid shape with respect to time are

explored to quantify the effects of the fluid velocity on the soluble
solids. When 0 < Ds < 1, diffusion is the primary factor that controls
the solid evolution. Thus, it is reasonable to use the Noyes–Whitney
equation in our model as44

vn = Ds(Cs − C)
δc

, (4)

where vn, D, s, δc, Cs, and C are the dissolution rate, diffusion coef-
ficient, length of the solid–liquid contact line, thickness of the con-
centration boundary, saturation concentration, and instant concen-
tration of the solute, respectively. The D, δc, Cs, and C are seen as
constant with additional details given in the supplementary material.
As dA/dt ∼ vns ∼ s2 ∼ A, we obtain

A∼exp(−ket/t0), (5)

where ke is the elimination rate.
When Ds > 1, the dissolution is strengthened. Previous stud-

ies20,21 have shown that the relationship between the dissolution
rate, convection velocity, and characteristic length can be expressed
as vn∼

√
U/s when the Navier–Stokes equation is solved using the
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FIG. 6. Liquid density distribution. (a) Fluid density around the cylinders when solid particles are insoluble and (b) the density distribution of the surrounding fluid when the
central solid shape converges to an approximately triangular prism. The light blue area represents higher densities, which gradually decrease for darker shades. The (a1)–(a5)
and (b1)–(b5), respectively, correspond to the density distribution along the 0○, 45○, 90○, 135○, and 180○ directions when the solid is insoluble and soluble, respectively.
The red lines are the exponential curve fits of the density peak, the blues lines are the average of the fluid density, and the black lines with rectangles are the statistical
results.

similarity solution. There is also a momentum and concentra-
tion boundary layer near the solid wall, as shown in Fig. S5.
Thus, previous results28 can be referenced to understand the rela-
tionship between the dissolution rate and boundary length. As
dA/dt∼vns∼√s∼A1/4, the scale relationship of the dissolved area
with time satisfies the following expression:

A∼(1 − t/t0)4/3, (6)

where t0 is the characteristic time when the solid disappears.
When the convection velocity and dissolution rate are of the same
order, the solid evolution over time is between the exponential and
the 4/3 scaling relation. The results are shown in Fig. 7, where
Ds = 4, 2, and 0.4, under different initial configurations, show-
ing good agreement between the derived theory and simulations.
The other cases listed in Table I also follow the same scaling
laws.
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FIG. 7. Scaling laws of the solid area over time. From left to right: (a) half-filled black rectangles, red dots, and blue triangles are the statistical results of the cylinders when
Ds is 4, 2, and 0.4 and (b) hollow black rectangles, red dots, and blue triangles are the statistical results for the rectangular prisms when Ds is 4, 2, and 0.4, respectively. The
red curves on the left and right and the black and blue lines in the middle correspond to the theoretical results.

IV. CONCLUSION
The solid evolution in dissolutive flow is studied using MD sim-

ulations. The results show that final shapes are insensitive to the
initial cross-sectional configurations due to the solid assembly at
the nanoscale. We propose a dimensionless number Ds whose crit-
ical value controls the convergent state of the solid. When 0 < Ds
< 1, the soluble solid approaches a cylinder, and when Ds > 1, the
solid section converges into a quasi-triangular prism. Nevertheless,
the evolution processes of different initial configurations are not the
same. The influences of atomic forces, size effects, and diffusion on
the variability of the liquid density along different directions are dis-
cussed, and the fitting curve of the theoretical density distribution is
given. Finally, the scaling laws that control the solid evolution with
different Ds are described. Additional discussions in the future may
involve the exact front angle size between different Ds. We believe
that our work provides a theoretical basis for structure optimization
and industrial production.

SUPPLEMENTARY MATERIAL

See the supplementary material for the liquid density distri-
bution and the behavior of dissolved particles from the simulation
results.
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