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a b s t r a c t 

The collapse process of bubble cluster is closely related to bubble–bubble interaction. Theoretical analysis 

and numerical simulation are adopted to study the collapse of bubble cluster with various distributions. 

The key parameters for bubble collapse, including bubble quantity, volume fraction, and dimensionless 

pressure, are acquired by dimensional analysis. The effects of key parameters on collapse of bubble clus- 

ter are investigated by direct numerical simulation. The numerical result shows that the collapsing speed 

of bubble cluster increases with the increase of bubble quantity and dimensionless pressure, decreases 

with the increase of volume fraction. A condensation rate is considered on the basis of bubble cluster 

with primitive cubic distributions. Square pyramid arrangement and random arrangement of bubbles are 

also simulated. A parameter study of the dimensionless bubble distance bubble cluster with random ar- 

rangement shows that a larger distance generally results in a larger collapse speed of bubble cluster. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Cavitation is a key issue in high-speed underwater propulsion

nd can result in structure failure ( Bark et al., 2011 ) and acous-

ic emissions ( Kim et al., 2014 ). Cloud cavitation, which consists of

 large number of small bubbles, is a common type of cavitation

or high-speed vessels and projectiles. Pressure pulse generated by

ubble collapse in cloud cavitation is a major cause of structural

ailure and noise radiation. 

Due to the geometric complexity of a collapsing bubble

luster and the asymmetric behavior of each bubble, simpli-

ed homogeneous models were first developed to study the

haracteristic of bubbly mixture flow ( van Wijngaarden, 1964 ;

edrinskii and Mørch, 1725 ; Omta, 1987 ; D’Agostino and Bren-

en, 1989 ). With the rapid development of computer capabil-

ty and simulating technology, considerable effort s were devoted

n the last decades to numerical simulations of cavitating flow.

ost of these studies focused on homogeneous flow modeling,

hich comprises the Navier–Stokes (N–S) equations of the mix-

ure phase ( Coutier-Delgosha et al., 2007 ; Merkle et al., 2001 ;

unz et al., 20 0 0 ; Kubota and Kato, 1989 ; Singhal et al., 2002 ;

chnerr and Sauer, 20 01 ; Zwart et al., 20 04 ). The phase change be-

ween liquid and vapor is usually modeled by the transport equa-

ion of the vapor phase with phase change rate as source term.

erkle ( Merkle et al., 2001 ), Kunz ( Kunz et al., 20 0 0 ), Kubota
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 Kubota and Kato, 1989 ), Singhal ( Singhal et al., 2002 ), Schnerr

 Schnerr and Sauer, 2001 ), and Zwart ( Zwart et al., 2004 ) pro-

osed several cavitation models based on phase-change method;

hese models are utilized to simulate cavitating flows in many ap-

lications ( Owis F and Nayfeh, 2004 ; Ji et al., 2012 , Yakubov et al.,

015 ; Huang et al., 2013 ; Huang et al., 2014 ; Morgut et al., 2011 ;

uang et al., 2012 ). Ji et al. ( Ji et al., 2012 ) used Zwart model

o simulate cavitating flows around a conventional marine pro-

eller in a non-uniform wake and predict the excited pressure

uctuations. Huang et al. investigated cavitating flows around a

itching hydrofoil and vortex–cavitation interactions using Kubato

odel ( Huang et al., 2013 ; Huang et al., 2014 ). To include the

ubble-bubble interactions, Maiga et al. ( Maiga et al., 2018 ) pro-

osed a new cavitation model based on the mutual interaction be-

ween two spherical bubbles of different sizes. Another approach

o simulate the cavitating flow is Eulerian–Lagrangian method

 Chahine et al., 2014 ; Ma et al., May 2015 ; Ma et al., January 2018 ),

odeling each bubble base on Rayleigh–Plesset equation. 

Bubble–bubble interactions are usually neglected in cavitation

odels based on the following hypothesis. Bubbles grow or col-

apse synchronously and remain spherical during this process. Nev-

rtheless, bubble clusters with different distributions may lead to

arious collapse pressures due to the interaction of bubbles under

dentical vapor volume fractions. Therefore, a numerical model that

onsiders bubble–bubble interaction is essential to improving the

ccuracy of predicting bubble collapse pressure. Achieving theoret-

cal analysis of a collapsing bubble cluster is difficult due to the

omplex asymmetric behavior of each bubble. Optical diagnostics

ithin the bubble cluster are also challenged by the large index of

https://doi.org/10.1016/j.ijmultiphaseflow.2020.103322
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijmulflow
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmultiphaseflow.2020.103322&domain=pdf
mailto:huangcg@imech.ac.cn
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Fig. 1. Schematic of bubble cluster. 
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refraction mismatch at the bubble surfaces. Therefore, direct nu-

merical simulation is an important approach in the investigation

of bubble cluster dynamics. Zhang and Yao ( Zhang et al., 2008 )

employed boundary element method to study the factors that af-

fect the expansion, collapse, and movement of multiple bubbles.

Zhang and Shao ( Zhang et al., 2013 ) examined the influences of

bubble interaction on bubble cluster by direct numerical simula-

tion and showed that the collapse of central bubble in a multi-

bubble system contains delay and acceleration stages. Chahine and

Duraiswami ( Chahine G and Duraiswami, 1992 ) simulated multi-

ple bubbles by boundary integral method and revealed the pres-

ence of large non-spherical bubble deformations and inward jets

upon collapse. Bremond et al. provided a similar picture of collapse

with large aspherical bubble deformations and re-entrant jetting

( Bremond et al., 2006 ). Tiwari et al. ( Tiwari et al., 2015 ) simulated

the expansion and subsequent collapse of a hemispherical cluster

of 50 bubbles adjacent to a plane rigid wall, wherein geometric-

focused bubbles generate high impulsive pressures. Maeda and

Colonius ( Maeda and Colonius, 2018 ) present a coupled Eulerian–

Lagrangian method to simulate cloud cavitation in a compress-

ible liquid and capture the bubble-scattered acoustics. Hsiao et al.

( Hsiao et al., May 2018 ) investigate the influence of driving fre-

quency of sinusoidal pressure field on the collapse of bubble cloud

dynamics near a rigid wall. 

However, the influence of bubble distributions on collapse re-

quires further study to introduce bubble interactions into the cavi-

tation model. In the present study, we focus on bubble–bubble in-

teraction in the collapse stage of bubble cloud. Non-dimensional

parameters for collapse of bubble cluster are acquired by dimen-

sional analysis. Primitive cubic lattice distribution is selected to ex-

amine the influence of these parameters. An empirical formula for

collapse speed of bubble cluster is achieved by direct numerical

simulation. A condensation rate based on bubble cluster is pro-

moted. Furthermore, collapse of bubble clusters with various dis-

tributions is simulated to discuss the representativeness of primi-

tive cubic lattice arrangement and the applicability of the present

empirical formula. 

2. Dimensional analysis of bubble cluster collapse 

We consider a bubble cluster collapse under pressure p ∞ 

( Fig. 1 ). Assuming that all bubbles are spherical and in the equi-

librium state at the beginning. 

The related parameters and dimensions are listed as follows: 

Time: t [ T ] 

Characteristic length of bubble cluster: a [ L ] 

Initial bubble radii: R 0 [ L ] 

Population of bubbles per unit volume: n [ 1 
L 3 

] 

Material parameters: liquid density ρL [ 
M 

L 3 
] , liquid viscosity

μL [ 
M 

LT ] , surface tension S[ M 

T 2 
] , reference density of gas ρA 0 [ 

M 

L 3 
] , gas

viscosity μA [ 
M 

LT ] , ratio of specific heats of gas γ [1] 

Surrounding pressure: p ∞ 

[ M 

L T 2 
] 

Pressure inside bubbles: p B [ 
M 

L T 2 
] 

The average variation rate of volume of all bubbles can be ex-

pressed in the following relationship: 

¯̇
 

 = f ( R 0 , a ; n ;ρL , μL , S, ρA 0 , μA , γ ; p ∞ 

, p B ) (1)

We take R 0 , ρL , and p ∞ 

− p B as a unit system produces dimen-

sionless form: 

¯̇
 V 

4 
3 πR 3 

0 
/ T C 

= f 

(
α; N; μL 

ρL R 
2 
0 
/ T C 

, 
S 

ρL R 
3 
0 
/ T 2 

C 

, 
ρA 0 

ρL 
, 

μA 

ρL R 
2 
0 
/ T C 

, γ , 
p ∞ 

− p B 
p ∞ 

)
(2)
here T C = 0 . 915 R 0 

√ 

ρL 
p ∞ 

−p B 
is the collapse time of single bubble, α

s the volume fraction of bubbles, and N is the total bubble num-

er. The collapse of bubbles is controlled by pressure difference

nd inertial force, Therefore, viscosity and surface tension can be

eglected. For a given material, 
ρA 0 
ρL 

and γ are constant. Thus, the

quation can be changed to: 

¯̇
 V 

4 
3 
πR 

3 
0 
/ T C 

= f 
(
α; N; p ′ 

)
(3)

here p ′ = 

p ∞ 

−p B 
p ∞ 

represents the non-dimensional driving pres-

ure. ˙ V 0 = 

4 
3 
πR 3 

0 
T C 

represents the volume variation rate of single iso-

ated bubble. Thus, 
¯̇
 

′ 
V = 

¯̇
 V 

˙ V 0 
is the non-dimensional volume varia-

ion rate of bubble cluster. Eq. (3) shows the following three key

arameters: α, N , and p ′ . To provide the specific relation, we can

ssume the following: 

¯̇
 

′ 
V = c αk 1 N 

k 2 p ′ k 3 . 

Empirical parameters c, k 1 , k 2 , k 3 can be determined by di-

ect simulation of bubble cluster collapse, respectively. The non-

imensional volume variation rate is used to denote the collapse

f bubble cluster. 

. Direct simulations of bubble cluster collapse 

.1. Governing equations 

The basic approach consists of unsteady Navier–Stokes equa-

ions in the mixture phase and the continuity equation in the va-

or phase. The VOF method can model two or more immiscible

uids by solving a single set of momentum equations and tracking

he volume fraction of each of the fluids throughout the domain.

he Navier–Stokes equations of compressible flow are listed as fol-

ows: 

∂ρ

∂t 
+ ∇ ·( ρv ) = 0 , (4)

∂ ( ρv ) 

∂t 
+ ∇ ·( ρvv ) = −∇p + ∇ ·( 2 μS ) − 2 

3 

∇ ( μ∇ ·v ) , (5)
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Fig. 2. Flow field and numerical model. 

Fig. 3. Comparisons of CFD simulation and Rayleigh Plesset equation on time vari- 

ation of the bubble volume for R 0 = 5 mm. 
∂ ( ρE ) 

∂t 
+ ∇ ·[ v ( ρE + p ) ] = ∇ ·

[ 
k e f f ∇T + 

(
2 μS − 2 

3 

∇ ·vI 

)
· v 

] 
, 

(6) 

here S = 

1 
2 ( ∇v + ∇ v T ) stands for the strain rate tensor. The den-

ity and viscosity can be expressed by volume fraction of the va-

or phase αv ( Bensow and Bark, 2010 ; Bensow and Bark, 2010 ;

ang and Ostoja-Starzewski, 2007 ): 

= αv ρv + (1 − αv ) ρl , (7)

= αv μv + (1 − αv ) μl (8) 

Subscripts l and v represent the water and vapor, respectively. 

Turbulent flow is simulated by large eddy simulation (LES),

hich is based on an assumption that the large- and small-scale

ddies are computed by the unsteady Navier–Stokes equations and

he subgrid stress model, respectively. In the method of the LES, ϕ
s decomposed into large-scale quantity ϕ̄ and small-scale quantity
′ . ϕ̄ can be expressed as follows: 

¯ (x ) = 

∫ 
D 

ϕ( x 

′ ) G (x , x 

′ ) d x 

′ , (9) 

here G ( x, x ′ ) is the filter function, which can be expressed as: 

 (x , x 

′ ) = 

{
1 / V x 

′ ∈ �
0 x 

′ / ∈ �
, (10)

here V is the volume of a computational cell �. 

Introducing the following density-weighted (or Favre) filtering

perator is convenient for compressible flows: 

˜  = 

ρϕ 

ρ̄
. (11) 

The Favre-filtered Navier–Stokes equation takes the following

orm: 

∂ ρ̄

∂t 
+ ∇ ·( ̄ρ ˜ v ) = 0 , (12)

∂ ( ̄ρ ˜ v ) 

∂t 
+ ∇ ·( ̄ρ ˜ v ̃ v ) = −∇ ̄p + ∇ ·(2 μS̄ 

)
− 2 

3 

∇ ( μ∇ ·v̄ ) + τ. (13)

The compressible form of the subgrid stress tensor is defined

s: 

= ρ̄˜ vv − ρ̄ ˜ v ̃ v . (14) 

The subgrid-scale turbulence model in this study employs the

oussinesq hypothesis by computing subgrid stresses from the fol-

owing: 

i j −
1 

3 

τkk δi j = −2 μt ̄S i j , (15) 

The subgrid-scale turbulent viscosity. μt is modeled by

magorinsky-Lilly model in the present study and the value of

magorinsky constant C S is set to be 0.1. The isotropic part of the

ubgrid-scale stresses that 1 
3 τkk δi j is not modeled but added to the

ltered static pressure term. S̄ i j is the strain rate tensor for the re-

olved scale, which is defined by 

¯
 = 

1 

2 

(∇ ̄v + ∇ ̄v T 
)
. (16) 

The direct simulation of bubble cluster collapse is carried out

n the commercial software of FLUENT. The equations are solved

sing SIMPLE algorithm based on finite volume method (FVM)

 ANSYS Fluent12 2008 ; Xu et al., 2018 ). For the spatial discretiza-

ion, the PRESTO! scheme, bounded central differencing scheme

nd first-order upwind scheme are used for spatial interpolation of

ressure, momentum and energy respectively. The first-order im-

licit scheme is used for time discretization. For the VOF method,

he geometric reconstruction scheme is adopted to represent the

nterface between fluids using a piecewise-linear approach. 
.2. Computational model 

Consider a cubic bubble cluster with primitive cubic lattice dis-

ribution, wherein bubbles are arranged in i × i × i order. A cu-

ic computational domain of (375 × 375 × 375) mm 

3 is created

ith boundary conditions of pressure inlet. All the bubbles lie in

 smaller cube of (62.5 × 62.5 × 62.5) mm 

3 as shown in Fig. 2 .

he bubble is discretized with a mesh of minimum spacing �x min 

uch that �x min ≤ R 0 /16. Here R 0 is the initial bubble radius. The

nitial pressure inside the computational domain is set as p B , and

he pressure at the outer boundary is p ∞ 

. 

A single bubble collapse has been simulated using different

esh scales. In this case, the pressure at far field and the ini-

ial pressure in bubble are set to be p ∞ 

= 101,325 Pa and

 B = 20,0 0 0 Pa respectively, and the initial bubble radius is

 0 = 5 mm. The bubble is discretized with a mesh of minimum

pacing �x min = R 0 /16, R 0 /32, R 0 /64. where R 0 is the initial bubble

adius. The simulation results are compared to the Rayleigh Ples-

et equation ( Fig. 3 ). Fig. 3 shows that simulations can predict a

easonable the volume history of an isolated bubble except for the

ast stage of collapse ( t = 0.5–0.55 ms). The relative error of av-

raged collapse speed between numerical simulation and Rayleigh

lesset equation is less than 5% (3.2%, 3.2%, 4.4%). Note that if the

ocus of the cluster simulation is to accurately capture the bub-

le surface and the associated jet dynamics during collapse, then

 finer mesh is needed for grid convergence. Such a study is done

y Tiwari et al. ( Tiwari et al., 2013 ), in which, a new, simple, and

omputationally efficient interface capturing scheme is used. How-

ver, since the focus of the present work is on the time variance
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Fig. 4. Comparison of radial dynamic of 5 mm radius center bubble between ana- 

lytical solution model and Numerical solution. 
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of bubble volume, the minimum spacing �x min is required to be

�x min ≤ R 0 /16. 

To verify the accuracy of the numerical method used in the

present study, we need to compare the numerical solution with

the analytical solution of the motion of the center bubble. Accord-

ing to the model proposed by Doinikov ( Doinikov, 2004 ); Bremond

et al. ( Bremond et al., 2006 ), the governed equations for bubbles

are: 

R i ̈R i + 

3 

2 

˙ R 

2 
i = 

p( R i ) − p l (t) 

ρ
−

∑ 

j � = i 

R 

2 
j 
R̈ j + 2 R j 

˙ R 

2 
j 

r i j 

(17)

where p ( R i ) is the pressure on the bubble wall, p l is the pressure

of the liquid at infinity, and r ij is the distance between a bubble i

and another bubble j . 

Therefore, the equation of the center bubble is expressed in

Eq. (18) . 

R i ̈R i + 

3 

2 

˙ R 

2 
i = 

p( R i ) − p l (t) 

ρ
− s (R 

2 
j R̈ j + 2 R j 

˙ R 

2 
j ) (18)

The last term of this equation represents the effect of the

bubble-bubble interaction. Based on the study by Yasui et al.

( Yasui and Kato, 2012 ), s is the coupling strength of a bubble cloud

and is expressed as follows: 

s = 

∑ n 

j=1 

1 

r i j 

= 

∫ l max 

l min 

4 π r 2 n 

r 
dr = 2 πn (l 2 max − l 2 min ) (19)

where the summation is for all the bubbles, n is the number den-

sity of the bubbles, l max is the radius of the bubble cloud, and l min 

is the distance between the center bubble and the nearest bubble. 

The fourth-order Runge-Kutta method is used to solve the bub-

ble equation. The analytical solution is shown in Fig. 4 . In the anal-

ysis, the initial radius and internal pressure of the center bubble

are 5 mm and 2 × 10 4 Pa, respectively. From the figure, it is found

that the center bubble contracts to the minimum size at about

t = 0.605 ms when the surrounding pressure is an atmosphere. For

the contraction of the bubble, the numerical solution used in the

manuscript shows good agreements with the analytical solutions.

In the present study, we focus on the bubble dynamic during the

first collapse. Consequently, the numerical method is thought to be

reasonable. 

In the bubble cluster, collapsing shock waves induced by a bub-

ble can interact with other bubbles around it. Therefore, it is nec-

essary to investigate the effect of the shock waves on the collapses

of other bubbles. First, we need to obtain the pressure behind the

shock wave. An incompressible model ( Supponen et al., 2017 ) for
he pressure distribution around the bubble is used as follows: 

P S 
P 0 

= 1 + 

R 

3 r 

(
R 

3 
0 

R 

3 
− 4 

)
− R 

4 

3 r 4 

(
R 

3 
0 

R 

3 
− 4 

)
(20)

here r is the radial distance from the bubble center, P 0 is the

tmosphere, R 0 and R is the bubble radius at t = 0 and t = t 1 ,

espectively. In the present study, r is 10.4 mm, the distance be-

ween two neighbor bubbles and R is the minimum radius since

he strongest shock waves are induced during the bubble collapse.

s a result, P s , the pressure of shock wave acting on the inner bub-

les is about 4.92 × 10 5 Pa. The energy of the shock wave within

he area 4 π r 2 can be calculated in Eq. (21) , 

 S = 

�V P 2 S 

ρc 2 
(21)

here �V = 4 π r 2 �d is the volume of the compressed liquid, r is

he density and c is the sound speed in water. Hence, the ratio of

he energy, E b acting on a bubble to the whole energy of the shock

ave E s , is obtained as follows: 

E b 
E S 

= 

4 πR 

2 
0 

4 π r 2 
≈ 2 . 5 × 10 

−4 (22)

According to the above results, the E b is enough low comparing

ith E s so that we can ignore the action of the shock wave inter-

cting on the inner bubble. As a result, it suggests that the shock

ressure induced by the collapse of single bubble is ignored for the

ollapse of the bubble cluster in the present study. However, it is

hought that the shock pressure can play an important role in the

ollapse of the bubble cluster in other conditions. 

The volume variation rate of bubble cluster is recorded during

he calculation and then averaged by time. The following discus-

ions are conducted around non-dimensional time-averaged vol-

me variation rate. 

The parameters are listed as follows: 

Volume faction α: 0.150, 0.268, 0.500 

Population of bubbles N : 3 3 , 4 3 , 5 3 , 6 3 

Non-dimensional pressure p ′ : 0.6, 0.7, 0.8, 0.9 

.3. Characteristics of bubble collapse process 

Fig. 5 shows the collapse of the bubble cluster when α = 0 . 15 ,

 = 5 3 , and p ′ = 0 . 8 . The initial pressure inside the computational

omain is set as p B , and the pressure at the outer boundary is p ∞ 

.

s shown in Fig. 4 , the collapse of the bubble cluster starts with

he outer regions. The outer bubbles deform and the generated

ettings are pointing towards the cluster center. It is found that a

igh pressure zone around the first layer is induced as shown in

reen area in Fig. 5 (a). However, at this time the centermost bub-

les retain a much larger volume, and are still in a relatively low-

ressure region (blue area in Fig. 5 (a)). This suggests that outer

ubbles shield the inner bubbles from collapsing in the beginning

nd then generate a higher-pressure area to drive the collapses of

he inner bubbles. Therefore, the collapse speed of second layer

ubbles will increase and result in a higher pressure zone (orange

rea in Fig. 5 (b)). And at last the highest collapse pressure is gen-

rated by the center bubble (red area in Fig. 5 (b)). 

For the case α = 0 . 15 , N = 5 3 , and p ′ = 0 . 8 , the non-

imensional collapse time of the first layer, second layer, and

he center bubble is approximately 2.8, 1.2, and 0.3, respectively

 Fig. 6 ). The simulation results indicate that bubble cluster is col-

apsing approximately layer by layer. The collapse of the inner bub-

les will be accelerated since a high-pressure zone is generated

round them due to the outer bubbles. To understand the be-

aviors of the bubble collapse in the clusters, we also investigate
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Fig. 5. Time sequence showing the bubble shapes and pressure field of the central cross-section during collapse of bubble cluster ( α = 0 . 15 , N = 5 3 , p ′ = 0 . 8 ). The bubbles 

are represented by isosurface of gas fraction with the value of 0.5, and the pressure contours of the central cross-section range from 2.0 × 10 4 Pa to 2.0 × 10 6 Pa. 

Fig. 6. Non-dimensional collapse speed of bubble cluster ( α = 0 . 15 , N = 5 3 , p ′ = 

0 . 8 ). The non-dimensional collapse speed is defined as ˙ V ′ = 

˙ V / ̇ V 0 , where ˙ V and 
˙ V 0 = 

4 
3 
πR 3 0 / T C represent volume variation rate of bubble cluster and single iso- 

lated bubble respectively. The non-dimensional time is given by t ′ = t/ T C , where 

T C = 0 . 915 R 0 

√ 

ρL 

p ∞ −p B 
is the collapse time of an isolated single bubble. The history 

of collapse speed is divided into three phases: 1. Collapse of first layer bubbles, 2. 

Collapse of second layer bubbles, 3. Collapse of central bubble. 
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Table 1 

Collapse speed ¯̇
 V ′ for different bubble populations with α = 0 . 15 . 

Parameters 

N 3 × 3 × 3 4 × 4 × 4 5 × 5 × 5 6 × 6 × 6 

R B (mm) 6.87 5.15 4.12 3.43 

D B (mm) 20.8 15.6 12.5 10.4 
¯̇
 V ′ −10.7 −19.6 −31.4 −45.6 

Table 2 

Collapse speed ¯̇
 V ′ for different bubble populations with α = 0 . 27 . 

Parameters 

N 3 × 3 × 3 4 × 4 × 4 5 × 5 × 5 6 × 6 × 6 

R B (mm) 8.33 6.25 5 0.00 4.16 

D B (mm) 20.8 15.6 12.5 10.4 
¯̇
 V ′ −9.97 −18.2 −29.0 −42.1 

Table 3 

Collapse speed ¯̇
 V ′ for different bubble populations with α = 0 . 5 . 

Parameters 

N 3 × 3 × 3 4 × 4 × 4 5 × 5 × 5 6 × 6 × 6 

R B (mm) 10.3 7.69 6.15 5.13 

D B (mm) 20.8 15.6 12.5 10.4 
¯̇
 V ′ −9.05 −16.4 −25.9 −37.3 

a  

l  

a

3

 

t

 

k  

t  

d  

Table 4 

Collapse speed ¯̇
 V ′ for different bubble populations and void 

fraction α. 

N α

3 × 3 × 3 4 × 4 × 4 5 × 5 × 5 6 × 6 × 6 

0.15 −10.7 −19.6 −31.4 −45.6 

0.27 −9.97 −18.2 −9.0 −42.1 

0.5 −9.05 −16.4 −25.9 −37.3 
he influences of bubble population N , void fraction α and non-

imensional pressure p’ on collapse speed in the following subsec-

ions. 

.4. Influence of bubble population 

The non-dimensional volume variation rate 
¯̇
 

′ 
V = 

1 
T 

∫ T 
0 

˙ V dt 

˙ V 0 
is used

o represent the collapse speed of the bubble clusters and mea-

ured in terms of the number of the isolated bubbles. Here T is the

ollapse time of the bubble cluster. For example, 
¯̇
 

′ 
V = −10 means

hat the volume variation of the bubble cluster is equal to the col-

apse of 10 isolated bubble at the same time. Table 1 –3 present

he average collapse speed of the bubble cluster 
¯̇
 

′ 
V under different

ubble populations and void fraction α. The void fraction is ad-

usted by varying the initial bubble radius R B and bubble distance

 B . Here D B is the distance between the centers of two neighbor

ubbles. The power-law exponent k 2 = 0 . 68 is obtained according

o the curve fitting, which means the absolute value of the volume

ariation rate increases with the bubble number. The simulation

esults show that all the cases considered in the present work have
 similar trend of the collapse process: the bubble clusters collapse

ayer by layer. Therefore, combining with the definition of 
¯̇
 

′ 
V , the

bsolute value of 
¯̇
 

′ 
V increases with the bubble number. 

.5. Influence of void fraction 

Similarly, we can provide the power-law exponent of α using

he data of Table 4 . 

The curve fitting shows that the power-law exponent of α is

 1 = −0 . 2 , which suggests that the collapse speed decreases with

he increase of the void fraction. A high value of α indicates a

ense bubble distribution. The inner bubbles reduce the collapse
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Fig. 7. Collapse of bubble cluster ( α = 0 . 5 , N = 5 3 ). 

Fig. 8. Collapse of bubble cluster ( α = 0 . 27 , N = 5 3 ). 

Fig. 9. Collapse of bubble cluster ( α = 0 . 15 , N = 5 3 ). 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Collapse speed ¯̇
 V ′ for different pressures with α = 0 . 27 . 

Parameters 

α 0.27 0.27 0.27 0.27 

N 3 × 3 × 3 3 × 3 × 3 3 × 3 × 3 3 × 3 × 3 

p ′ 0.6 0.7 0.8 0.9 
¯̇
 V ′ −8.31 −9.12 −9.97 −10.7 

t  

o  

t  

p  

F  

t

velocity of outer bubbles. By contrast, the outer layer of the bub-

bles shields the inner bubbles from collapsing. Consequently, the

collapsing speed slows down with the rise of the void fraction. By

comparing the collapse process under the conditions of different

void fractions, it is found that the bubble cluster trends to collapse

layer by layer with a high void fraction ( Fig. 7 – Fig. 9 ). And bubble

coalescence occurs in the case of α = 0 . 5 , N = 5 3 ( Fig. 7 ). 

3.6. Influence of non-dimensional pressure 

The power-law exponent of p ′ = 0.61 is obtained according to

the curve fitting, which indicates that the collapse increases with

the non-dimensional pressure ( Table 5 ). Non-dimensional pressure

represents the driving force for the collapse of the bubble clus-

ter. As shown in Fig. 11 , the central bubble begins to shrink when
he outer bubbles are collapsing. By comparing with the process

f the bubble collapse in Fig. 10 , the collapse become violent with

he increase in p ′ . One of the reasons can be related closely to the

ressure difference between outside and inside the central bubble.

urthermore, it is found that a higher p ′ leads to faster collapse of

he bubble cluster. 
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Fig. 10. Collapse of bubble cluster) p ′ = 0 . 9 (. 

Fig. 11. Collapse of bubble cluster ( p ′ = 0 . 8 ). 

3

 

c  

o

 

b  

t  

v

α  

 

l

m

w  

l

4

 

t  

l  

t  

Table 6 

Collapse speed 
¯̇
 V ′ and max pressure P max / p 0 for initial 

different arrangements. 

Case Distribution d̄ ′ ¯̇
 

′ 
V P max / p 0 

1 Cubic lattice 3.45 29.0 40.5 

2 Random 3.44 28.8 30.9 

3 Random 3.40 28.7 28.2 

4 Random 3.36 28.6 27.6 

5 Random 3.30 28.3 25.7 

6 Random 3.24 27.8 24.7 

7 Random 3.20 27.5 29.8 

8 Square pyramid 3.12 27.6 19.7 

l  

e

 

b

d

w

 

c  

d  

f  

l  

a

.7. Empirical formula for collapse speed of bubble cluster 

Based on the theoretical analysis and simulation results, the

onstant coefficient c is close to 1. Combining with the influence

f α, N , and p ′ , Eq. (3) becomes: 

¯̇
 

′ 
V = α−0 . 2 N 

0 . 68 p ′ 0 . 61 (23) 

Eq. (23) gives the non-dimensional collapse velocity of the bub-

le cluster. We can also derive a condensation rate for the cavita-

ion model. First, the change rate of the void fraction can be pro-

ided as: 

˙ = 

¯̇
 V 

V m 

= −0 . 0039 α−0 . 2 N 

0 . 68 p ′ 0 . 61 
4 
3 
πR 

3 
0 

V m 

T C 
(24)

After arrangement, we can obtain the condensation rate as fol-

ows: 

˙ 
 

− = −C c 
ρl ρv 

ρm 

(
n 

0 . 013 

V 

0 . 32 
m 

α0 . 53 

)
α
(

p − p v 

p 

)0 . 61 
√ 

2(p − p v ) 

3 ρl 

, (25) 

here V m 

is the total volume, including bubbles and surrounding

iquid, and C c = 0 . 057 . 

. Influence of distributions 

Primitive cubic lattice is the thinnest regular distribution. In

his part, different arrangements of the bubbles are used to ana-

yze the representativeness of the primitive cubic lattice distribu-

ion, including the random distribution and right square pyramid
attice distribution. As shown in Fig. 12 , all the sides are equilat-

ral triangles in the case of the right square pyramid. 

To distinguish different random distributions, a dimensionless

ubble distance is defined as: 

 ̄

′ = 

d̄ 

2 R B 

here 1 

d̄ 
= 

n ∑ 

k =1 

1 

d̄ i 
and 

1 

d̄ i 
= 

n,k � = i ∑ 

k =1 

1 
d ik 

. 

The bubble–bubble interaction strengthens as their distance de-

reases. Thus, harmonic average is adopted to define the average

istance. The collapse speed 

¯̇
 

′ 
V and max pressure P max / p 0 for dif-

erent arrangements (bubble size and average bubble distance) are

isted in Table 6 . The corresponding distributions of bubble clusters

re shown in Fig. 13 . 
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Fig. 12. Square pyramid lattice. 

Fig. 13. Initial distributions of bubble clusters. 



T. Du, J. Wang and Y. Wang et al. / International Journal of Multiphase Flow 129 (2020) 103322 9 

Fig. 14. Collapse velocity of bubble cluster. 

Fig. 15. Maximum pressure during collapse. 

 

d  

b  

s  

i  

s  

t  

r  

r  

s  

t  

p  

i  

b  

b  

a  

u  

d

5

 

o  
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d  

p  

e  

m  

p  

T  

a  

i  

c  
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i  

a

D

 

c  

i

C
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1

S
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1
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A
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B  

B  

B  
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C  

C  

 

From the Fig. 14 , we can see that the collapse velocity slows

own as the d̄ ′ increases since the outer bubbles shield the inner

ubbles from collapsing. The collapse velocities and maximal pres-

ure for the random distributions are located between the prim-

tive cube distribution and right square pyramid distribution, as

hown in Fig. 14 and Fig. 15 . On the other hand, it is found that

he maximum pressure does not increase monotonously with the

ising of the dimensionless bubble distance. This finding may be

elated to the local distribution of the bubbles, which needs further

tudy and is not discussed in this study. For the cases considered in

he present work, the relative error of the collapse velocity for the

rimitive cube distribution and right square pyramid distribution

s 5.2%, and the collapse velocity of the random distributions are

etween them. This result indicates that the primitive cube distri-

ution gets closest to the actual distribution of the bubble cluster,

nd the condensation rate constructed in the present paper can be

sed in simulation of cavitating flow. The performance of this con-

ensation rate will be conducted in the following study. 

. Conclusions 

We focus on the bubble-bubble interaction in the collapse stage

f cavitation cloud. Non-dimensional parameters for collapse of

ubble cluster are acquired by dimensional analysis, including bub-

le quantity, volume of fraction, and dimensionless pressure. Prim-
tive cubic lattice distribution is selected to examine the influence

f these parameters. An empirical formula for collapse speed of

ubble cluster is achieved by direct numerical simulation based on

he VOF and the LES. The results imply the following: 

1) Bubble cluster will collapse approximately layer by layer. 

2) Large n will result in a large volume variation rate of bubble

cluster. 

3) The collapsing speed of bubble cluster will slow down with the

increase in volume fraction. 

The collapse of bubble clusters with right square and random

istributions are simulated to discuss the representativeness of

rimitive cube distribution and the applicability of the proposed

mpirical formula. Results show that the collapse speed and maxi-

al pressure for random distributions are located between that for

rimitive cube distribution and right square pyramid distribution.

he relative error of collapse speed for primitive cube distribution

nd right square pyramid distribution is less than 5%. This finding

ndicates that bubble cluster with primitive cube distribution has

ertain representativeness of actual bubble cluster. The condensa-

ion rate set in this study can be used in the simulation of cavitat-

ng flow in the fields of high-speed vehicles, ultrasonic treatments,

nd shock waves lithotripsy. 
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