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Abstract: The key technologies for high energy efficiency and low emission of industrial furnaces can effectively improve the energy utiliza—
tion efficiency and reduce pollutant emissions. In this paper the research of common key technologies for energy conservation and emission
reduction in industrial furnaces were reviewed such as energy—saving management and waste heat utilization oxygen—enriched calcination
staged combustion particle separation and resource utilization and their integrated applications in 2 500—5 000 t/d cement kilns. Based on
the matching relationship between the material and energy flow of industrial furnaces the design of an energy—saving management platform
was carried out. New energy—saving technologies for optimization and reorganization of energy flow in cement kilns were developed to meet
the requirements of multiple types process goals. The industrial demonstration of the energy—saving management platform matching the ma—
terial and energy flow in cement kilns has been implemented. The oxygen—enriched calcination technologies in cement kilns was developed
by organically combining low—energy pressure—swing—adsorption and cement clinker calcination which can meet the wide threshold varia—
tion in production of product category and output quality and their industrial demonstrations was carried out.In view of the problems of high
emissions such as NO_ and SO, the stage combustion and SNCR denitration technologies in decomposition furnace were comprehensively

optimized. The industrial demonstration of the technologies for the staged combustion and SNCR optimized denitrificationin cement decom—
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position furnace has been conducted. Aiming at emission reduction and resource utilization the new technologies for particulate emissions

purification separation and reuse in deep cooling and dust removal of flue gas have been proposed. The industrial demonstration of efficient

separation and clean utilization of gas—solid emissions in industrial furnaces has been put into effect. The clean emission and resource utili-

zation of particulate matter have been realized.
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Fig.1 Simulation flow chart of decomposition furnace
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Table 1 Comparison of raw material components after decomposition
1%
CaCO, Si0, AL, 0, Fe,0, MgO Ca0 MgCO,
3.19 21.61 3.97 3.44 3.24 64.55 0
— 22.36 4.77 3.31 2.78 64.91 —
2 A)
Table 2 Comparison of flue gas components . R
at the outlet of the decomposition furnace 3 800 t/d
/9% ( 4 : 0.40% ~13.10%
H, 0, N, co co, H,0
0.04 2.81 62.20 0.52 28.97 5.00
— 330 64.00 0 29.70 — °
4
3
. Table 4 Comparison of temperatures at
Table 3 Comparison of outlet temperature of the
. each outlet of the grate cooler
decomposition furnace
/K
( ) /K ( ) /K /K 1173 1162 697 500 544
1172 1175 1191 /K 1293 1183 675 502 481
1.2 1% 9.28 1.78 3.26 0.40 13.10
3800 t/d -
—_— » : 10 mm
Fluent 72% o
100 °C
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Table 5 Comparison of temperature data from
] ] ) 72 h 93.66%
looking—fire—hole in rotary kiln R R
3287 m’/h 0.37 kWh/m’
0, /K /K
1% ’
21 1711 1 691 1501 1489
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Fig.6  Adsorption tower in glass fiber oxygen system
Table 6 Comparison of production indicatorsunder

air and oxygen—enriched combustion 3
3d f=Ca0 3.1 CO NO CaO
/(t+h™) /MPa 1%
148.2 28.2 83.4 / ) SNCR .
150.7 29.2 87.2
+2.5 +1.0 +3.8 SNCR

/% +1.69 +3.55 +4.56
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