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8.03.1 ELASTIC INTERFACE
MECHANICS

Advanced materials, such as fiber or particle
reinforced composites, structure ceramics,
laminated materials, polycrystalline inter-
metallic alloys, adhesive joints, etc., have many
important applications in the combustion
engine components, aerospace bearings, cut-
ting tools, hip joints, advanced energy genera-
tion systems, components for printing industry,
transmission elements, etc. Their fracture,
fatigue, corrosion, or wear behavior can be
significantly improved by surface coating. Thin
films of metals, ceramics, and polymers de-
posited on tools, machinery, or electronic
devices can endow the structures with new
thermal, mechanical, chemical, and tribological
properties.

Interfaces are intrinsic to these materials.
The overall mechanical behavior of such
materials and material systems strongly de-
pends on the interfacial features such as
discontinuities in elastic and thermal proper-
ties, residual stresses around the interfaces, and
the cohesive stresses along the interfaces.
Interface failures are a common feature in
advanced materials and thin films. The design
process of these components requires a better
understanding of their failure mechanisms. An
important task is devoted to detailed investiga-
tions of the fracture characteristics of flaws
along or perpendicular to the interface.

8.03.1.1 Stress Jump across Interface

Consider two semi-infinite elastic solids
joined along the x-axis as shown in Figure 1.
A Cartesian coordinate system oxy is attached
to the interface. The x-axis is along the
interface and the y-axis is normal to the
interface. Both materials are isotropic and
homogeneous. The material I occupies the
upper half plane S1 and the material II
occupies the lower half plane S2: The displace-
ments ux and uy should be continuous across
the interface. Hence the strain ex should be
continuous across the interface. It follows

ðexÞI ¼ ðexÞII on interface

For a plane strain problem from above
equation, we obtain directly

ðsxÞI ¼
m1ð1� n2Þ
m2ð1� n1Þ

ðsxÞII þ
sy

1� n1
n1 �

m1
m2
n2

� �
on interface ð1Þ

The above equation can be represented as

ðsxÞI ¼
1þ a
1� a

ðsxÞII þ
2sy
1� a

ð2b� aÞ

on interface ð2Þ

where a and b are two Dundurs’ parameters

a ¼ ðk2 þ 1Þ=m2 � ðk1 þ 1Þ=m1
ðk2 þ 1Þ=m2 þ ðk1 þ 1Þ=m1

b ¼ ðk2 � 1Þ=m2 � ðk1 � 1Þ=m1
ðk2 þ 1Þ=m2 þ ðk1 þ 1Þ=m1

ð3Þ

where ki ¼ 3� 4ni for plane strain and ki ¼
ð3� niÞ=ð1þ niÞ for plane stress, ni and mi are
the Poisson ratio and the shear modulus of the
respective materials. Equation (2) is also
suitable for a plane stress problem.

In the plane strain case, the physically
admissible values of a and b lie within a
parallelogram bounded by a ¼ 71 and a�
4b ¼ 71 in the ða; bÞ plane. The values of a
and b for representative material pairs are
plotted for plane strain in Figure 2, in which
the stiff material is taken as material I so that a
is positive. At infinity we have

ðsNx ÞI ¼
1þ a
1� a

ðsNx ÞII þ
2sNy
1� a

ð2b� aÞ

on interface ð4Þ

We should emphasize that the stress jumping
Equation (4) is important for the understand-
ing of the interface problem.

If the bimaterial system shown in Figure 1 is
subjected to far-field uniform stresses, which

σy

σy

σxI σxI

σxII
σxII

y

Material I

Material II

S1

S2

O

Figure 1 A bimaterial interface.
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satisfy Equation (4), the stress fields in materials
I and II take the following forms, respectively,

sx ¼ ðsNx ÞI; sy ¼ sNy ; txy ¼ tNxy ;

in material I ð5aÞ

sx ¼ ðsNx ÞII; sy ¼ sNy ; txy ¼ tNxy ;

in material II ð5bÞ

8.03.1.2 Complex Potential

Stress and displacement in an elastic solid
can be represented by two Muskhelishivili’s
potentials:

sx þ sy ¼ 4RefFðzÞg

sy � itxy ¼ FðzÞ þ Oð%zÞ þ ðz� %zÞF0ðzÞ ð6Þ

2m ux þ iuy
� �

;x
¼ kFðzÞ � Oð%zÞ � ðz� %zÞF0ðzÞ

The complex potentials for an edge dislocation
at z ¼ s in infinite elastic solid can be expressed
as follows:

F0ðzÞ ¼
B

z� s

O0ðzÞ ¼
B

z� %s
þ %B

s� %s

ðz� %sÞ2
ð7Þ

B ¼ m
piðkþ 1Þ bx þ iby

� �
where symbols bx and by are the x and y
components of a dislocation.

The complex potentials for a point force at
z ¼ s in infinite elastic solid can be expressed as
follows:

F0ðzÞ ¼ � P

z� s

O0ðzÞ ¼ k
P

z� %s
� %P

s� %s

z� %sð Þ2
ð8Þ

P ¼ 1

2pðkþ 1Þ Px þ iPy

� �
where Px and Py are the x and y components of
the force.

The interaction problem of an edge disloca-
tion with a bimaterial interface was studied by
Dundurs (1969) and Suo (1989) among others.
If the edge dislocation is embedded in material
II, the complex potentials are (Suo, 1989):

FðzÞ ¼
ð1þ L1ÞF0ðzÞ; zAS1

F0ðzÞ þ L2O0ðzÞ; zAS2

(

OðzÞ ¼
O0ðzÞ þ L1F0ðzÞ; zAS1

ð1þ L2ÞO0ðzÞ; zAS2

(
ð9Þ

L1 ¼
aþ b
1� b

; L2 ¼
a� b
1þ b

8.03.2 ELASTIC FRACTURE
MECHANICS FOR AN
INTERFACE CRACK

8.03.2.1 Crack Tip Fields

The singular crack tip fields were first
investigated by Williams (1959) (see Chapter
2.03). Many interface crack problems have
been solved by Cherepanov (1962, 1979),
Erdogan (1965), England (1965), Sih and Rice
(1964), and Rice and Sih (1965), among others.
Take the origin at the interface crack tip as
shown in Figure 3, the crack lies along the

Figure 2 Values of Dundurs’ parameters in-plane strain for a selected combination of materials (source
Hutchinson and Suo, 1992).
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interface of two dissimilar materials. The
singular crack tip fields for plane strain and
plane stress problems are

sab ¼ 1ffiffiffiffiffiffiffi
2pr

p Re Krie
� �

sIabðyÞ þ Im Krie
� �

sIIabðyÞ
n o

ð10Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
; r; and y are polar coordinates.

The complex interface stress intensity factor,
K ¼ K1 þ iK2; has a real and an imaginary
part, K1 and K2; respectively. The angular
distribution functions sIab and sIIab were given
by Rice et al. (1990). The traction ahead of the
crack tip is given by

s22 þ is12 ¼
Kffiffiffiffiffiffiffi
2pr

p rie ð11Þ

where rie ¼ cos ðe ln rÞ þ i sin ðe ln rÞ is the os-
cillatory singularity. From Equation (11), one
can find that the stress field ahead of the crack
tip has not only the square root singularity
r�1=2 but also the oscillatory singularity. As r
approaches zero, the stress fields undergo an
infinite number of sign reversals. The oscilla-
tory index has the expression:

e ¼ 1

2p
ln

1� b
1þ b

The relative crack opening displacements a
distance r behind the crack tip take the form

d2 þ id1 ¼
8K

ð1þ 2ieÞ cosh ðpeÞE�

ffiffiffiffiffiffi
r

2p

r
rie;

E� ¼
2 %E1 %E2

%E1 þ %E2

ð12Þ

where %E ¼ E=ð1� n2Þ for plane strain and
%E ¼ E for plane stress.
The above formula predicts wrinkling of

crack faces and overlapping of the materials,
which would contradict the assumption that
the crack faces are traction free (England 1965;

Malyshev and Salganik 1965). Since the crack
contact zone is very small for pure tension
remote loading, one can argue that the
complicated issues arising from oscillatory
singularity are not important for fracture
process.

The energy release rate G can be expressed as

G ¼ 1� b2

E�
K2

1 þ K2
2

� �
ð13Þ

For a center cracked panel subjected to remote
loading, the complex stress intensity factor is

K ¼ sNy þ itNxy
� �

1þ 2ieð Þ
ffiffiffiffiffiffi
pa

p
2að Þ�ie

K1 and K2 depend on the elastic mismatch only
through the oscillatory index e and are
independent of parameter a. In other words,
the stress fields ahead of the crack tip only
depend on one Dundurs’ parameter b.

8.03.2.2 Interface Toughness with b ¼ 0

The oscillatory index e vanishes when b ¼ 0:
Then the stress field ahead of the crack tip only
has the conventional square root singularity
r�1=2: Equation (11) becomes

s22 ¼
K1ffiffiffiffiffiffiffi
2pr

p ; s12 ¼
K2ffiffiffiffiffiffiffi
2pr

p ð14Þ

The stress intensity factors K1 and K2 play the
same role as their counterparts in elastic
fracture mechanics of homogeneous media.
K1 characterizes the amplitude of normal stress
singularity, while K2 describes the amplitude of
the shear stress singularity. Meanwhile, the
elastic mismatch has no direct effect on the
singular stress field ahead of the crack tip. The
bimaterial system can be treated as a homo-
geneous solid with effective Young’s modulus
E�: The mode mixity can be defined as

c ¼ tan�1 K2=K1ð Þ

For the center cracked panel:

c ¼ tan�1 tNxy=s
N

y

� �

An interface is typically a plane of low
fracture toughness; the crack tends to propa-
gate along the interface despite the bimaterial
system being subject to mixed mode loading.
Many experiments have shown that interfacial
toughness strongly depends on the mode
mixity.

Trantina (1972) presented the first experi-
mental evidence of interface fracture toughness
that increases with increasing shear mode. He

Figure 3 An interface crack.
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carried out the experiments with adhesive
bonded scarf joints (aluminum/epoxy system)
that failed along the adhesive. Using cone,
blister, and peel specimens, Anderson et al.
(1974) observed similar trends. Liechti and
Chai (1991, 1992) measured the interface
fracture toughness of a glass/epoxy system
over a wide range of mode mixities. They
found that by applying displacements along
clamped boundaries x2 ¼ 7h; the interface
fracture toughness increases remarkably with
increasing positive or negative in-plane shear
component.

Using symmetric and asymmetric double
cantilever beams, Cao and Evans (1989)
studied an epoxy/glass system. Wang and Suo
(1990) examined an epoxy layer on metal and
plexiglass substrates. All these systems exhibit
rapidly increasing interface fracture toughness
at large shear mode components. O’Dowd et al.
(1992) investigated the mixed-mode interface
fracture toughness of an alumina/niobium
system using four-point shear specimens. They
found the fracture toughness of aluminna is
relatively insensitive to the mode mixity. In
contrast, the fracture toughness of the alumi-
na–niobium interface depends strongly on the
mode mixity. Various aspects of interface
fracture toughness can be found in papers by
Charalambides et al. (1989), Rice et al. (1990),
Shih (1991), Hutchinson and Suo (1992), and
in a volume edited by Ruhle et al. (1990).
Extensive reviews of fracture in thin film and
interface were given by Evans and Hutchinson
(1995) and Hutchinson and Evans (2000).

The criterion to initiate crack propagation
along an interface when the interfacial crack is
subject to in-plane mixed mode loading, is

G ¼ GðcÞ ð15Þ

where the interface fracture toughness GðcÞ
should be measured by specially designed
bimaterial specimens. The energy release rate
G can be thought of as a force driving the
interfacial crack propagation, while GðcÞ is the
resistance to that. Fracture toughness data
from Wang and Suo (1990) in a layer of
plexiglass/epoxy sandwiched between two
halves of a Brazil nut specimen are shown in
Figure 4. For the plexiglass/epoxy system a ¼
�0:15; b ¼ �0:029; e ¼ 0:009: Since the value
of e is very small, one can assume that the
bimaterial system has e ¼ 0: The error in G due
to this approximation is less than 0.1%.

8.03.2.3 Interface Toughness with ba0

When ba0; the tractions on the interface
directly ahead of the crack tip are given by

Equation (11). The contact zone should be
considered. As long as the contact zone size is
very small, the complex stress intensity factor
K provides a unique characterization of the
crack tip fields. As pointed out by Rice (1988),
the oscillatory singularity leads to a compli-
cated issue, since the ratio of the shear traction
to the normal traction directly ahead of the
crack tip slowly varies with r approaching zero.
One cannot uniquely define the proportion of
‘‘mode II’’ to ‘‘mode I.’’ A generalized inter-
pretation of the mode mixity is needed. Let
us introduce a reference length l for the
definition of the phase angle, i.e.,
tan uc ¼ ImðKl ieÞ=ReðKlieÞ: From Equation
(11), one obtains tan uc ¼ ðtxy=syÞr¼l : The
choice of the reference length is somewhat
arbitrary. Generally speaking there are two
choices. The first is based on the length scale L
of the specimen geometry, such as the crack
length. The second choice is based on the
length scale intrinsic to the materials, such as
the size of the fracture process zone or the
intensive plastic zone. The complex stress
intensity factor K for an interface crack has
the form K ¼ FTL1=2L�ieexpðicÞ; where T is a
representative amplitude of the applied load, F
and c are dimensionless real numbers which
depend on specimen geometry and the external
loading. Now c is the phase angle of KLie:

Fracture toughness data can be reported as a
function of uc based on l: Using a simple phase
translation formula, one can express the phase
angle uc as uc ¼ cþ elnðl=LÞ: The criterion for
initiation of crack propagation along an inter-
face can be given as

G ¼ Gðuc; lÞ ð16Þ

If the value of l is broadly representative of the
relevant microstructure length, the term GðucÞ
can be interpreted as the intrinsic interface

Figure 4 Interfacial fracture toughness of plex-
iglass/epoxy sandwich (source Wang and Suo, 1990).
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fracture toughness for a given material pair.
The phase angle uc provides an intrinsic
measure of mode mixity and the interface
toughness data from different crack geometries
can collapse on to a single toughness curve
against mode mixity uc:

Figure 5 shows the fracture toughness data
for an epoxy/glass interface measured by
Liechti and Chai (1992). The interface para-
meters are E1 ¼ 2:07 GPa; E2 ¼ 68:9 GPa;
n1 ¼ 0:37; n2 ¼ 0:20; a ¼ �0:935; b ¼ �0:188;
and e ¼ 0:060: They took l ¼ 12:7 mm: The
plastic zone in the epoxy observed by them is
approximately on the order of 1 mm for ucE01
and 140 mm for ucE901: Hutchinson and Suo
(1992) found that if instead of l ¼ 12:7 mm; l is
chosen to be two orders of magnitude smaller
(l ¼ 127 mm), the shift in the uc-origin is �15:81:
Then the uc origin is placed approximately at
the minimum of Gðuc; lÞ and roughly centers the
data.

8.03.2.4 Kinking Out of an Interface

Consider a branch crack segment of a length
a; which makes an angle O with the main crack
in a homogeneous solid. Prior to kinking the
main crack is loaded with a complex stress
intensity factor K ¼ K1 þ iK2; and a T-stress
on the tip when a ¼ 0:

The stress intensity factors Kkink
1 and Kkink

2
can be expressed as

Kkink
1 ¼ c11K1 þ c12K2 þ b1Ta

1=2

Kkink
2 ¼ c21K1 þ c22K2 þ b2Ta

1=2
ð17Þ

The coefficients cij are given by Hayashi and
Nemat-Nasser (1981) (see also Karihaloo,

1982), and bi are given by He and Hutchinson
(1989). The energy release rate Gkink at the tip
of the branch crack is Gkink ¼ ½ðKkink

1 Þ2 þ
ðKkink

2 Þ2�= %E: The energy release rate G for the
main crack when it advances straight ahead is
G ¼ ðK2

1 þ K2
2 Þ= %E:

For a given mode mixity c; one can find the
maximum value Gkink

max with respect to O: The
kinking angle uO at which Gkink is maximized, is
a function of c: The function uOðcÞ is given by
He and Hutchinson (1989) and plotted in
Figure 6(a). Figure 6(b) shows the ratio of
strain energy release rate for straight-ahead
growth to the maximum energy release rate for
a branched crack, G=Gkink

max ; as a function of c:
As pointed out by He and Hutchinson (1989),
the kinking angle that maximizes Gkink nearly
coincides with the kinking angle for which
Kkink

2 ¼ 0: Since the calculation for maximum
energy release rate Gkink

max is more complex than
the calculation of the stress intensity factors
Kkink

1 and Kkink
2 ; it is convenient to use a

criterion based on propagation in the direction
for which Kkink

2 ¼ 0:
For an interface crack as shown in Figure 7,

the conventional stress intensity factors Kkink
1

and Kkink
2 at the tip of branched crack take the

form

Kkink
1 þ iKkink

2 ¼ cKaie þ d %Ka�ie þ bTa1=2 ð18Þ

The coefficients c; d; and b are the functions of
O; a; and b which are tabulated in He and
Hutchinson (1989) and He et al. (1991). The
energy release rate Gkink

max is also a function of O
and (a; b). The ratio G=Gkink

max is plotted against
c in Figure 8 for the case of b ¼ 0 and Z ¼ 0:
Let GðcÞ denote the interface fracture tough-
ness and Gc denote the fracture toughness of
material II under mixed mode loading, kinking
will be favored if G=Gkink

maxoGðcÞ=Gc:

8.03.2.5 Mechanics Models of an Interface
Crack

According to Equation (12), interpenetra-
tion of two crack faces occurs at sufficiently
small r: The normal opening displacement dy ¼
d cos ½c� tan�1ð2eÞ � e ln ðL=rÞ�: The largest r
for which the opening displacement dy turns
to negative is rc ¼ L exp f�½p=2þ c� tan�1

2eÞ�=eg; for e40; where L is the crack length. If
cj jop=4 and ej jo0:03; then rc=Lo10�8; the
contact zone size is much smaller than all
physically relevant length scales. If cj jEp=2;
the contact zone size is comparable with the
crack length. Therefore, one cannot neglect the
effect of the contact zone on stress and
displacement fields near a crack tip.

Figure 5 Interface fracture toughness for an epoxy/
glass interface measured by Liechti and Chai (1992)
(reproduced by permission of Academic Press
from ‘‘Advances in Applied Mechanics,’’ vol. 29,
pp. 63–191).
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Comninou (1977) and Comninou and
Schmueser (1979) proposed the contact zone
model to eliminate the oscillatory singularity.
As shown in Figure 9, behind the crack tip,
there is a contact zone in which the gap dy
vanishes and the normal stress sy becomes
negative. The oscillatory singularity and the
overlap of the crack faces are eliminated in
their solutions. But Comninou’s solution is
quite different from the classical K field as
described below.

Ahead of the crack tip, the normal stress is
finite and the shear stress has the square root
singularity r�1=2: Behind the crack tip, the
compressive normal stress sy has the square
root singularity r�1=2: They found that the
contact zone size is extremely small under
remote tension loading in comparison with the
crack length.

The interfacial layer model proposed by
Atkinson (1977) is depicted in Figure 10. The
crack could be embedded in the layer or could
lie on the interface between the layer and the
material I or the material II. In the latter case
the material properties of the interfacial layer
should be chosen such that the Dundurs’
parameter b ¼ 0 at the tip of the interface
crack.

Delale and Erdogan (1988) improved Atkin-
son’s model. They argued that the interfacial
layer is an inhomogeneous medium. The Young
modulus E and the Poisson ratio n in the
interfacial layer vary continuously from the

Figure 6 A kinked crack in homogeneous material: (a) kink angle as predicted by two criteria and (b) ratio of
energy release rate for straight-ahead advance to maximum energy release rate for a kinked crack as a function
of c ¼ tan�1ðKII=KIÞ: Here Gt

max ¼ Gkink
max and Z ¼ T

ffiffiffiffiffiffiffiffiffiffiffiffi
a= %EG

p
(reproduced by permission of the American

Ceramics Society from J. Am. Ceram. Soc., 1991, 74, 767–771).

Figure 7 A branched interface crack.
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upper interface to the lower interface so that the
discontinuity in elastic properties vanishes across
the upper interface and the lower interface.

8.03.3 TYPICAL INTERFACE FRACTURE
PROBLEMS

8.03.3.1 Film Decohesion

A cross-section of the interface of an infinite
bilayer with a semi-infinite plane crack along
the interface is shown in Figure 11. Both
materials are homogeneous isotropic elastic
materials. The uncracked interface is assumed
to be perfectly bonded with continuous dis-
placements and tractions. The bimaterial sys-
tem is subjected to forces and moments along
three edges. The problem was solved by Suo
and Hutchinson (1990). Far ahead of the crack
tip, the bimaterial system is treated as a
composite beam. The neutral axis lies a
distance h � D above the bottom of beam, the
quantity D was given in their paper.

Figure 9 A crack surface contact model: (a) pure
tension loading and (b) tension and shear combined
loading (after Comninou, 1977).

Figure 10 An interfacial layer model for interface
crack (after Atkinson, 1977).

Figure 11 A bilayer with a half-plane interface
crack. The neutral axis of the composite layer is
indicated (source Hutchinson and Suo, 1992).

Figure 8 Ratio of energy release rate for advance in the interface to the maximum energy release rate for the
kinked crack for various levels of elastic mismatch, all with b ¼ 0: Here Gt

max ¼ Gkink
max and Z ¼ T

ffiffiffiffiffiffiffiffiffiffiffiffi
a= %EG

p
(source He et al., 1991).
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A close form solution of the energy release
rate for the crack advance along an interface
was obtained. The complex stress intensity
factor K takes the form K ¼ h�ieFeio; where F
is the function of Pi and Mi; i ¼ 1; 2; 3: An
explicit formula for F was given in their paper.
The angle o is a function of the Dundurs’
parameters a; b; and relative height Z ¼ h=H;
which was tabulated by Suo and Hutchinson
(1990). Some typical results are plotted in
Figure 12.

8.03.3.1.1 Film decohesion from edges or
channels

Figure 13 depicts a pre-tensioned film. The
edge load can be identified as P1 ¼ P3 ¼ sh;
M3 ¼ ð1=2þ 1=Z� DÞsh2;P2 ¼ M1 ¼ M2 ¼ 0:

The phase angle c is defined as K ¼
Kj jh�ieexpðicÞ; which is shown in Figure 13.
The energy release rate is shown in Figure 14.
Since the film thickness h is much smaller than
the thickness of the substrate, the decohesion
process is inherently mixed mode. The sliding
mode will be stronger than the opening mode.

8.03.3.1.2 Decohesion from a hole

A decohesion crack emanating from the edge
of a hole in a pre-tensioned film is shown in
Figure 15. The energy release rate is equal to
G ¼ hs2=2 %Efk

2; where k was given by Suo and
Hutchinson (1990). When ðb� b0Þ=h is suffi-
ciently large, the mode mixity is independent of
b0=b: Farris and Bauer (1988) and Jensen et al.
(1990) used this kind of film decohesion to

measure the interface toughness. The decohe-
sion radius b can be easily measured.

8.03.3.1.3 Effects of plasticity and segregation

As pointed out by Evans et al. (1999), the
decohesion at an interface between a thin film
and a thick substrate is strongly affected by the
plasticity and segregation. Two types of
measurements are important to film decohe-
sion:

(i) the energy dissipated per unit area
(J m�2) which has the same role as the fracture
toughness in homogeneous materials (Evans
and Dalgliesh, 1992); and

(ii) the critical stress at which the interface
separates (Gupta et al., 1992).

Figure 16 illustrates the schematic of three
basic mechanisms of the film decohesion. In
mechanism I, the crack remains atomically
sharp. Mechanisms II and III occur in com-
pany with crack blunting. Mechanism II
involves a fracture process zone on the inter-
face. The fracture process zone is comprised by
debonds, voids, and their coalescence. Me-
chanisms I and II exhibit resistence curve
behavior with steady-state toughness trends.
Mechanism III involves the injection of crack
onto the interface from weak patches ahead of
a stationary crack.

Interfaces usually can be made by bonding
procedures, such as diffusion bonding or braz-
ing. The residual stresses intrinsically exist and
play an important role in determining the
energy release rate G and mode mixity (Char-
alambides et al., 1989; Jensen and Thouless,
1993).

Figure 12 The values of the function oða; b; ZÞ (source Hutchinson and Suo, 1992).
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Much work about decohesion mechanism
has been obtained from metal/oxide interfaces
by Evans and Dalgliesh (1992), Turner et al.
(1995), Gaudette et al. (1997), Reimanis et al.
(1997), Lipkin et al. (1998), among others.

The major conclusions are:
(i) Clear interfaces are much benefited on

the toughness and ductility of the interfaces.
The high adhesion could be realized even
though the metal is polycrystalline solid or
nonepitaxial layer.

(ii) A systematic infusion of a contaminant
on a clean interface can clearly demonstrate the
role of contaminants and segregants on the
interface toughness of the interfaces.

(iii) The fracture toughness with a clear
interface is much higher than that of the oxide.
The critical energy release rate Gc can achieve
B200–400 Jm�2 for the metal/sapphire system
with a clear interface, despite a much smaller
critical value for the oxide GoxideD10–20 Jm�2,
(Elssner et al., 1994; McNaney et al., 1996;
Reimanis et al., 1997; Gaudette et al., 1997).
Such findings reveal that the metal/oxide
interfaces are inherently strong.

The elastic–plastic mechanics for thin film
decohesion has been studied by Tvergaard and
Hutchinson (1992, 1993), and Wei and Hutch-
inson (1997a, 1997b). There are three models to
describe the influence of plasticity on interface
toughness.

(i) The embedded fracture process zone model

The embedded fracture process zone (EPZ)
model was proposed by Needleman (1987), and
by Tvergaard and Hutchinson (1992, 1993). In
the EPZ model, a traction-separation law
characterizing the interface fracture process is
employed as a boundary condition along the
interface. The fracture process zone lies be-
tween the plastic zone on the metal thin film
side of the interface and the elastic substrate on
the other side. Once the parameters of the
traction-separation law are specified the frac-
ture resistance curve can be obtained using the
EPZ model. Following Tvergaard and Hutch-
inson (1992), a material-based length parameter
is introduced as R0 ¼ EG0=3pð1� n2Þ=s2Y;
where E and sY are the Young modulus and
yield stress of the film, respectively. G0 is the
work of separation per unit area of the interface
which is consumed by the near tip fracture
process.

Suppose the films are bonded to, or depos-
ited on, an elastic substrate at an elevated
temperature and then cooled. Films are sub-
jected to equi-biaxial tension s0: The critical
energy release rate Gc ¼ FG0; where F is the
function of stress hardening exponent N; the
phase angle and the peak separation stress #s
for interface under a strict pure mode I
opening. The parameters G0 and #s characterize
the separation law of the interface. Based on
this model, the crack growth resistance GRðDaÞ

Figure 13 Mode mixity for a debonding crack
(source Hutchinson and Suo, 1992).

Figure 14 Energy release rate for a debonding
crack (source Hutchinson and Suo, 1992).

Figure 15 An axial-section of a decohesion annulus
originating from an edge of a circular cut (source
Hutchinson and Suo, 1992).
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can be computed in terms of G0; #s; and the
mechanical properties of the metal film and
substrate. In particular, one can get the steady-
state toughness Gss=G0:

The critical energy release rate in the
steady state, Gc; versus #s=sY is plotted on
Figure 17(a) for the EPZ model (Wei and
Hutchinson, 1997a). One can find that
the critical energy release rate Gc increases
rapidly as the #s=sY increases. Meanwhile
the strain hardening has a significant effect
on the Gc: The effect of sY=E seems to be
small in comparison with the effect of #s=sY
and N:

(ii) The SSV model

The SSV model is proposed by Suo et al.
(1993). The model assumes that dislocations
are not emitted at the crack tip and imposes an
elastic zone of height D above the interface in
the metal film. Plastic deformation occurs
outside the near tip elastic zone. Since the
crack tip is surrounded by an elastic zone, the
crack tip remains atomically sharp and the
stresses have the square root singularity r�1=2:
Hence the resistance to crack advance is mainly
the separation work of the interface. The
critical energy release rate at the crack tip Gc

Figure 16 A schematic of three basic mechanisms that control interface crack growth (source Evans
et al., 1999).
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should be equal to the adhesion work. This
criterion fully characterizes this model. The
parameter D is a fitting parameter. The critical
energy release rate in the steady state is Gc ¼
FG0; where F is the function of stress hard-
ening exponent N and the nondimensional
parameter D=R0: Plots of Gc=G0 as a function
of R0=D are shown in Figure 17(b) (Wei and
Hutchinson, 1997a). The parameter R0=D
plays a role similar to #s=sY in the EPZ model.
When this parameter is larger than a certain
value, depending on N; Gc=G0 increases
sharply.

For mode I loading, the steady-state tough-
ness Gss=G0 is plotted against #s=sY in Figure
18, where #s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG0=D

p
: Note that the adhe-

sion index, Gss=G0; refers to steady state for
mechanisms I and II, but Gc=G0 refers to
initiation for mechanism III. The notation
DBT refers to a transition condition to fracture

into an adjoining material rather than along
the interface. At strength indices above this
transition, the interface mechanism no longer
operates.

It is worth noting that the Gss=G0 ratio
becomes unbounded as D approaches zero.
The reason is that the criterion of SSV model
cannot be employed and the energy release rate
at the crack tip always equals zero, if the plastic
deformation extends to the crack tip.

(iii) A unified model

As pointed out by Wei and Hutchinson
(1999), the EPZ model fails to provide realistic
predictions when the peak stress #s is at high
levels. The EPZ model predicts essentially
unbounded toughness if the peak stress of the
interface exceeds a high level (e.g., #s=sYD5 for
N ¼ 0:2). Alternatively, in the SSV model, the

Figure 17 Critical values of G for films that yield plastically: (a) EPZ model and (b) SSV model (source Wei
and Hutchinson, 1997a).
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traction on the interface is unbounded as the
tip is approached. The unified model proposed
by Wei and Hutchinson (1999) incorporates
both the elastic zone of thickness D in the
metal film above the interface and the traction-
separation law at the interface immediately
ahead of the crack tip. They assumed that the
length of separation would be sufficiently small
compared to D: The stress in the separation
zone should not exceed the peak stress #s: The
interface is characterized by the adhesion
energy G0; the peak stress #s; and the width D
of the dislocation free zone. Figure 19 shows
the steady-state toughness Gss=G0 against #s=sY
for mode I loading based on the unified model.
The dashed curves included in each of these

figures are the results for the EPZ model. The
limiting value corresponding to the SSV model
is also depicted in these figures for each value
of R0=D: The unified model approaches the
SSV model for large #s=sY: Meanwhile the
unified model approaches the EPZ model as D
approaches zero.

8.03.3.2 Cracking in Films

8.03.3.2.1 Crack patterns in the film

First we discuss the residual stress due to
thermal mismatch. The film-substrate is stress
free at high temperature T0 (processing at high
temperature). When the system cools to room

Figure 18 Characteristic toughness features. These are compared and contrasted by using common adhesion
indices, where s0 ¼ sY (source Evans et al., 1999).
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temperature Tr; the contraction strains in the
film and substrate would differ by ðaf �
asÞðT0 � TrÞ; where af and as are the thermal
expansion coefficients of the film and substrate,
respectively. A biaxial residual stress can be
defined as s ¼ ðaf � asÞðT0 � TrÞEfð1� nfÞ:
When af4as; one has s40: This residual
stress is quite large, e.g., if ðT0 � TrÞ ¼
500 K; sD500MPa for most materials. This
implies that if the same amount of biaxial
residual stress is applied to edges of the film,
the film and the substrate could be bonded
together without a misfit strain. Then the film
is under a uniform biaxial stress s and the
substrate is stress free. Now an opposite
uniform biaxial stress �s is applied on the
edges of the film in order to release the traction
on the edges of the film. Since the film thickness
is very small compared with the substrate
thickness, one can imagine that the perturbed
stresses caused by the opposite biaxial stress on
the edges of the film are negligibly small in the
central part of the film when compared with s:
The perturbed stresses are comparable with s
only at the edges of a film.

The biaxial residual stress s can cause
cracking in the film, then the crack can grow
through the film, arrest at the interface, or
penetrate into the substrate. Different cracking
patterns are formed in the film as sketched in
Figure 20. The crack can propagate in the film,
substrate, or along the interface. The fracture
resistances of the film, substrate and interface
are denoted by Gf ;Gs and Gi; respectively.

The energy release rate takes the forms G ¼
Zs2hð1� nfÞ=Ef ; where the parameter Z is a

dimensionless driving force, which depends on
the cracking patterns and the Dundurs’ para-
meters. For the case of a ¼ b ¼ 0 (the film and
substrate are homogeneous elastic media), the
parameter Z is also listed in Figure 20 (see
Hutchinson and Suo, 1992; Evans et al., 1989).

The crack can be initiated from a surface
flaw. If the crack size is much smaller than the
film thickness, the crack front runs both
toward the interface and laterally in the film.
The driving force parameter Z is high for a
surface crack ðZ ¼ 3:951Þ; but the fracture
resistance Gf is usually much higher than Gi or
Gs: Hence the surface crack could be isolated,
stabilized, and not connected. A crack channel
could form sometimes. Once the channel
process activates, it causes unstable propaga-
tion and arrests at another channel or passes
through the edge of the film. A connected
channel network would form. For most en-
gineering applications, such a channel network
is not acceptable. But such crack channels are
quite common if the film is brittle. Surface
cracks may penetrate into the substrate. Since
the residual stress is mainly localized in the
film, the penetrated crack will arrest at a
certain depth. However, the crack may turn
and run parallel to the interface, leading to
spalling of the substrate.

8.03.3.2.2 Surface crack

We start by studying the situation of a plane
strain crack as shown in Figure 21. The
problem was solved by Gecit (1979) and Beuth
(1992). The dimensionless stress intensity

Figure 19 The ratio of the macroscopic work of fracture to work of separation, Gss=G0; for the unified model
for mode I (c ¼ 0) steady-state crack growth along a bimaterial interface joining an elastic–plastic solid
to a rigid solid. The parameters used in carrying out the calculations are n ¼ 0:3; l1 ¼ 0:15; l2 ¼ 0:5; and
dCn =d

C
t ¼ 1 (source Wei and Hutchinson, 1999).
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factor K=s
ffiffiffi
h

p
depends only on the relative

crack depth a=h and the Dundurs’ parameters
a; b: If the value of a=h is small enough, the
stress intensity factor will approach to that of

an edge crack in a semi-infinite space, i.e.,
K-1:12s

ffiffiffiffiffiffi
pa

p
: For another limiting case,

a=h ¼ 1; the crack is perpendicular to and
terminates at the interface, the stresses near

Figure 20 Commonly observed cracking patterns. The dimensionless driving force for each pattern is listed,
assuming that the film-substrate is elastically homogeneous and the substrate is infinitely thick (source
Hutchinson and Suo, 1992).

Figure 21 Driving force available for an edge crack at various depths a=h (source Beuth, 1992).
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such a crack tip behave like sijEK̂r�s *sijðyÞ;
where *sijðyÞ is the angular distribution func-
tion. K̂ is a generalized stress intensity factor,
which has the dimension: ½stress�½length�s (Zak
and Williams, 1963; Cook and Erdogan, 1972;
Wang and Ståhle, 1998b). The singular ex-
ponent sð0oso1Þ is the smallest real root of
the following eigen equation:

cosðspÞ � 2
a� b
1� b

ð1� sÞ2 þ a� b2

1� b2
¼ 0 ð19Þ

The numerical results of s are depicted in
Figure 22.

As a=h-1; but with the crack tip still within
the film, the stress intensity factor can be
expressed as K=s

ffiffiffi
h

p
¼ 1:12

ffiffiffi
p

p
ða� hÞ1=2ð1�

a=hÞ1=2�sð1þ la=hÞ (see Beuth, 1992). The
parameter l only depends on the Dundurs’
parameters and is plotted in Figure 22.

The energy release rate G=G0 is shown in
Figure 21, where G0 ¼ s2hð1� n2f Þ=Ef : The
critical condition for crack initiation can
be expressed as GZGf : From Figure 21, one
can see that the crack growth will be un-
stable for the case of aZ0: Meanwhile the
crack will be blocked by the interface after
crack initiation for the case of ao0: This
means that if the substrate is stiffer than the
film, the interface acts as an obstacle to block
crack growth.

8.03.3.2.3 Crack channeling

If the film is brittle, a crack may channel
through it as shown in Figure 23. The problem
is three-dimensional (3D). An accurate solu-
tion is rather complex. After the crack channel
length exceeds the film thickness by several
times, the channel will approach a steady state

Figure 22 (a) Zak–Williams singularity and (b) a curve fitting parameter (reproduced by permission of
Academic Press from ‘‘Advances in Applied Mechanics,’’ vol. 29, pp. 63–191).
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and the cross-section profile in the wake attains
the shape of a plane strain through crack. In
the steady state, the energy release rate at the
channel crack front can be evaluated by
subtracting the strain energy stored in a unit
length slice far behind of the front from that
far ahead of the front. The calculation is quite
simple and does not require the knowledge of
the real front shape. Motivated by this
consideration, Hutchinson and Suo (1992)
proposed an alternative formula

Gss ¼
s
2h

Z h

0

dðzÞ dz

where dðzÞ is the displacement profile for a
plane strain crack. The second formula pro-
posed by them is

Gss ¼
1

h

Z h

0

GðaÞ da

where GðaÞ is the energy release rate of a plane
strain crack of depth a in Figure 21. This
means that the energy release rate Gss is the
average of the energy release rates for plane
strain cracks at various depths. The energy
release rate Gss with dissimilar elastic modulus
was given by Beuth (1992). A typical result
with b ¼ a=4 is shown in Figure 23. If Gss is
larger than Gf ; a channel network is expected.
For the case of a ¼ b ¼ 0 (the film and
substrate are homogeneous elastic media), the
nondimensional driving force is Z ¼ 1:976; as
listed in Figure 20.

8.03.3.2.4 Substrate cracking

The driving force for a plane strain crack
penetrating into a substrate was analyzed by
Ye et al. (1992) and the results are plotted in
Figure 24. Obviously the driving force de-
creases as the crack depth increases for the case
of a4� 0:5: It implies that the crack will arrest
at a certain depth.

8.03.3.3 Debonding and Sliding in Brittle
Matrix Composites

Ceramic matrix reinforced by continuous
fiber could create a composite that is signifi-
cantly stronger and tougher than the ceramic
matrix. The property of the fiber-matrix plays
an important role. Much observation has shown
that a relatively weak interface can prevent
matrix cracks from breaking the fibers in their
propagation paths due to interface debonding
and sliding. These fibers bridge the crack and
impede matrix crack from further propagation.

The effect of bridging fibers on matrix
propagation has been investigated by several
authors. Aveston et al. (1971) proposed a
model to estimate the applied tensile stress at
which the matrix crack could be nucleated with
the fiber remaining completely intact. The
effect of the interface sliding on the applied
fracture stress was also studied by them. The
ACK model of Aveston et al. (1971) was
extended by Budiansky et al. (1986). Their
BHE model utilizes a shear lag analysis of a
single cylindrical fiber surrounded by an
annular crack. A critical review on the

Figure 23 The insert shows a crack channeling across the film, driven by the tensile stress in the film. The
available energy at the channel front is plotted for various elastic mismatch (after Ye et al., 1992; reproduced
by permission of Academic Press from ‘‘Advances in Applied Mechanics,’’ vol. 29, pp. 63–191).
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mechanical behavior of ceramic composites
reinforced by continuous fiber was given by
Evans and Marshall (1989). Figure 25 shows a
schematic of a long fiber unidirectionally
reinforced composite that contains a bridged
crack and is subjected to remote tension
parallel to the fiber axis. The basic features
are depicted in Figure 26. Debonding and
sliding at the fiber/matrix interface must occur
to allow crack bridging by the fibers. The initial
debonding of the interface at the crack front
results in sliding along the interface. When this
situation appears, the sliding resistance t of the
debonding interface has an important role for
governing the rate of load transition from the
fiber to the matrix. A small sliding resistance
along the debonding interface promotes high
‘‘toughness.’’ If the residual stress in the
interface is compressive, the debonding length
of the interface is small. But the debonding can
be extensive when the residual stress is tensile.
A more important fact is that the debonding
could be further developed in the crack wake.
The extent of debonding in crack wake is still
governed mainly by the residual field.

He and Evans (1991) pointed out that the
fiber debonding is preferred to occur if the
fracture resistance of the interface, Gi; is
sufficiently small compared with that of the
fiber, Gf ; e.g., Gir0:25Gf : The experimental
observations of crack interaction with fibers
and whiskers seem to support this judgment
(Bischoff et al., 1989; Thouless et al., 1989a).
The mechanical properties of the interfaces, the
strength of the fibers, and the residual stresses
in the composite are three key factors to
control the axial tensile properties of the
composite. Qualitatively, the ‘‘tough’’ response
is favored in composites with ‘‘weak’’ inter-

faces, high-strength fibers, and tensile residual
stresses normal to the fiber/matrix interface.
Otherwise a catastrophic failure response could
occur. Different typical responses are sketched
in Figure 27.

For a ‘‘tough’’ ceramic composite, the first
crack in the matrix could nucleate from a pre-
existing flaw, breaking only a small fraction of
fibers. Further loading increases the nonlinear
behavior of the stress–strain curve of the
composite due to interface debonding and
frictional interactions between the fibers and
the matrix. This phenomenon is called the fiber
bridging. The tail of the stress–strain curve
corresponds to pullout of broken fibers. The

Figure 24 Energy release rate for a plane strain
with the tip in the substrate (source Ye et al., 1992).

Figure 25 Schematic of a crack bridged by fibers
and subjected to far-field loading (source Danchai-
vijit and Shetty, 1993).

Figure 26 A schematic illustrating the initial
debonding of fibers at the crack front and fiber
debonding in the crack wake (source Evans and
Marshall, 1989).
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ultimate strength of the composite is largely
determined by the strength of the fiber bundle.
This type of ‘‘tough’’ response is quite common
in many composites.

The stretching of bridging fibers between
two crack surfaces can be characterized by a
relation of the average bridging stress, p; versus
a local opening displacement, u; as shown in
Figure 28. This formula depends strongly on
the bridging mechanism and mechanical prop-
erties such as interface debonding, frictional
sliding, and elastic properties of the fibers. The
maximum value sfc represents the ‘‘strength’’
of the fiber.

If the interface between fiber/matrix is
perfectly bonded, no debonding occurs when
a matrix crack terminates at the interface, the
pðuÞ curve is linear up to failure. In the other
extreme case, the fibers are completely de-
bonded from the matrix, but frictional forces
resist pullout, and the bridging stress increases
monotonically until the fibers break, then the
bridging stress decreases and the broken fibers
are pulled out of the matrix. The bridging
stresses in the fibers within the crack wake are
taken as crack closure tractions, which reduce
the stress intensity factor at the crack tip.
Using a standard Green’s function one can
calculate shielding stress intensity factors. An
alternative approach is to use the J-integral to
estimate the effect of the bridging traction on
the energy release rate. A bridging zone
develops behind the advancing crack front
and results in the increase of the applied stress
intensity factor. The crack growth is depicted
by a resistance curve.

Budiansky et al. (1986) and Rose (1987)
proposed a simple analytical solution of the
steady state toughness increment DG ¼
2
R u0
0 pðuÞ du; where u0 is the crack opening

displacement at the end of the bridging zone.
The critical stress for the growth of matrix

cracks bridged by continuous fibers have been

investigated by Marshall et al. (1985), Wells
and Beaumont (1985), Stang and Shah (1986),
MacCartney (1987), Gao et al. (1988), Ma-
jumdar et al. (1989), Thouless et al. (1989b),
Danchaivijit and Shetty (1993), Curtin (1993),
Xia et al. (1994), and Meda and Steif (1994),
among others. Marshall and Cox (1987)
considered the effect of the fiber strength, fiber
strength statistical distribution, and residual
stress.

The calculations of critical stress essentially
include three steps:

(i) Establishing a formula between the clo-
sure traction applied by the bridging fiber and
the local crack opening displacement.

(ii) Developing an integral equation to
determine the crack opening displacement by
the entire distribution of crack surface trac-
tions and solving this integral equation in a
self-consistent scheme to ensure the formula of
the bridging traction versus crack opening
displacement is satisfied.

(iii) Using the self-consistent fiber tractions
to calculate the effective stress intensity factor
and the critical stress.

Danchaivijit and Shetty (1993) obtained a
simple analytical formula of the bridging
traction versus crack opening displacement.
According to this formula, the normalized
bridging stress as a function of the normalized
crack opening displacement is plotted in Figure
28, where the parameters Z ¼ EfVf=EmVm and
u0 ¼ s2

N
R=4ð1þ ZÞEfV

2
f t; Ef ; Em are the

Young moduli of the fiber and matrix,
respectively; Vf ; Vm are the volume fractions
of the fiber and matrix, respectively; R is the
radius of the fiber; and t is the sliding friction

Figure 27 A tensile stress–strain curve for a
‘‘tough’’ ceramic composite (source Evans and
Marshall, 1989).

Figure 28 Normalized crack closure traction,
p=sN; as a function of normalized crack opening
displacement, u=u0 (source Danchaivijit and Shetty,
1993).
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stress over the debonding region which is
assumed to be constant. The crack surface
traction and the crack opening displacement in
the steady state are shown in Figure 29.

The normalized critical stress for the growth
of a matrix crack as a function of normalized
crack length is depicted in Figure 30 for a
silicon/carbide/lithium aluminosilicate compo-
site. The properties of the fiber, matrix,
composite, and interface were taken from the
data compiled by Marshall et al. (1985). The
solid line represents the numerical results for
Z ¼ 2:35; the value applicable to this compo-
site, the long dashed line is the result using the
approximation, E0 ¼ E11 ¼ Ec; where Ec is the
Young modulus of the composite, c0 ¼
pðKcm=aÞ2=3V2

mð1þ ZÞ; Vm is the volume frac-
tion of the matrix, Kcm is the fracture tough-
ness of the matrix, and c is the crack length.
The definition of E0 can be found in the paper
by Danchaivijit and Shetty (1993). The experi-
mental results given by Marshall et al. (1985)
and the prediction by the ACK theory are also
plotted in Figure 30.

8.03.3.4 Cracks in Multilayers

Attention here is focused on the cracking of
a thin brittle adhesive layer joining two
identical thick bulk solids. The cracking
morphologies are sketched in Figure 31. The
adhesive layer thickness is assumed to be very
small compared with the in-plane dimension of
the system. The applied load is characterized

by stress intensity factors KN

I and KN

II ; which
are determined from macroscopic analysis
without considering the existence of the thin
layer. The macroscopic energy release rate is

GN ¼ 1� n2

E
ðKN2

I þ KN2
II Þ

where E and n are the Young modulus and the
Poisson ratio of the two bulk materials,
respectively. The macroscopic toughness
%GðcNÞ of the system is determined by test,
where cN ¼ tan�1ðKN

II =K
N

I Þ: A test series
carried out using such sandwich specimen
provides the macroscopic interface toughness
%GðcNÞ: In engineering applications, one can
disregard the local crack morphology. The
critical condition for interface crack growth
can be expressed as GN

c ¼ %GðcNÞ; where GN

c is
the critical macroscopic energy release rate.

8.03.3.4.1 A straight crack within the layer

According to the J-integral principle, the
local energy release rate G is identical to GN:
The local energy release rate G is closely related
to the local stress intensity factors,

G ¼ 1� n22
E2

ðK2
I þ K2

IIÞ

where E2; n2 are the Young modulus and the
Poisson ratio of the layer, respectively. The
relation between the local stress intensity
factors and the applied stress intensity factors

Figure 29 Crack surface traction and crack opening displacement for a fiber-bridged crack in the steady-state
regime (source Danchaivijit and Shetty, 1993).
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takes the form

K ¼ 1� a
1þ a

� �1=2

ðKN

I þ iKN

II Þeif

where f is the shift in the phase angle between
the local stress intensity factors and the applied
stress intensity factors. The numerical results
for f were given by Fleck et al. (1991). If the
applied stress intensity factor is pure mode I
and the crack propagates along the centerline
of the layer, Wang et al. (1978) showed that the
local stress intensity factor KI could be
expressed as

KI ¼
1� a
1þ a

� �1=2

KN

I

This result implies that a crack within a
compliant layer is shielded. The shielding
factor can be large when two stiff materials
are jointed by a compliant adhesive. For
example, when two ceramic bulk materials
are jointed by a polymer adhesive.

8.03.3.4.2 Crack along the interface

The local energy release rate G still equals
the global energy release rate GN in this case.
The local stress intensity factors are related to
the global stress intensity factors according to
the formula

K ¼ h�ie 1� a

1� b2

� �1=2

ðKN

I þ iKN

II Þeio

Figure 30 Comparison of the predictions of the numerical study with the matrix-cracking stress
measurements on silicon carbide–lithium aluminosilicate composites (source Danchaivijit and Shetty, 1993).

Figure 31 Modes of cracking in a thin brittle
adhesive layer: (a) straight crack within layer (b)
interface crack, (c) alternating crack, and (d) wavy
crack (source Hutchinson and Suo, 1992).
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where the shift angle oðo ¼ c� cNÞ ranges
between 51 and �151 and is plotted in Figure
32 (Suo and Hutchinson, 1989a).

8.03.3.4.3 Alternating cracking

A crack path switching back and forth
between the upper and lower interfaces with a
fairly regular interval is called the alternating-
cracking mode. Chai (1987) has reported this
mode in an aluminum/epoxy/aluminum sand-
wich specimen. The relatively high residual
tensile stress sR in the layer was B60MPa,
which was induced by a thermosetting epoxy.
The system has a strong positive T-stress. A
quantitative analysis of the alternating crack-
ing mode was given by Akisanya and Fleck
(1992). The key feature is the variation in the
mode mixity. The trends of the variation in the
mode mixity c are plotted in Figure 33, where
c is defined by

c ¼ tan�1 ImðKlieÞ
ReðKlieÞ

� 	

with l ¼ h: When sR
ffiffiffi
h

p
=KN

I is of the order of
unity, the interface starts with a large negative
value of c; then decreases to the value c ¼ o
as the crack length increases. The large
negative value KII forces the crack to propa-
gate along the interface since the crack cannot
penetrate the aluminum due to relatively high
tensile residual stress in the layer. When the
magnitude of c is sufficiently low, the crack
kinking down into the layer becomes possible
for the aluminum/epoxy sandwich system.
Akisanya and Fleck (1992) found that the
kinking condition was met when c=h-2; which
is consistent with the experimental observation
of Chai (1987).

8.03.3.4.4 Tunneling cracks

Bi-axial residual stresses could be developed
in the adhesive layer during the bonding
process. For example, two parts of ceramics
coated with glass are put together and heated
above the melting temperature of the glass, and
then cooled down to the room temperature. A
residual stress is produced due to a thermal
expansion mismatch. The residual stress is
tensile in the glass, since the thermal expansion
coefficient of the glass is larger than that of the
ceramic part. The tensile residual stress causes
cracks to tunnel through the adhesive glass.
Figure 34 shows a crack nucleated from a flaw,
tunneling through the adhesive layer. The
crack tunneling is a complicated 3D problem.
When the crack length is much longer than the
adhesive layer thickness, a steady state is

reached. The tunneling crack front maintains
its shape. The energy release rate per unit
advance can be calculated by using a 2D elastic
solution. The energy release rate hGss; per unit
length of a tunneling crack is identical to the
energy released by a plane strain crack growing
across the layer. The energy release rate Gss for
a single tunneling crack in a finite thickness
sandwich was given by Ho and Suo (1992). The
nondimensional Gss is a function of the elastic

Figure 32 An interface crack in a sandwich. The
phase shift o is plotted as a function of elastic
masmatch parameter (source Hutchinson and Suo,
1992).

Figure 33 Sketch of trends of phase of loading at
interface crack tip for various levels of residual
tension sR in the layer. The remote loading is mode I
(after Akisanya and Fleck, 1992; reproduced by
permission of Academic Press from ‘‘Advances in
Applied Mechanics,’’ vol. 29, pp. 63–191).
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mismatch parameters a and b; and the relative
thickness h=w: Figure 34 shows typical results
for different values of a (with b ¼ a=4) and
various values of h=w: The nondimensional
energy release rate seems to be very sensitive to
the mismatch parameter a; on the other hand,
it seems not to be sensitive to the relative
thickness of h=w when a40:5:

8.03.3.5 Crack Perpendicular to a Bimaterial
Interface

A crack perpendicular to a bimaterial inter-
face has attracted many investigators. Zak and
Williams (1963) used the eigenfunction expan-
sion method to analyze the stress singularity
ahead of a crack tip, which is perpendicular to
and terminated at the interface (see also Wang
and Karihaloo, 1994, 1996). Their analysis
revealed that the stress singularity is of the
order r�s; where s is the smallest real eigenvalue
and dependent on the elastic moduli of the
bimaterial. Cook and Erdogan (1972) used the
Mellin transform method to derive the govern-
ing equation of a finite crack perpendicular to
the interface and obtained the stress intensity
factors. Erdogan and Biricikoglu (1973) solved
the problem of two bounded half planes with a
crack going through the interface. Bogy (1971)
investigated the stress singularity of an infinite
crack terminated at the interface with an
arbitrary angle. Wang and Chen (1993) used
photoelasticity to determine the stress distribu-
tion and the stress intensity factors of a crack
perpendicular to the interface. They found that

the far field has significant effects on the stress
distribution and stress intensity factors.

Lin and Mar (1976) presented a finite
element analysis of the stress intensity factors
for cracks perpendicular to a bimaterial inter-
face. Ahmad (1991) used the finite ele-
ment method to analyze a crack normal to
the fiber-matrix interface in unidirectional fiber
composites.

Meguid et al. (1995) proposed a novel finite
element to analyze cracks perpendicular to
bimaterial in finite elastic body. Chen (1994)
used the body force method to determine the
stress intensity factors for a crack normal
to and terminated at a bimaterial interface.
Ståhle et al. (1995) investigated a crack
growing towards a bimaterial interface. They
carried out an experiment and a finite element
simulation. Their results showed that the
crack could deflect and follow a smooth
curved path.

8.03.3.5.1 Crack perpendicular to a bimaterial
interface

Consider the in-plane elasticity problem as
shown in Figure 35. A finite crack is perpendi-
cular to a bimaterial interface, which does not
intersect with the interface. The elastic body is
bonded by two materials and subjected to the
prescribed traction pi on the surface Ss and to
the prescribed displacements ui on the surface
Su: The crack surfaces are assumed to be
traction free. Both materials are isotropic and
homogeneous. The material I occupies the
upper half-plane S1 and the material II
occupies the lower half-plane S2: A Cartesian
coordinate system oxy is attached on the
interface. The x-axis is along the interface
and the y-axis is normal to the interface and
coincident with the crack elongation direction.
The crack is within material II. Stress and
displacement can be expressed by Equation (6).
The complex potential for an edge dislocation
at z ¼ s in an infinite homogeneous elastic solid
can be expressed by Equation (7).

The crack can be considered as a continuous
distribution of dislocations. A novel expansion
method was proposed by Wang and Ståhle
(1998a) for solving the problem. The disloca-
tion density was expressed as a series of
Chebyshev polynomials of the first kind. The
complex potential and the stress fields can be
expanded as a power series of a new complex
variable, which is a simple rational function of
the complex variable z: Using the traction free
condition on the crack surface, one can
establish the governing equations for the
unknown dislocation density functions bx and

Figure 34 Steady-state energy release rate for
isolated tunneling crack. The crack extends from
interface to interface, and is propagating in the
direction perpendicular to the cross-section shown
(after Ho and Suo, 1992; reproduced by permission
of Academic Press from ‘‘Advances in Applied
Mechanics,’’ vol. 29, pp. 63–191).
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by: Based on the boundary collocation method,
the governing equation was solved and the
unknown coefficients were obtained. The
complete solutions to the problem, including
the T-stress ahead of the crack tip and the
stress intensity factors were presented. The
stress field characteristics were analyzed in
detail in their paper. Without loss of generality,
they studied the problem of sNy ¼ 0 and
tNxy ¼ 0: The nonvanishing remote stresses
are ðsNx ÞII ¼ s and ðsNx ÞI; which satisfies
Equation (4).

(i) Stress intensity factors

The calculated stress intensity factors for a
half plane are given in Table 1. The results by
Cook and Erdogan (1972) are also listed in this
table for comparison. The two results agree
with each other. The calculated stress intensity
factors for the material pairs aluminum–epoxy
in the plane strain are shown in Table 2. The
elastic constants are m1=m2 ¼ 23:08; n1 ¼ 0:3;
and n2 ¼ 0:35: For comparison, the results
by Cook and Erdogan (1972) are also listed in
this table. The two results are in complete
agreement.

The stress intensity factor at the crack tip B
versus the geometry parameter r ¼ b=a0 is
plotted in Figure 36 for the material pair of
aluminum–epoxy. The nondimensional stress
intensity factor is %KIðBÞ ¼ KIðBÞ=s

ffiffiffiffiffiffiffi
pa0

p
:

When the crack in the weak epoxy approaches
the interface, the stress intensity factor at crack
tip B will approach zero due to the strong
blocking effect from the stiff material alumi-
num. It is worth noting that the nondimen-
sional stress intensity factor %KIðBÞ at the crack
tip B varies approximately according to a
power law relation. A simple fit was proposed
by Wang and Ståhle (1998a) as %KIðBÞ ¼ qrg;
where q and g are given in their paper. The
curves given by this equation (Equation (33) in
their paper) are also listed in Figure 36. It is
clear that this equation gives very good
prediction when the parameter ro0:1:

Figure 37 depicts the stress intensity factor at
the crack tip B versus the geometry parameter

Figure 35 A finite crack perpenducular to a
bimaterial interface.

Table 2 Stress intensity factors for an aluminum–epoxy bimaterial.

b=a0 KIðAÞ=s
ffiffiffiffiffiffiffi
pa0

p
Sourcea KIðAÞ=s

ffiffiffiffiffiffiffi
pa0

p
Sourceb KIðAÞ=s

ffiffiffiffiffiffiffi
pa0

p
Sourceb KIðBÞ=s

ffiffiffiffiffiffiffi
pa0

p
Sourcea

0.10 0.8985 0.8985 0.6674 0.6674
0.15 0.9051 0.9051 0.7179 0.7179
0.25 0.9165 0.9165 0.7838 0.7838
1.00 0.9616 0.9616 0.9249 0.9249
4.00 0.9929 0.9929 0.9912 0.9912
9.00 0.9981 0.9981 0.9979 0.9979

Source: aWang and Ståhle (1998a). bCook and Erdogan (1972).

Table 1 Stress intensity factors for a hale plane.

b=a0 KIðAÞ=s
ffiffiffiffiffiffiffi
pa0

p
Sourcea KIðAÞ=s

ffiffiffiffiffiffiffi
pa0

p
Sourceb KIðAÞ=s

ffiffiffiffiffiffiffi
pa0

p
Sourcea KIðBÞ=s

ffiffiffiffiffiffiffi
pa0

p
Sourceb

0.10 1.211 1.211 1.759 1.759
0.15 1.183 1.183 1.575 1.575
0.20 1.163 1.163 1.464 1.464
0.50 1.097 1.097 1.204 1.204
1.00 1.054 1.054 1.091 1.091
4.00 1.009 1.009 1.011 1.011
9.00 1.002 1.002 1.003 1.003

Source: a Wang and Ståhle (1998a). b Cook and Erdogan (1972).
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r ¼ b=a0 for material pairs epoxy–boron. The
elastic constants are m1=m2 ¼ 0:007223; n1 ¼
0:35; and n2 ¼ 0:3: The crack is now within the
stiff material of boron. The stress intensity at
crack tip B increases rapidly when the geome-
try parameter r approaches zero. The empiri-
cal equation gives very good prediction when
the parameter ro0:1:

(ii) Stress distribution ahead of the crack tip B

Figures 38 and 39 show the stress distribu-
tion ahead of the crack tip B for the material
pairs of aluminum–epoxy in the case b=a0 ¼

0:01: The crack is within the weaker material.
In these figures, the ordinates are the non-
dimensional stresses %sx ¼ sx=s and %sy ¼ sy=s;
respectively. It is clear that the normal stress sx
is dominated by the K-field in the region of
0or=bo0:5; whereas the normal stress sy is
characterized by the K-field plus T-stress in the
region of 0or=bo0:4:

Figure 40 shows the normal stress sy ahead
of the crack tip B for the material pair epoxy–
boron in the case b=a0 ¼ 0:1: Now the crack is
within the stiffer material. The K-field is
remarkably different from the accurate result

Figure 37 The relationship between the nondimen-
sional stress intensity factor %KIðBÞ ¼ KIðBÞ=s

ffiffiffiffiffiffiffi
pa0

p
and the geometry parameter r for material pair
epoxy–boron.

Figure 38 Normal stress sx distribution ahead of
the crack tip B for material pair aluminum–epoxy in
the case of b=a0 ¼ 0:01: Here r is the distance from
the crack tip B and %sx ¼ sx=s:

Figure 36 Nondimensional stress intensity factor
%KIðBÞ ¼ KIðBÞ=s

ffiffiffiffiffiffiffi
pa0

p
versus the geometry para-

meter r for material pair aluminum–epoxy.

Figure 39 Comparison of the normal stress sy
ahead of the crack tip B with the K-field and the K-
field plus T stress for material pair aluminum–epoxy
in the case of b=a0 ¼ 0:01: Here r is the distance
from the crack tip B and %sy ¼ sy=s:
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for the normal stress sy: The normal stress sy is
essentially characterized by the K-field plus T-
stress in the region of 0or=bo0:4: It means
that the T-stress effect is very important for the
material pair aluminum–epoxy.

8.03.3.5.2 Crack perpendicular to and
terminating at a bimaterial interface

Consider the plane elastic problem as shown
in Figure 41. A finite crack is perpendicular to
and terminating at a bimaterial interface. A
basic equation for a finite crack perpendicular
to and terminating at a bimaterial interface was
formulated by Wang and Ståhle (1998b). The
dislocation density was expressed as a series of
Chebyshev polynomials of the first kind plus a
special term, which had a desired stress
singularity at the crack tip. Using a boundary
collocation method, the governing equation
was solved and the unknown coefficients were
obtained. The complete solution to the pro-
blem was obtained.

(i) Calculation results

The calculation was carried out for different
material pairs. The convergence of the series
was rather rapid. The infinite series of the
Chebyshev polynomials of the first kind can be
approximated with a sufficient degree of
accuracy by a corresponding truncated series,
in which the maximum value of m is the
number M: A typical example for the material
pair of aluminum–epoxy was tested in the case

of plane strain. Values for M of 150, 180, and
210 gave the same results of stress intensity
factors at the crack tips A and B with four
digits of accuracy and the coefficients am of the
series of the Chebyshev polynomials ap-
proaches zero rapidly as m increases. For
example, a1 ¼ 0:2487; a10 ¼ �0:1421� 10�3;
a100 ¼ 0:4015� 10�6; a180 ¼ �0:2342� 10�8:
All results given in their paper were calculated
with M ¼ 180:

(ii) Stress intensity factors

The calculated stress intensity factors for
different material pairs in the case of plane
stress are shown in Tables 3 and 4.

Here the parameter l0 is the smallest
eigenvalue of Equation (19). The results by
Wang and Ståhle (1998b) agree well with the
results by Meguid et al. (1995) and Chen
(1994).

(iii) Stress distribution ahead of the crack tip B

The stress fields ahead of the crack tip can be
expressed as

sij ¼
QI

ð2prÞl0
fijðyÞ þ Tij ð20Þ

where QI is the generalized mode I stress
intensity factor at the crack tip B, Tij are the T-
stresses, which are characterized by the second
term of the eigenfunction and play an im-
portant role in the analysis of fracture process.
The first term of the right side of Equation (20)
is known as the Q-field.

Figures 42 and 43 show the stress distribu-
tions ahead of the crack tip B for the material
pair of epoxy–boron in the case of plane stress.

Figure 40 Comparisons of the normal stress sy
ahead of the crack tip B with the K-field and the K-
field plus T-stress for material pair epoxy–boron in
the case of b=a0 ¼ 0:1:

Figure 41 A finite crack perpendicular to and
terminating at a bimaterial interface.
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The material constants are m1=m2 ¼ 0:00722;
n1 ¼ 0:35; and n2 ¼ 0:3: It is clear that the
normal stress sx is dominated by the Q-field in
the region of 0or=a0o1; whereas the normal
stress sy is characterized by the Q-field in the
region of 0or=a0o0:05:

The trend is different when the crack is
within the weaker material, as shown in Figure
44 for the case of plane stress. Figure 44 shows
the comparison between the normal stress sx;
the Q-field, and the Q-field plus Tx stress for
the material pair of boron–epoxy. The material
constants are m1=m2 ¼ 138:46; n1 ¼ 0:3; and
n2 ¼ 0:35: The Q-field plus Tx stress gives very
good prediction for the normal stress sx in the
region of 0or=a0o1: But the Q-field is

remarkably different from the normal stress
sx: It clearly shows that the Tx stress has a
tremendous contribution to the normal stress.
The Q-field plus the Ty stress also agrees very
well with the normal stress sy in the region
0or=a0o0:4:

The situation for material pairs with slight
elastic constant mismatch is similar. The
normal stresses are dominated by Q-field plus
T-stress. But the size of the dominated zone
becomes small.

8.03.4 INTERFACE FRACTURE TEST

Experiments show that interfacial fracture
toughness depends strongly on the mode

Table 3 Stress intensity factors %QIðBÞ ¼
ffiffiffi
2

p
QIðBÞ=sð2pa0Þl0 :

m1=m2 n1 n2 Sourcea Sourceb Sourcec Sourced Sourcee

0.00722 0.35 0.30 0.0192 0.018 0.0192 0.0196 0.079
0.0433 0.35 0.30 0.0955 0.094 0.095 0.095 0.074
23.08 0.35 0.30 4.232 4.240 4.231 4.241 4.176
138.46 0.35 0.30 5.002 5.004 5.001 4.978 4.922

Source: a Wang and Ståhle (1998b). b Meguid et al. (1995). c Chen (1994). d Lin and Mar (1976). e Cook and Erdogan (1972).

Table 4 Stress intensity factors %KIðAÞ ¼ KIðAÞ=sð2pa0Þ1=2:

m1=m2 n1 n2 Sourcea Sourceb Sourcec Sourced

0.00722 0.35 0.30 1.474 1.474 1.529 1.509
0.0433 0.35 0.30 1.340 1.340 1.371 1.353
23.08 0.35 0.30 0.879 0.879 0.855 0.879
138.46 0.35 0.30 0.870 0.870 0.833 0.871

Source: a Wang and Ståhle (1998b). b Chen (1994). c Lin and Mar (1976). d Cook and Erdogan (1972).

Figure 42 Normal stress sx distribution ahead of
the crack tip B for material pair epoxy–boron in the
case of plane stress. Here r is the distance from the
crack tip B and %sx ¼ sx=s:

Figure 43 Normal stress sy distribution ahead of
the crack tip B for material pair epoxy–boron in the
case of plane stress and %sy ¼ sy=s:
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mixity. Cao and Evans (1989), and Liechti and
Chai (1991, 1992) studied the interfacial
toughness of epoxy/glass system. Wang and
Suo (1990) carried out interfacial fracture tests
on an epoxy layer on metal and plexiglass
substrates. O’Dowd et al. (1992) investigated
the fracture toughness of alumina–niobium
interfaces. All of these tests reveal a common
feature: the interfacial fracture toughness
increases rapidly as the phase angle becomes
large. A variety of test methods have been
proposed by Charalambides et al. (1989),
Evans et al. (1990), Ruhle et al. (1990), and
O’Dowd et al. (1992) among others. Delamina-
tion resistance of laminated composites can be
enhanced by a variety of bridging mechanisms.
The delamination resistance is nonunique,
which indicates that the delamination resis-
tance curve should be measured over the phase
angle range of practical significance.

8.03.4.1 Delamination Specimens and
R-curves

Beam-type fracture specimens are most
extensively used for unidirectional composites,
adhesive joints, and other laminated materials.
Typical delamination beams were analyzed by
Suo (1990b) and Bao et al. (1992). Liechti and
Chai (1991, 1992) developed a bimaterial
interfacial fracture specimen, which is capable
of providing the interfacial fracture toughness
over essentially the full range of mode mixity.
The specimen used by them was the edge-
cracked bimaterial strip made of glass and
epoxy. The initial crack was introduced by

inserting a razor at the interface and wedging it
open to a length a0E6h: The specimen was
loaded using a special biaxial loading device.
The prescribed in-plane displacements were
imposed along the clamped boundaries, x1 ¼
7h: The in-plane length is long compared with
the thickness h of each layer. The solution to
the problem of an infinite long strip with a
semi-infinite interfacial crack was used by
Liechti and Chai to obtain the energy release
rate and the stress intensity factors.

For the plane strain case, the explicit
solution for stress intensity factors can be
found in the paper by Suo and Hutchinson
(1990).

A double cantilever beam made of a uni-
directional composite with fiber along the beam
axis is plotted in Figure 45. The composite is
treated as a homogeneous orthotropic material.
Mesoscale features such as interface and fiber/
matrix inhomogenity are not explicitly taken
into account. The specimen is pure mode I, the
energy release rate is given by

G ¼ f
a

h

� �ðPaÞ2
h3 %EL

where P is the force per unit width, 2h the beam
thickness, a the crack length, and %EL the
effective Young’s modulus in the fiber direc-
tion. The function f ða=hÞ is related to the
orthotropic parameters. A simple calibration
formula for f ða=hÞ was proposed by Bao et al.
(1992). The formula was obtained using finite
elements together with several analytic consid-
erations.

Figure 46 depicts several edge-loaded speci-
mens, which have a fixed mode mixity as the
crack grows. In the unidirectional composites,
the delamination cracks normally grow along
the fiber direction. Figure 46(a) is a pure mode
I specimen, while Figure 46(b) is a pure mode
II specimen. Figures 46(c) and (d) are mixed
mode specimens. As the crack length exceeds
about two times the specimen thickness 2h;
both the energy release rate and the mode
mixity become essentially independent of the
crack length.

Figure 44 Normal stress sx distribution ahead of
the crack tip B for material pair boron–epoxy in the
case of plane stress.

Figure 45 A double cantilever beam (DCB).
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The calibrations for the energy release rates
of different modes are also listed in Figure 46
(Hutchinson and Suo, 1992).

8.03.4.2 Interface Fracture Specimens

Gao et al. (1979), Suresh et al. (1990), and
He et al. (1990) developed asymmetric three-
point bend specimens and asymmetric four-
point bend specimens for measuring the mixed-
mode fracture toughness of homogeneous
metallic materials. The corresponding calibra-
tion was given by Wang et al. (1977) and
Suresh et al. (1990). Figure 47 shows the
schematic diagrams of the asymmetric
four-point bend specimen and the loading
arrangement.

O’Dowd et al. (1992) adopted the asym-
metric four-point bend specimen together with
the symmetric four-point bend specimen. These
geometries have been used by them to measure
the interfacial fracture toughness of an alumi-
na–niobium material system over the full range
of mode mixity. Figure 48 provides a schematic
diagram of the symmetric four-point bend
specimen and the asymmetric four-point bend
specimen. They carried out the specimen
calibration. The stress intensity factors take
the form K ¼ YT

ffiffiffi
a

p
a�ieeic; where c is again

defined by

c ¼ tan�1 ImðKlieÞ
ReðKlieÞ

� 	

with l ¼ a; and T ¼ ðA� BÞP=ðAþ BÞW for
asymmetric four-point bend specimen. The
dimensionless functions Y and c are plotted
in Figure 49.

For the symmetric four-point bend speci-
men, T is given by T ¼ Pð3B=2W 2Þ: The
dimensionless functions Y and c are plotted
in Figure 50. For the alumina–niobium pair
with alumina designated as material I, the
plane strain Dundurs’ parameters are a ¼
0:527 and b ¼ 0:063 and consequently the
oscillatory index is given by e ¼ �0:02:

8.03.4.3 Brazil-nut Specimen

A homogeneous Brazil nut is a disk of radius
a; with a center crack of length 2l; which was
used by Atkinson et al. (1982) as well as Singh
and Shetty (1989) for mixed mode fracture
testing of brittle solids. The mode mixity is
controlled by the compression angle, y: It is
pure mode I when y ¼ 01; and pure mode II
when yE251: The stress intensity factors are
given by KI ¼ fIPa

�1=2;KII ¼ 7fIIPa
�1=2;

where the plus sign is for point A; and the

Figure 46 Several exact solutions: (a) a pure mode I specimen (double cantilever beam), (b) a pure mode II
specimen (end-loaded split), (c) a mixed mode specimen (four-point bend), and (d) a mixed mode specimen
(crack-lap shear) (reproduced by permission of Academic Press from ‘‘Advances in Applied Mechanics,’’
vol. 29, pp. 63–191).
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minus sign for point B: Atkinson et al. (1982)
calibrated the nondimensional factors fI; fII:
The energy release rate and phase angle c ¼
tan�1ðKII=KIÞ at tips A and B are plotted in
Figure 51 for homogeneous material. An
interfacial fracture specimen can be made by
sandwiching a thin interlayer of thickness h
and a center crack of length 2l along one
interface of the substrate/interlayer as shown in
Figure 52. When the interlayer thickness h is

much smaller than the radius a and the crack
length 2l; the energy release rate can be
evaluated by the Irwin relation in accordance
with the J-integral principle. Since the pertur-
bation in the far field due to the thin interlayer
is negligible, the local stress intensity factors
can still be calculated by the nondimensional
factors fI; fII: The interfacial phase angle #c is
shifted from that for the homogeneous speci-
men, according to #c ¼ tan�1ðKII=KIÞ þ oþ
e lnðl̂=hÞ; where o is the shift due to sub-
strate/interlayer mismatch of elastic constants,
and the last term is the shift due to the
oscillation index.

8.03.4.4 Fracture Energy Data

The most complete sets of fracture energy
data for an epoxy–glass interface were mea-
sured by Liechti and Chai (1991, 1992) and are
shown in Figure 5. These data demonstrate the
strong influence of mode mixity on Gi; which
indicates the extensive plastic dissipation in the
epoxy. The specially designed loading device of
Liechti and Chai does not seem to be suitable
for metal–ceramic bimaterial systems due to
significant high elastic moduli.

The interfacial fracture toughness data
for an alumina–niobium system with l̂ ¼
100 mm was measured by O’Dowd et al.
(1992) and is shown in Figure 53 where Kcð #cÞ
is the amplitude of the critical local stress
intensity factor. The solid line is the toughness
curve predicted by the formula Kcð #cÞ ¼
KIc=cos #c:

Wang and Suo (1990) developed a Brazil-
nut-sandwich specimen to measure the inter-
facial fracture toughness. Experiments were
conducted with 1090 aluminum, 420 stainless
steel, 27000 brass, and plexiglass as substrates
and epoxy as the interlayer. The measured
fracture data are shown in Figure 4. It is worth
noting that the apparent toughness values in
the range #c4601 are quite high compared with
those of #cE01:

Figure 47 Schematic diagram of the asymmetric
four-point bend specimen geometry and the loading
arrangement, as well as the variation of the shear
force, Q; and the bending moment, M; along the
length of the specimen (source Suresh et al., 1990).

Figure 48 (a) Schematic representation of the symmetric bend specimen and (b) asymmetric bend specimen
(source O’Dowd et al., 1992).
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8.03.5 INTERFACE CRACKS IN
DISSIMILAR ANISOTROPIC
MEDIA

Interface cracks in anisotropic solids
were first analyzed by Gotoh (1967), Clements

and Sneddon (1971), and Willis (1971).
Many interface crack problems were solved
by Wang and Choi (1983), Ting (1986),
Suo (1990a), Wu (1990), Wang et al. (1992),
and Wang (1994). The mathematical structure
of the interface crack tip fields has

Figure 49 Calibration of the edge-notched shear of a bimaterial bar (reproduced by permission of Academic
Press from ‘‘Advances in Applied Mechanics,’’ vol. 29, pp. 63–191).

Figure 50 Calibration functions Y and c for symmetric four-point bend specimens, (a) dependence of Y on
relative crack depth a=W and (b) dependence of c on a=W (source O’Dowd et al., 1992).
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been identified by Ting (1986) and Suo
(1990a).

8.03.5.1 Basic Formulas

According to Lekhnitskii (1981) and Stroh
(1958), the displacement and stress solution of
the plane problem for anisotropic media can be
expressed by three analytical functions
fiðziÞ; ði ¼ 1; 2; 3Þ as

ui ¼ 2Re
X3
j¼1

AijfjðzjÞ
" #

Ti ¼ � 2Re
X3
j¼1

LijfjðzjÞ
" #

s2i ¼ 2Re
X3
j¼1

Lijf
0
j ðzjÞ

" #

s1i ¼ � 2Re
X3
j¼1

Lijmj f
0
j ðzjÞ

" #
ð21Þ

where zj ¼ xþ mjy; mj are three distinct com-
plex numbers with a positive imaginary part,
which can be obtained as roots of a sixth-order
characteristic equation.

Suo (1990a) introduced a positive definite
Hermitian matrix H ¼ B1 þ %B2; where B1 and
B2 are ‘‘B matrices’’ for materials I and II,
respectively. The definitions of ‘‘A;B;L ma-
trices’’ can be found in books by Lekhnitskii
(1981) and Ting (1996).

8.03.5.2 Interface Crack in Anisotropic
Bimaterials: Nonoscillatory Fields

Ting (1986), Qu and Bassini (1989), and Suo
(1990a) have shown that if H is a real matrix,
the oscillatory index is e ¼ 0; and the crack tip
fields are nonoscillatory singularity fields,
which can be expressed as

sij ¼
1ffiffiffiffiffiffiffi
2pr

p K1sIijðyÞ þ K2sIIij ðyÞ þ K3sIIIij ðyÞ
n o

ð22Þ

The stress intensity factors K1;K2; and K3 play
the same role as those in homogeneous
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Figure 51 Homogeneous Brazil-nut calibration: (a)
the normalized energy release rate and (b) the
loading phase (source Atkinson et al., 1982).

Figure 52 A Brazil-nut-sandwich in diametral
compression.

Figure 53 Comparison of Kcð #cÞ=KIc with experi-
mental data for the alumina/niobium system (source
O’Dowd et al., 1992).
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materials. Equation (22) clearly shows that the
crack tip stress field is independent of the
elastic properties in materials I and II. The
angular functions in Equation (22) are identical
to those for a crack in homogeneous materials.
Specially, the functions for material I are the
same as those for a crack in a homogeneous
material of the same elastic constants. The
same holds true for material II. Consequently,
these functions can be found in the article by
Sih et al. (1965) on cracks in homogeneous
anisotropic solids.

The energy release rate G and the opening
displacement field d take the form

G ¼ 1
4 k

THk ð23aÞ

fdx; dy;dzg ¼
ffiffiffiffiffi
2r

p

r
Hk ð23bÞ

where k ¼ fK2;K1;K3g:

8.03.5.3 Interface Crack in Anisotropic
Bimaterials: Oscillatory Fields

Suo (1990a) showed that the crack tip fields
consist of two types of singularities, namely an
oscillatory field and a nonoscillatory field,

sij ¼
1ffiffiffiffiffiffiffi
2pr

p Re Krie
� �

sð1Þij ðyÞ þ Im Krie
� �

sð2Þij ðyÞ
n

þK3s
ð3Þ
ij ðyÞ

o
ð24Þ

where K ¼ K1 þ iK2:
The energy release rate G is given by

G ¼
%WT H þ %Hð ÞW
4 cosh2pe

K %Kþ 1

8
WT

3 H þ %Hð ÞWK2
3 ð25Þ

where e is the eigenvalue and W ; W3 are eigen-
vectors, which were identified by Suo (1990a).

8.03.5.4 Crack Kinking out of an Interface

A solution was obtained by Miller and Stock
(1989) for the problem of a crack branching off
the interface between two dissimilar anisotro-
pic materials. Numerical results for the stress
intensity factors at the tip of branched crack
were obtained for some special cases in their
paper.

A complete analysis of kinking of an inter-
face crack between two dissimilar anisotropic
elastic materials was presented by Wang et al.
(1992) and Wang (1994). The branched crack
was treated as distributed dislocations. In their
papers, a set of singular integral equations for
the distribution function of the dislocation
density were developed. Explicit formulas of

stress intensity factors and energy release rate
for the branched crack were obtained for
orthotropic and misoriented orthotropic bi-
crystals. The role of the stress parallel to the
interface, T, is taken into account in these
formulas. According to the work of Wang et al.
(1992) and Wang (1994), the stress intensity
factors at the kink tip can be expressed as

Kkink
I ¼ C11Re Kaie

� �
þ C12Im Kaie

� �
þ d1Ta

1=2

Kkink
II ¼ C21Re Kaie

� �
þ C22Im Kaie

� �
þ d2Ta

1=2
ð26Þ

where coefficients Cij were given by Wang et al.
(1992) and di were obtained by Wang (1994).
They are functions of the kinking angle o and
elastic constants of materials I and II.

For in-plane problem, the energy release rate
for the branched crack takes the form

Gkink ¼ kT� ðB2 þ %B2Þk�=4 ð27Þ

where k� ¼ fKkink
II ;Kkink

I g is a column vector
and B2 is the matrix for material II, into which
the main crack is branched.

Consider two cubic orthotropic crystals with
elastic constants l ¼ 1; and r ¼ �0:19 which
forms a symmetric tilt grain boundary with
y1 ¼ y2 ¼ 38:91 as shown in Figure 54. The
(x; y) plane is a plane of mirror symmetry. The
interface crack is running in the x-direction.
The matrix H is real for such a symmetric tilt
grain boundary. The coefficients Cij as the
functions of the kinking angle o are shown in
Figure 55. The ratio of the energy release rate
Gkink of a kinked crack to the interface energy
release rate Gi as a function of the kinking angle
and the loading mixity is shown in Figure 56.

Figure 54 A schematic of a small-scale kink
problem. The principal direction x1 is titled from
the x-axis by y1 and y2; respectively. The parent
crack is under mixed-mode load.
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Figures 57 and 58 depict the calculation
results for the case of y1 ¼ 301; y2 ¼ 751: The
interface is a typical asymmetric tilt grain
boundary. The generalized Dundurs’ para-
meters are a ¼ 0:0583; b ¼ 0: The coefficients
Cij as functions of the kinking angle o are
shown in Figure 57. Figure 58 shows the ratio
of the maximum energy release rate Gkink

max of the
kinked crack to the interface energy release
rate Gi as a function of the loading phase. The
influence of T-stress on the ratio of Gkink

max =Gi is
clearly illustrated in this figure with parameter
Z ¼ T

ffiffiffi
a

p
= Kj j:

Now consider two dissimilar orthotropic
materials bonded with their principal axes
aligned. The interface is on the x-axis and the
crack is on the negative x-axis. For an
orthotropic material, the anisotropy is char-
acterized by two parameters l and r (Suo,
1990b). For single crystal Cu, the typical values
are l1 ¼ 1; r1 ¼ �0:19; while l2 ¼ 0:12; r2 ¼
6:24 for boron/epoxy composite.

Figures 59 and 60 indicate the effect of para-
meter a on the ratio of the maximum energy
release rate Gkink

max of the kinked crack to the

interface energy release rate Gi: It is clear that
the ratio Gkink

max=Gi will increase when a increases.

8.03.6 ELASTIC–PLASTIC FRACTURE
MECHANICS FOR AN
INTERFACE CRACK

8.03.6.1 Elastic–Plastic Analyses of Interface
Crack

Using the finite element method Shih and
Asaro (1988, 1989, 1990) and Zywicz (1988)
investigated elastic–plastic cracks on bimaterial
interfaces. Instead of complex stress intensity
factor K ; Shih and Asaro (1988) introduced a
complex stress intensity factor Q ¼ KLie; where
L is the crack length. The traction directly
ahead of the crack tip for an elastic interface
crack can be expressed as

s22 þ is12 ¼
Qffiffiffiffiffiffiffi
2pr

p r

L

� �ie
ð28Þ

It is worth noting that Q has the unit of
stress� ðlengthÞ1=2 in analogy with the defini-
tion of stress intensity factor in homogeneous
media and the phase angle for Q is independent
of length scale. For a center cracked panel, Q is
given by Q ¼ ðsNy þ itNxyÞð1þ 2ieÞ

ffiffiffiffiffiffiffiffiffiffiffi
pL=2

p
for

the right hand crack tip.
Consider an interface crack between an

elastic–plastic material and a rigid substrate.
The elastic–plastic material obeys the Ram-
berg–Osgood stress–strain relation. The near
tip stress fields for ‘‘opening’’ dominated
external loading take the form

sij ¼ s0
J

as0e0r

� �1=ðnþ1Þ
hij y; r̂; xð Þ ð29Þ

Here J denotes the J-integral and hij is a
nonsingular function, which slowly varies with
r̂ ¼ s0r=J: The function hij also depends on the
phase angle x ¼ cþ e lnðQ %Q=s20LÞ: Figure 61

Figure 55 Coefficient Cij for a symmetric tilt cubic
bicrystal.

Figure 56 Crack driving force ratios Gkink=Gi as a
function of the kink angle o under several remote
loading mixities c ¼ tan�1ðKII=KIÞ:

Figure 57 Coefficient Cij for an orthotropic bicrys-
tals.

122 Fundamentals of Interface Mechanics



Figure 58 Ratio of the maximum energy release rate of kinked crack to interface energy release rate as a
function of the loading phase. Here Gmax

s ¼ Gkink
max :

Figure 59 Ratio of the maximum energy release rate of kinked crack to interface energy release rate as a
function of the loading phase. Here Gmax

s ¼ Gkink
max :

Figure 60 Ratio of the maximum energy release rate of kinked crack to interface energy release rate as a
function of the loading phase. Here Gmax

s ¼ Gkink
max :
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shows the normal stresses ahead of the crack tip
for the cases of n ¼ 3 and n ¼ 10; respectively.
The dashed line curve denotes the finite element
calculation results for a purely elastic material.
The break in the dashed line near r=a ¼ 10�9

corresponds to the stress changing from tension
to compression. Figure 61(a) gives the results
for strongly hardening material (n ¼ 3). When
the load level is very low, sN=s0 ¼ 2:0� 10�5;
the plastic zone is confined to a distance of
about rp=a ¼ 10�11; the near tip stress also has
the oscillatory tendency. The stress is negative
within the plastic zone. At the next load level
sN=s0 ¼ 2:0� 10�4; the stress is positive over
the entire plastic zone. At the high load level
sN=s0 ¼ 6:0� 10�3; the normal stress in-
creases monotonically as the crack tip is
approached and the oscillatory tendency dis-
appears. Figure 61(b) shows the results for low
hardening material. In a low level of remote
loading sN=s0 ¼ 2:0� 10�5; the hoop stress in
the outer plastic zone is compressive; in the next
remote stress level, sN=s0 ¼ 2:0� 10�4; the
hoop stress is essentially not affected by the
elastic stress fields; and in the final load level,
sN=s0 ¼ 6:0� 10�3; the hoop stress is positive
over the entire range studied.

The angular variation of the normalized
stresses usij at two fixed distances from crack tip
is plotted in Figures 62(a), (c), and (e) for three
remote load levels corresponding to x ¼
�1:36; � 0:727; and �0:071; respectively.
The stress distributions deep inside the plastic
zone are shown in Figures 62(b), (d), and (f).

8.03.6.2 Crack Tip Fields for a Bimaterial
Interface

The exact asymptotic solutions of the HRR
type for a plane strain crack lying along an
interface between an elastic–plastic power law
hardening material (as material I) and a rigid
substrate (as material II) were presented by
Wang (1990) and Champion and Atkinson
(1991). They found that a separable asymptotic
solution satisfying the traction free condition
on the crack faces only exists at a single mode
mixity Mp ¼ ð2=pÞtan�1ð *syð0Þ=*tryð0ÞÞ; the
value of which depends on the hardening
exponent n: Sharma and Aravas (1993) con-
firmed Wang’s solution. The asymptotic stress
fields have a similar structure to that of the
classic HRR fields of a homogeneous material.
The singularity exponent is s ¼ �1=ðnþ 1Þ:

The angular variations of normalized stres-
ses are plotted on Figures 63–65 for the cases
of n ¼ 3; 5; and 10; respectively. The corre-
sponding values of Mp are 0.96056, 0.93728,
and 0.91516, respectively. The stress compo-
nent sr has a jump across the interface, which
arises from the mismatch of elastic–plastic
properties across the interface.

Exact mathematical analyses for an interface
crack between two dissimilar elastic–plastic
materials were performed by Xia and Wang
(1992). The angular variations of normalized
stresses for the asymptotic solution at a crack
tip, which satisfy the traction free conditions
on the crack faces, are given in Figure 66.

As pointed out by Shih (1991), Wang’s
solutions for n ¼ 3; 5; and 10 are similar to
the solutions reported by Shih and Asaro
(1989) in their Figure 9 for x ¼ �0:551 and x ¼
�0:027; which display features consistent with
a separable mode I like fields. The comparison
of Wang’s solution with Shih and Asaro’s
solution is also shown in Figure 66 (Xia and
Wang, 1992). Note that Wang’s solution agrees
very well with the finite element solution given
by Shih and Asaro (1989).

8.03.6.3 Elastic–Plastic Solutions with a
Contact Zone

Zywicz and Parks (1990) developed slip line
solutions for the near tip region of a plane
strain crack with a contact zone lying along an
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Figure 61 Plots of log of normalized hoop stress
(y ¼ 7:51) against log of normalized distance for the
interface crack: (a) n ¼ 3 material and (b) n ¼ 10
material (source Shih and Asaro, 1988).
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interface between an elastic–perfectly-plastic
solid and a rigid substrate. Aravas and Sharma
(1991) and Xia and Wang (1992) considered a
plane strain crack with a contact zone along
the interface between an elastic–plastic power
law hardening material and a rigid substrate.
The solution given by them shows that the
asymptotic solution is separable in r and y;
where ðr; yÞ are polar coordinates centered at

the crack tip. The mathematical structure of
the crack tip fields is similar to that of the
classic HRR fields in a homogeneous material.
But the angular variations of stress compo-
nents near a crack tip are different from the
HRR singularity fields in a homogeneous
material. Figure 67 shows the angular variation
of stress components at the crack tip for n ¼ 3
and n ¼ 10: All stress components have the
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Figure 62 Plots of angular variations of normalized stresses for the interface crack with n ¼ 3 at two
distances within the plastic zone and for three remote stress levels (source Shih and Asaro, 1988).
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r�1=ðnþ1Þ singularity, which is in contrast with
the Comninou’s singularity field for the elastic
solution of an interface crack with contact
zone. Directly ahead of the crack tip, the
normal stress is negative and the shear stress is
positive. Behind the crack tip the normal stress
is also negative and the shear stress is zero due
to the frictionless contact of two crack faces. In
other words, a necessary condition for the
crack surfaces to remain closed near the crack
tip is that the singular shear stress tryðr; 0Þ40:
Alternatively, the Comninou’s elastic singular
shear stress requires that the singular shear
stress tryðr; 0Þo0:

In order to verify the elastic–plastic asymp-
totic solutions, Aravas and Sharma (1991)
carried out finite element calculations under
a small-scale yielding condition. The

2.0

1.5

1.0

0.5

0.0

−0.5

−1.0
−180.0 −120.0 −60.0 0.0 60.0 120.0 180.0

�

�r�

� i
j

��

�r

�e

Figure 65 Angular variation of normalized stresses near the tip of a crack, which lies on the interface of an
elastic–plastic material with hardening exponent n ¼ 10 and a perfect elastic material.
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Figure 63 Angular variation of normalized stresses
near the tip of a crack, which lies on the interface
between an elastic–plastic material with hardening
exponent n ¼ 3 and a perfect elastic material.
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Figure 64 Angular variation of normalized stresses near the tip of a crack, which lies on the interface between
an elastic–plastic material with hardening exponent n ¼ 5 and a perfect elastic material.

126 Fundamentals of Interface Mechanics



Comninou’s asymptotic elastic displacement
field with K2o0 is applied on a remote
semicircular boundary. The radial variation
of the equivalent stress along y ¼ 86:31 for n ¼
10 is shown in Figure 68. Figure 69 depicts the
angular variation of the equivalent stress at a
crack tip. The hollow circles indicate the results
of finite element solution. It is clear that the
asymptotic solutions by Aravas and Sharma
agree well with the finite element solutions.

Xia and Wang (1992) performed exact
mathematical analyses for interface cracks
between two dissimilar elastic–plastic materi-
als. The angular variation of normalized
stresses for the asymptotic solution at the
crack tip with a contact zone along the
interface between a power law hardening
material and a pure elastic material is shown

Figure 66 Angular variation of stress for the case
n1 ¼ 3 and n2 ¼ 5: Solid lines after Xia and Wang
(1992); dashed lines after Shih and Asaro (1990).

Figure 67 Angular variation of stress components at the tip of an interfacial crack with contact zone between
an elastic–plastic power law hardening material and a rigid substrate (source Aravas and Sharma, 1991).
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in Figure 70 for n1 ¼ 5: The solution is
separable in r and y; which exists only for
Mp ¼ ð2=pÞtan�1ð *syð0Þ=*tryð0ÞÞ ¼ �0:51541:

The solutions provided by Wang (1990),
Aravas and Sharma (1991), and Xia and Wang
(1992) are fully continuous. It means that the
stress components, displacements, and the
stress function F and its derivatives up to the
third order within materials I and II are all
continuous and the tractions and displace-
ments are also continuous across the interface.

For any assigned Mp; the separable solution
of HRR type which contains a weak discontin-

uous line was presented by Xia and Wang
(1992). The weak discontinuous line exists in the
material with lower hardening (larger n). The
third-order derivative of the stress function has
a jump across the line. This is the only difference
as compared with the fully continuous solution.
In order to verify the existence of the solution
with a weak discontinuous line, let us consider
the following functional equation introduced by
K. R. Wang and T. C. Wang (1987):

P1 sin yþP2 cos yþ ð1þ nsÞũyP3 ¼ 0 ð30Þ

The functions Pa can be found in the paper
by Xia and Wang (1992) and P3 ¼ *sy cos yþ
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Figure 68 Radial variation of normalized Mises equivalent stress se along y ¼ 86:31 for n ¼ 10: The open
circles indicate the results of the finite element solution (source Aravas and Sharma, 1991).

Figure 69 Angular variation of normalized Mises
equivalent stress %se at the crack tip for n ¼ 10: The
circles indicate the results of the finite element
(source Aravas and Sharma, 1991).
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Figure 70 Angular variation of normalized stress
(Mp ¼ �0:51541). Material I is a power law hard-
ening elastic–plastic material (n1 ¼ 5) and material
II is a perfectly elastic material.
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*try sin y: Symbols ũyðyÞ; *syðyÞ; and *tryðyÞ stand
for angular distributions of the displacement
component and the stress components of the
first-order asymptotic solution respectively.
Equation (30) is equivalent to the original
governing equation for the angular distribution
function FðyÞ of the stress function. Wang
(1986) proved that if P3ðyAÞ vanishes at a
certain polar angle y ¼ yA; then Equation (30)
is always satisfied for any F

000 ðyÞ value on
both sides of the radius line y ¼ yA: This means
that the weak discontinuity is allowable at
y ¼ yA where the third derivative F

000 ðyÞ is
discontinuous.

The angular variation of singular stresses for
the crack along an interface between an elastic–
plastic material with n ¼ 5 (as material I) and a
perfectly elastic material (as material II) is
shown in Figure 71. The discontinuous line lies
at about yAE1601: The parameter Mp ¼
0:832; which nearly corresponds to the result
by Shih and Asaro (1989) in their Figure 9. The
comparison between the two results is also
shown in Figure 71. The results for the normal
stress sy and the shear stress try agree well in
the entire region 0oyop: The results for the
normal stress sr and the effective stress se agree
well in the interval 0oyoyA: But after yA;
there are considerable differences between the
two results. The solutions with a weak dis-
continuous line for Mp ¼ 0:3 and 0:6 are
plotted in Figure 72.

Across the weak discontinuous line, the
displacement angular function ũy has a jump.
In order to guarantee the displacement con-
tinuity, one can assume that there is a complex
zone around the weak discontinuous line y ¼
yA as shown in Figure 73. In this complex zone,
the crack tip fields cannot be expressed in terms
of separable variables. Since the displacements

near the crack tip can be expressed as ui ¼
r1=ðn1þ1ÞũiðyÞ outside the complex zone, the
displacement uy is continuous across the weak
discontinuous line at the crack tip.

8.03.6.4 High-order Solutions

High-order solutions for a crack along an
interface between two dissimilar bimaterial
have been studied by Aravas and Sharma
(1991), Sharma and Aravas (1993), and Xia
and Wang (1994a, 1994b). The constitutive
equation of materials I and II is described by
the J2 deformation theory for a Ramberg–
Osgood uniaxial stress–strain behavior. Let n1
and n2 be the strain hardening exponents
of materials I and II respectively. Without
loss of generality, one can assume n14n2: It
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Figure 72 Angular variation of normalized stresses.
Material I is an elastic–plastic material (n1 ¼ 5) and
material II is a perfectly elastic material.
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Figure 73 The complex stress zone.
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Figure 71 Angular variation of stresses
(Mp ¼ 0:832). Material I is elastic–plastic (n1 ¼ 5)
and material II is perfectly elastic. Solid lines after
Xia and Wang (1992); dashed lines after Shih and
Asaro (1989).
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means that material I is more compliant than
material II.

As pointed out by Shih and Asaro (1988)
and Wang (1990), the singularity exponents of
the stress fields in materials I and II are the
same due to traction continuity along the
interface. But the singularity exponent of the
strain fields in material I is larger than that of
material II. If Et1 and Et2 designate the tangent
moduli of materials I and II, respectively, then
Et1=Et2-0; as r-0: This suggests that, as
r-0; the material system would behave
increasingly like a plastically deforming mate-
rial bonded to a rigid substrate. Therefore in
the asymptotic sense, we have urðr; 0þÞ ¼
uyðr; 0þÞ ¼ 0:

8.03.6.4.1 High-order solutions with traction
free crack surfaces

The first-order asymptotic solution has been
discussed in Sections 8.03.6.1 and 8.03.6.2. The
stresses of first order solution have the

singularity r�1=ðn1þ1Þ and the displacements of
the first-order solution satisfy the following

condition on the interface: u
ð1Þ
r ðr; 0þÞ ¼

u
ð1Þ
y ðr; 0þÞ ¼ 0: The displacements of the first-

order solution in material I can be expressed as

u
ð1Þ
i ðr; yÞ ¼ r1=ðn1þ1Þũ

ð1Þ
i ðyÞ: Since the tractions

are continuous across the interface, the stress
fields of the first-order solution in material

II take the form sð1Þij ¼ r�1=ðn1þ1Þ *sð1Þij ðyÞ; the
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Figure 74 Angular variations of the second-order stress and displacement components for n ¼ 5; 10, and 50
(source Sharma and Aravas, 1993).
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corresponding strains and displacements
in material II can be expressed as

eð1Þij ¼ r�n2=ðn1 þ 1Þ*eð1Þij ðyÞ and u
ð1Þ
i ðr; yÞ ¼

rðn1þ1�n2Þ=ðn1þ1Þũ
ð1Þ
i ðyÞ:

Now we search the second-order solution in
material I. Besides the traction free condition
on the crack surface, the second-order solution
should satisfy the following condition along

the interface: u
ð2Þ
r ðr; 0þÞ ¼ u

ð2Þ
y ðr; 0þÞ ¼ 0:

Using a method similar to that proposed by
Li and Wang (1986), one can get the second-
order solution.

The second-order solutions take the form

sð2Þij ¼ rs2 *sð2Þij ðyÞ and eð2Þij ¼ rDs2�n1=ðn1þ1Þ*eð2Þij ðyÞ;
u
ð2Þ
i ðr; yÞ ¼ r1þDs2�n1=ðn1þ1Þũ

ð2Þ
i ðyÞ; where s2 is the

smallest eigenvalue of the governing equation
of the high-order field, Ds2 ¼ s2 � s1:

Sharma and Aravas (1993) obtained the
second-order solution. Figure 74 shows the
angular distribution of the stress fields for
the second-order solution.

Comparing the power exponents of the
second-order displacement fields in material I
and first-order displacement fields in material
II, one concludes that if Ds2oðn1 � n2Þ=ðn1 þ
1Þ; the second-order solution by Sharma and
Aravas (1993) holds true, otherwise the second-
order solution should match the displacement
fields of the first-order solution in material II.
It means that the second-order solution in
material I should satisfy the following condi-
tion along the interface: u

ð2Þ
r ðr; 0þÞ ¼
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Figure 75 Angular distributions of stresses near the interface crack tip for n1 ¼ 5; n2 ¼ 3:
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u
ð1Þ
r ðr; 0�Þ; u

ð2Þ
y ðr; 0þÞ ¼ u

ð1Þ
y ðr; 0�Þ with Ds2 ¼

ðn1 � n2Þ=ðn1 þ 1Þ: Such solutions have been
discussed by Xia and Wang (1994b).

8.03.6.4.2 High-order solution with a
frictionless contact zone

The second-order solution for an interface
crack between a power law hardening material
and a rigid substrate was obtained by Aravas
and Sharma (1991). They pointed out that the
second-order solution with frictionless contact
zone corresponds to a constant stress field. An
accurate second-order solution for an interface
between two dissimilar elastic-power law hard-
ening plastic materials with a frictionless
contact zone was presented by Xia and Wang
(1994a). They concluded that if Ds2oðn1 �
n2Þ=ðn1 þ 1Þ and Ds2oðn1 � 1Þ=ðn1 þ 1Þ; the
second-order solution with frictionless contact
zone corresponds to a constant stress field.
Otherwise the second-order solution with a
frictionless contact zone will be different from
a constant stress field. Figure 75 shows the
angular distribution of the first and second-
order stress fields in the case of n1 ¼ 5 and n2 ¼
3: It is clear that the second-order stress fields
correspond to a constant stress. Figure 76
depicts the angular distributions of the first and
second-order stress and displacement fields in
the case of n1 ¼ 5 and n2 ¼ 4:5: It is worth
noting that the stress components of the
second-order solution are not uniform.
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