DOI: 10.16076/j.cnki.cjhd.2020.04.002

导流片型旋流场内油滴聚并影响因素研究*

顾成曦^{1,2}, 刘硕², 侯林彤^{1,2}, 许晶禹^{1,2} (1. 中国科学院大学工程科学学院, 北京 100049;

2. 中国科学院力学研究所,北京 100190, E-mail: xujingyu@imech.ac.cn)

摘 要: 导流片型旋流器具有体积小、重量轻和效率高等优点,适用于井下以及海上平台等空间有限的场所。该文 通过实验和数值模拟研究了导流片型旋流场中流量、油水界面张力、油相含率、油相黏度及油相粒度等因素对于离散相 油滴聚并的影响。研究结果表明:随着流量增加,油滴聚并效果先增加后下降,当流量介于14 m³/h-16 m³/h 之间时,可 以使油滴聚并达到最佳的效果;提高油相含率能够增加大油滴的比例,同时也增加了小油滴的数量,因此在进行油水分 离时排出的水相中会残留较多的油相;提高入口油相粒度和降低油相黏度,可以促进油滴的聚并;增大油水界面张力可 以减小油滴破碎的概率,提高油水分离效率。这些研究结果对于导流片型旋流器的设计能起到一定的指导作用。

关键词:油水分离;导流片;旋流场;离散相;数值模拟
 中图分类号: O359
 文献标志码: A

Investigation into influence factors of oil droplet coalescence in swirling flow field of vane-type hydrocyclone

GU Cheng-xi^{1,2}, LIU Shuo², HOU Lin-tong^{1,2}, XU Jing-yu^{1,2}

(1. School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
 2. Institute of Mechanics, Chinese Academy of Science, Beijing 100190, China)

Abstract: The vane-type hydrocyclone has the advantages of small size, light weight and high efficiency so that it is suitable for the scene with limited space, such as underground and offshore platform. In this work, the effects of flow rate, oil-water interfacial tension, oil concentration, oil viscosity and oil particle size on the characteristics of oil droplets coalescence are studied by numerical simulation and experimental test. The results show that with the increase of flow rate, the coalescence effect of oil droplets increases first and then decreases. When the flow rate is between 14m3/h and 16m3/h, the oil droplets coalescence can achieve the best result under this working condition. Increasing the oil concentration can increase the proportion of large oil drops and also increase the number of small oil drops. Thus, during the oil-water separation, more oil droplets will remain in the discharged water phase. Increasing the inlet oil particle size and reducing the oil viscosity can promote the coalescence of oil droplets. Increasing the oil-water interfacial tension can reduce the probability of oil droplet breakage and improve

Project supported by foundations: Supported by the National Natural Science Foundation of China (517792433)

^{*} 收稿日期: 2019-11-13(2020-02-11 修改稿)

基金项目:国家自然科学基金(51779243)

作者简介:顾成曦(1995-),男,安徽五河人,硕士研究生.

通讯作者: 许晶禹, E-mail: xujingyu@imech.ac.cn

Received: November 13, 2019 (Revised February 11, 2020)

Biography: GU Cheng-xi (1995–), Male, Master Candidate.

Corresponding author: XU Jing-yu, E-mail: xujingyu@imech.ac.cn

421

the oil-water separation efficiency. These results can play a guiding role in the design of the vane-type hydrocyclone.

Key words: oil and water separator; guide vane; swirling flow field; discrete phase; numerical simulation

引言

随着石油资源的深度开采,国内部分油田采出 液含水率极高,水相含率高达98%以上,因此油相 会以离散相的方式存在于混合液中,不利于原油的 后续处理。为了得到较高纯度的原油以便于后续工 艺的加工,因此需要通过物理法和化学法等各类方 法对油水混合液进行预分离[1-4]。同时,在对含油污 水进行处理时,同样需要对污水进行预分离,进而 降低处理成本,提高效率。对油水混合液进行预分 离时,物理法主要有重力沉降法和离心分离法。其 中离心分离法主要是通过旋流分离器进行,其工作 原理为利用油水两相密度不同的物理性质,在离心 力的作用下,密度小的油相在管道中心处形成油 核,密度大的水相被甩向管壁。根据不同的入口方 式,液液旋流分离器可以分为切向旋流器和轴向旋 流器。相较于切向旋流器,导流片式轴向旋流器具 有体积小、重量轻、效率高和适用范围广等优点^[5], 更适用于海上平台等空间有限的场所。截止到目 前,很多学者对液液旋流器的研究中发现,在旋流 场中流体的物性改变,离散相液滴的运动规律会发 生变化,进而对旋流器的分离效果产生影响^[6-9]。本 文主要通过实验和数值模拟相结合的方式研究了 入口流量、油水界面张力、油相含率、油相黏度以 及油相粒度等因素对离散相油滴在导流片型旋流 场中聚并的影响,从而为导流片型分离器的设计提 供帮助。

1 数值模拟模型及方法

本研究采用导流片作为启旋装置^[10],导流片形 式为6叶片螺旋形导流片,导流片两侧为椭圆形轴, 几何结构如图1所示,具体参数如表1所示。研究中 使用的计算软件为Fluent16.0,针对旋流场及离散相 的破碎聚并模拟,通过前期的研究发现RNG *k-ε*湍 流模型对旋流场的模拟有较好的效果^[11-13],群体平 衡模型(PBM)可以直观地模拟离散相的破碎聚 并。因此,本文数值方法采用Eulerian多相流模型、 RNG *k-ε*湍流模型和群体平衡模型(PBM)。

欧拉模型中离散相连续性方程和动量平衡方 程表达式如下

$$\frac{\partial}{\partial t}(\alpha_i \rho_i) + \nabla(\alpha_i \rho_i v_i) = \sum_{i=1}^n (m_{ij} - m_{ji})$$
(1)

(b) 导流片照片 图 1 (网上彩图)导流片结构图及照片 Fig.1 (Color online)Guide vane configuration and photo

表1 导流片参数 Table 1 Vane parameters

Table 1 valle parameters	
结构参数	尺寸
外径 dout /mm	100
叶片长度 b _{vane} /mm	121
轴直径 d _{hub} / mm	50
入口轴长度 avane /mm	82.5
出口轴长度 cvane /mm	67.5
出口切向角 θ_{vane} /°	45
导流片旋转角 /°	60

$$\frac{\partial}{\partial t}(\alpha_{j}\rho_{j}v_{j}) + \nabla(\alpha_{i}\rho_{i}v_{i}v_{j}) = -\alpha_{j}\nabla p + \nabla\chi_{j} + \alpha_{j}\rho_{j}g +$$

$$\sum_{i=1}^{n} (R_{ij} + m_{ij}v_{ij} - m_{ji}v_{ji}) + (F_j + F_{l,j} + F_{vm,j})$$
(2)

式中: m_{ij} 为第i相到第j相的质量传递; μ_j 为第j相剪 切黏度; λ_j 为第j相体积黏度; χ_j 为第j相的应力应变 张量; F_j 为外部体积力; F_{l_j} 为升力; $F_{vm,j}$ 为虚拟质 量力; R_{ij} 为相与相之间作用力。

PBM模型中,破碎核模型采用Luo模型,当 尺寸为λ的涡流和直径为d的液滴碰撞时,设一个 无量纲尺寸ζ=λ/d,破碎率可以写成如下形式

$$\Omega_{br}(V,V') = K \int_{\xi_{\min}}^{1} \frac{(1+\xi)^2}{\xi^n} e^{-b\xi^m} d\xi$$
(3)

聚并核模型同样采用Luo模型,液滴聚并率表 达式如下

$$\Omega_{ag}(V_p, V_q) = \omega_{ag}(V_p, V_q) P_{ag}(V_p, V_q)$$
(4)

$$\omega_{ag}(V_p, V_q) = \frac{\pi}{4} (d_p + d_q)^2 n_p n_q u_{pq}$$
(5)

$$P_{ag}(V_{p}, V_{q}) = \exp\left\{-c_{1} \frac{\left[0.75(1+x_{pq}^{2})(1+x_{pq}^{3})\right]^{\frac{1}{2}}}{\left(\frac{\rho_{2}}{\rho_{1}}+0.5\right)^{\frac{1}{2}}(1+x_{pq})^{3}}We_{pq}^{\frac{1}{2}}\right\}$$
(6)

式中: ω_{ag} 为液滴碰撞频率; P_{ag} 为液滴聚并效率; u_{pq} 为液滴碰撞时的特征速度; $x_{pq}=d_p/d_q$; ρ_1 为连续相密度, ρ_2 为离散相密度。

模型的边界条件如下:①设置静压为0,湍流 强度为5%,设置油相含率及初始粒径分布;设置连 续相速度大小及方向;设置离散相速度大小和方 向。②设置静压为0,回流湍流强度为5%。③管道 壁面及导流片设置为无滑移壁面。

计算方法采用非定常与压力基,压力-速度耦合 使用SIMPLE法,动量方程使用一阶迎风格式,瞬 态项采用一阶隐形格式。根据实验中用的旋流器构 建三维模型并划分网格,模型整体网格数为180 万,模型及导流片网格如图2所示。

2 实验系统及测试流程

本文的实验工作在中国科学院力学研究所的 多相流实验平台完成,如图3所示。供给系统由水 罐、供气系统和水循环系统组成,系统中的流量 上限为30 m³/h,气相流量上限150 m³/h。除测试 段100 mm内径管路外,其他部分管路内径为50 mm。 多相循环系统由水罐、分离罐、油罐、齿轮离心泵、 流量计和多相流管路等组成。实验测试中主要用到 的设备为导流片型旋流器,其管路的结构参数如图4 所示,其中旋流器全长 L_1 为1 820 mm,管径 L_2 为100 mm, 其余参数 L_3 =270 mm, L_4 =50 mm, L_5 =1 440 mm。实 验介质为自来水和白油,在20℃下白油的物性参数 为:密度867.0 kg/m³;黏度0.114 Pa·s;油水界面张 力系数0.032 N/m。

在实验运行过程中,导流片前后粒径分布通过 Malvern Panalytical公司生产的Insitec SX系列喷雾 式在线粒度仪进行实时测量。在实验中,取样口分

别安置在导流片前后120 mm和70 mm处,取样口直 径为20 mm。实验中在泵的作用下控制水和油分别 从储水箱和储油箱中流出并汇聚成油水混合液,混 合液经过SMV-5/100型静态掺混器后进入测试管 段,经过导流片后形成油核,然后通过一系列测试 后流出,进入油水循环分离罐,在分离罐中油水静 置一段时间后发生沉降分离,将分离后的油水分别 输送回储油箱和储水箱。实验具体测试流程如下: 连接组装管路, 向旋流器内通纯水, 将旋流器内气 体排出并观察有无泄露; 在取样口连接管道, 接入 Malvern粒度仪中,使用纯水对粒度仪进行标定;根 据设计的工况,确定纯水流量及油的流量,打开水 泵及油泵:油水混合液进入旋流器并运行一段时间 达到稳定状态,记录质量流量计读数及旋流器进出 口处的压力读数,打开Malvern粒度仪,测量启旋装 置前后的油滴粒径分布。同时,为剔除偶然误差, Malvern粒度仪先后进行多组测试,流量和压力表多 次读数。保证连续相流量不变,调整油相流量,进 行下一个工况测试。

3 结果及讨论

3.1 **数值模拟验证**

在通过数值模拟研究参数影响因素之前,需要 通过实验针对数值模拟的正确性进行验证。验证 中,设置入口油水混合流量为18.7 m³/h,油相含率 为1%。在数值模拟中,旋流器模型入口处位置对应 于实验中导流片前取样口处位置。在导流片前,油 水混合液看作均匀分散流处理,使用实验测量的油 滴粒径分布作为数值模拟时入口处的油滴粒径分 布;在导流片后,于数值模型对应位置处取直径为 20 mm的截面,计算截面上油滴的粒径分布,并与 实验测量的数据进行对比。图5给出了导流片前后 油滴粒径分布的对比结果。图中,方块图标代表数 值模拟曲线,圆圈图标代表实验测试曲线。从图中 可以看出,实验得到的结果相对数模结果要略大且 在粒径较小处有一个波动,但整体趋势和出现峰值 对应的粒径基本相同,进而也验证了数值模拟模型 及计算的可靠性。

3.2 流场分布特征

为后续分析离散相液滴的运动规律,首先通过 数值模拟对导流片形成的旋流场特征进行研究。图 6为入口混合流量为18.7 m³/h和油相含率为1%时, 测试管道内横截面压力和含率分布图。可以明显看 出,在导流片前后的位置压力出现突变,与给出的 压力云图相符合。此外,从油相体积分数在横截面 上的分布图可以看出,经过导流片之后,由于旋流

图 3 (网上彩图)实验流程 Fig.3 (Color online)Experimental flow loop

图4 头短侧风中旋沉蓄结构参数 Fig.4 Structural parameters of hydrocyclone in experimental test

场形成离心力的作用,离散相油滴向管道中心处聚 集形成油核。同时,在距离入口400 mm、600 mm、 1 000 mm和1 400 mm处取截面油相含率分布,可以 看出随着轴向距离的增加,中心处的含油率呈现为

Fig.6 (Color online) Pressure and oil concentration distributions

先增大后减小的规律。

油水混合液在旋流场中产生分离的主要作用 力为离心力,因此,切向速度对油水分离的性能有 着重要影响。图7为不同流量下导流片后距管道中 心不同位置处切向速度幅值分布图。从图中可以看 出,不同入口流量下,均在距离管道中心40 mm处, 切向速度最大。同时,通过计算可以得到最大切向 速度约为入口流速的2.2倍,这主要和导流片的结构 相关。

本文研究中,由于油滴的数量较多,无法把油 滴粒径全部列举出来,因此采用特征粒径来反映油 滴的破碎聚并规律。特征粒径主要包括d₁₀、d₃₂、d₅₀ 及d₉₀等,d₉₀的定义为粒径小于d₉₀的颗粒占全部颗 粒的90%,可以用来表征大粒径,d₁₀、d₃₂和d₅₀的定 义和d₉₀类似。

图 7 (网上彩图)距管道中心不同位置处切向速度幅值 Fig.7 (Color online)Tangential velocity amplitude at different positions from the center of the pipeline

3.3 流量对于油滴粒径的影响

流量对于油滴粒径的影响主要通过实验测试 来研究。测试中,保持油相含率为1%,通过调整混 合流量分别测试了9.4 m³/h、15.6 m³/h、18.7 m³/h和 21.8 m³/h四种不同工况下,在导流片前后的油滴粒 径分布。油滴的粒径分布如图8所示,其中空心的 点表示导流片前的粒径分布,实心的点表示导流片 后的粒径分布。可以看出,在不同流量下,油滴导 流片后的粒径均大于油滴导流片前的粒径,说明油 水混合液经过导流片后发生了聚并,小油滴聚结成 了大油滴。

为了研究不同入口流量下导流片前后油滴粒 径变化,定义无量纲参数 Ω ,即 $\Omega = (d_{E} - d_{\tilde{m}}) / d_{\tilde{m}} \circ \Omega$ 为导流片后的特征粒径减去导流片前特征粒径,然 后与导流片前特征粒径进行比值。图9给出了不同 流量下无量纲参数Q_{d90}随流量变化。可以看出,当 流量由 9.4 m^3 /h增大到 15.6 m^3 /h时,无量纲数 Ω_{d90} 逐 渐增加,主要是因为流量增加,流速也相应增加, 经过导流片后,产生的离心力变大,小油滴更易于 聚并成大油滴。同时,从图中可以看出,当流量由 15.6 m³/h继续增加到18.7 m³/h时,无量纲数 Ω_{d90} 逐 渐减少,这主要是因为增加流量不仅会使离心力增 加,同样会使油滴受到的剪切力变强,在剪切力的 作用下,大油滴破碎成小油滴。因此,针对固定结 构导流片型旋流器都存在一个最佳的流量范围,在 该工况下可以使油滴聚并达到最佳的效果,本文所 用旋流器最佳流量介于14 m³/h-16 m³/h之间。

3.4 油相含率及粒度对于油滴聚并的影响

通过实验和数值模拟相结合研究了油相含率 对油滴聚并的影响。在实验中,固定入口流量为 12.5 m³/h,控制油相含率分别为1%、2.4%、4.2% 和6.2%,通过Malvern粒度仪测量导流片前后油滴 的粒径分布,如图10所示。从图中可以看出,当含 油率由1%增加到6.2%,由于含油率增加导致混合液 中油滴的数量增多,油滴发生碰撞聚结的概率增大,

图 8 不同流量下导流片前后粒径分布 Fig.8 Particle size distribution through the guide vane under different flow rate

因此在导流片前,油滴的粒径分布整体向右(粒径变 大的方向)发生偏移。在导流片后,油滴粒径分布曲 线整体大幅度向右偏移,且随着油相含率增加,大 油滴(粒径大于1 000 µm)所占体积分数增加,说明 通过导流片后在离心力的作用下,大量小油滴发生 碰撞聚并成大油滴,且油相含率越大,大油滴所占 比例越多。同时,从图中可以看出,当油相含率较 大时,油滴粒径分布曲线在粒径较小处出现了波 动,说明增加油相含率不仅增加大油滴的比例同时

图 10 不同油相含率下导流片前后油滴粒径分布 Fig.10 Particle size distribution of oil drops before and after the guide vane under different oil concentration

还会增加小油滴的比例,会使部分油滴发生乳化, 形成乳状液,增加油水分离难度,且油相含率增加 会导致油滴跟随性变差,产生速度滑移。

采用数值模拟研究不同入口油相粒度对于油 滴聚并的影响。设置入口流量为15.6 m³/h,油相含 率为1%,分别设置4组入口粒度,4组粒度的中值粒 径(*d*₅₀)分别为25 μm、37 μm、50 μm和67.5 μm。不 同油相粒度下,导流片后油滴粒径累积体积分数及 特征粒径分布如图11所示。从图中可以看出,*d*₁₀ 和*d*₉₀都随着粒度的增大而增加,说明增大油相粒度 更容易使离散相油滴聚并,主要因为粒度增加,油 滴质量增加,受到的离心力增大,更易于和水相发 生分离,在管道中心处聚结成更大的油滴。在油水 混合液进入旋流器前,可以通过增加化学药剂等方 式来增大油滴的粒径,油相粒径增加,经过导流片 后油滴聚并效果更好。

3.5 界面张力及黏度对于油滴聚并的影响

界面张力的影响主要采用数值模拟进行研究。 设置入口流量为15.6 m³/h,入口油相含率为1%,油 相黏度为0.114 Pa·s,油相入口粒度中值粒径(*d*₅₀)为 37 µm,分别设置界面张力系数为0.01 N/m、0.032 N/m、 0.05 N/m和0.07 N/m,得到导流片后的油滴粒径变 化如图12所示。可以看出,随着油水界面张力系数 增加,导流片后油滴特征粒径*d*₁₀和*d*₉₀都呈现上升的 趋势,说明增大界面张力系数有利于离散相油滴在 旋流场中的聚并。原因主要在于增加界面张力系 数,油滴的抗剪切能力增强,在相同的流速下,由 于剪切而产生的破碎会减少。

油相黏度对油滴聚并的影响研究中,设置入口 流量为15.6 m³/h,入口油相含率为1%,油水界面张 力系数为0.032 N/m,油相入口粒度中值粒径(*d*₅₀) 为37 μm,分别设置油相黏度为0.01 Pa·s、0.05 Pa·s、

Fig.12 Cumulative volume fraction and characteristic particle size distribution of oil droplets behind the vane under different interfacial tension

0.114 Pa·s和0.2 Pa·s,导流片后油滴粒径变化如图13 所示。从图中可以看出,随着油相黏度增加,导流 片后油滴特征粒径d₁₀呈现升高的趋势,而特征粒径 d₉₀呈现下降的趋势,说明油相黏度增加,不利于油 滴发生聚并。出现上述现象主要是因为黏性力和离 心力方向相反,会减弱离心力对油滴的聚并作用, 同时,表征小油滴的d₁₀随着油相黏度升高而升 高,主要是因为黏性力同样会降低剪切力对油滴产 生的剪切破碎,因此为了得到更好的分离效果,可 以采取加温等措施降低油相黏度。

4 结论

导流片型旋流器具有体积小、重量轻和效率高 等优点,适用于井下以及海上平台等空间有限的场

所。本文通过实验和数值模拟相结合研究了该类型 旋流场中不同因素对离散相油滴聚并的影响,得到 了以下结果。

导流片型旋流场在导流片前后有明显的压降,随着远离导流片,管道中心处的含油率呈现为先增 大后减小的规律,导流片后最大的切向速度在距管 道中心40 mm处,且最大切向速度约为入口速度的 2.2倍。增加流量有利于油滴间形成聚并,但随着流 量的增加,油滴聚并效果会出现下降的趋势,同时 增加流量会增加功耗。在本文研究的结构中,当流 量介于14 m³/h-16 m³/h之间时,在较小功耗下油滴 有较好的聚并效果。

增大混合液中油相的含率可以增加油滴的数 量,在离心力的作用下离散相油滴更容易聚并成大 油滴;增大油水界面张力可以提高油滴的抗剪切能 力,使油滴在旋流场的作用下不容易破碎从而形成 大油滴,但是当界面张力增大到一定数值时,界面 张力对离散相油滴聚并的增益效果是有限的;离散 相油滴在旋流场中产生聚并的主要动力是离心力, 而油相黏度会削减离心力的作用,因此减小油相黏 度导致离散相油滴更容易聚并;提高旋流器入口处 油相粒度可以明显增加导流片后油相特征粒径的 尺度。这些研究结果对于导流片型旋流器的设计能 起到一定的指导作用。

参考文献:

- [1] 吴应湘,许晶禹. 油水分离技术[J]. 力学进展, 2015, 45: 201506.
 WU Ying-xiang, XU Jing-yu. Oil and water separation technology[J]. Advances in Mechanics, 2015, 45: 201506.
- [2] YIN K, CHU D K, DONG X R, et al. Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil–water separation[J]. Nanoscale, 2017, 9(37): 14229-14235.
- [3] SINGH B P, PANDEY B P. Ultrasonication for breaking water-in-oil emulsions[J]. Proceedings Indian National Science Academy, 1992, 58(3): 181-194.
- [4] 孙中雪. 生物可降解材料 PLA 在油水分离方面的研究与应用[D]. 东北师范大学,长春,中国,2013.
 SUN Zhong-xue. Research and application for oil/water separation based on biodegradable materiala PLA[D].
 Northeast Normal University, Changchun, China, 2013.
- [5] 吴应湘,许晶禹.管道式油气水高效分离技术[J]. 科技促进发展, 2015(03): 374-379.
 WU Ying-xiang, XU Jing-yu. Pipeline-type high efficient separation technology on oil-gas-water mixture[J]. Science & Technology for Development, 2015(03): 374-379.
- [6] 陈颂阳,魏从达,吴奇霖,等.管道式油水分离系统 分离特性研究[J].水动力学研究与进展(A 辑), 2013, 28(06): 637-643.

CHEN Song-yang, WEI Cong-da, WU Qi-lin, et al. Investigation on the separation performance for pipeline oil-water separation system[J]. Chinese Journal of Hydrodynamics, 2013, 28(06): 637-643.

- [7] 蔡亮, 翟加钢, 张栋, 等. 旋流分离器在去除航空煤 油固相杂质中的应用研究[J]. 水动力学研究与进展 (A 辑), 2018, 33(01): 73-80.
 CAI Liang, ZHAI Jia-gang, ZHANG Dong, et al. Application study of cyclone separator to remove solid impurities from aviation kerosene[J]. Chinese Journal of Hydrodynamics, 2018, 33(01): 73-80.
- [8] BENNETT M, WILLIAMS R. Monitoring the operation of an oil/water separator using impedance tomography[J]. Minerals Engineering, 2004, 17(5): 605-614.
- [9] LIU H F, XU J Y, ZHANG J, et al. Oil/water separation in a liquid-liquid cylindrical cyclone[J]. Journal of Hydrodynamics, Ser. B, 2012, 24(1): 116-123.
- [10] LIU S, ZHANG D, YANG L L. Breakup and coalescence regularity of non-dilute oil drops in a vane-type swirling flow field[J]. Chemical Engineering Research and Design, 2018, 129: 35-54.
- [11] LUO H. Coalescence, breakup and liquid circulation in bubble column reactors[D]. The Norwegian Institute of Technology, Trondheim, Norway, 1993.
- [12] GAO S, WEI D, LIU W, et al. CFD numerical simulation of flow velocity characteristics of hydrocyclone[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(12): 2783-2789.
- [13] IM I T, GWAK G D, KIM S M, et al. A numerical study of the flow characteristics and separation efficiency of a hydrocyclone[J]. KSCE Journal of Civil Engineering, 2018, 22(11): 4272-4281.