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ABSTRACT
The instabilities of thermocapillary–buoyancy convection in droplet migration are examined by linear stability analysis. The droplet is flat-
tened by gravity and placed on a unidirectional heated solid surface. The velocity and temperature distributions of basic flow are derived as a
function of the migration velocity and the Bond number. The critical Marangoni number is obtained, which depends on the Prandtl number
(Pr), the Bond number, and the migration velocity. The preferred modes at small and moderate Pr are oblique waves, which travel either
upstream or downstream. For high Pr, the preferred modes include oblique and streamwise waves, while the amplitude of temperature on the
surface is much smaller than that of the hot spot in the flow region. The instability mechanism is discussed and comparisons are made with
liquid layers.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5125846., s

I. INTRODUCTION

A liquid droplet can be set in motion by a temperature-induced
surface tension gradient when it is placed on a nonuniformly heated
solid surface. This phenomenon is called the thermocapillary migra-
tion. It plays a crucial role in a variety of practical applications, such
as microfluidic devices,1 material processing,2 inkjet printing,3 and
so on. Therefore, abundant theoretical, numerical, and experimental
studies2,4–7 have been devoted to study the nature of thermocapillary
migration over the last decades.

The behavior of a two-dimensional liquid droplet on a hori-
zontal solid surface with an imposed temperature gradient has been
explored by Smith.8 The lubrication theory is used to develop an
evolution equation for the shape of the droplet. Ford and Nadim9

have investigated the thermocapillary migration velocity of a thin
two-dimensional droplet, having an arbitrary height profile, on a
solid surface. Pratap, Moumen, and Subramanian5 have presented
a lubrication theory-based model for the thermocapillary motion of
spherical-cap droplets on a solid surface and experimental results
on decane drops moving on a polydimethylsiloxane (PDMS) coated

glass slide. Dai et al.10 have reported the development of a theoreti-
cal model and experimental investigation on the migration behavior
of paraffin oil droplets induced by the unidirectional thermal gra-
dient. They have also extended the work to the migration by an
omnidirectional thermal gradient.11

In the thermocapillary migration, there is a fluid convection
within the droplet. The convection driven by the thermocapillary
force also appears in many other physical systems, such as crys-
tal growth12 and dewetting.13 The instability of thermocapillary
convection has been studied extensively.

Smith and Davis14 have investigated the thermocapillary insta-
bilities of a thin-film, where a fluid layer is driven by a constant tem-
perature gradient imposed on the interface. The oblique hydrother-
mal waves predicted by their model have been observed in both
the experiment15 and the numerical simulation.16 Chan and Chen17

have studied the linear stability of thermocapillary fluid layers
coupled with the effect of gravity for the Prandtl number Pr
= 13.9. Their numerical results compare favorably with the experi-
ment by Riley and Neitzel.15 Zhang et al.18 have presented a series of
three-dimensional numerical simulations on the effect of surface
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heat dissipation on thermocapillary convection of moderate Prandtl
number fluid in a shallow annular pool. The sideband thermocapil-
lary instability of a thin liquid film flowing down the outside of a hot
vertical cylinder has been investigated by Davalos-Orozco.19 Kang
et al.20 have presented a space experimental study on the thermocap-
illary convection in an open annular liquid pool. Zhong and Duan21

have experimentally investigated the thermal patterns of an evapo-
rating sessile ethanol droplet surface under steady state conditions
by varying the substrate temperature. Marangoni instabilities of a
sessile droplet of 0.65 cSt silicone oil evaporating at constant con-
tact line mode have been experimentally investigated by Wang and
Shi.22 They suggested that the Bénard-Marangoni instability does
not occur in the droplet when the contact angle is too large.

Droplet dynamics under the effect of Marangoni stresses have
been the subject of many other studies recently. Albernaz et al.23 have
examined the Marangoni effects in a hexane droplet under evapo-
ration and close to its critical point. The Marangoni flow and free
convection during crystallization of a salt solution droplet have been
experimentally investigated by Kuznetsov et al.24 Kim et al.25 have
considered an alcohol drop placed above a thin aqueous film. They
have constructed scaling laws to predict the dewetting rates of the
film by considering the Marangoni stress, viscous shear stress, and
evaporation. Karapetsas et al.26 have studied the effect of contact line
dynamics on the thermocapillary motion of a droplet on an inclined
plate. Their results demonstrate that temperature-induced variations
of the equilibrium contact angle give rise to complex dynamics.
Zheng et al.27 have extended a lattice Boltzmann equation (LBE) with
the continuous surface force (CSF) to simulate the thermocapillary
migration of two/three dimensional deformable droplets.

The flow instability of thermocapillary migration is a funda-
mental problem, which is crucial for the study of flow transition
in droplet migration. When the Marangoni number exceeds a crit-
ical value, the internal flow of the droplet becomes unstable. This
may lead to the transition to turbulence, whose velocity and tem-
perature are chaotic. The controllability of the migration will be
reduced significantly. The stability analysis can predict the range of
stable flows, which is of great practical importance for the develop-
ment of the migration technique. However, so far, to the best of our
knowledge, no studies have been carried out for this problem. It is
highly desirable to solve it, which is the purpose of this paper. In
the present work, the linear stability analysis has been performed on
the thermocapillary–buoyancy convection in droplet migration on
a unidirectional heated plane. The thin film model is used.10,11 The
droplet is assumed to be Newtonian, and the results are presented
for Prandtl numbers 0.01, 1, and 100.

This paper is organized as follows: In Sec. II, the physical model
and mathematical formulations are presented. The dimensionless
governing equations and the solution of the basic flow are derived.
Then, in Sec. III, the critical parameters are obtained. The perturba-
tion flow fields are displayed and the energy mechanism is studied.
After that, the instability mechanism is discussed, and comparisons
are made with liquid layers in Sec. IV. Finally, the conclusions are
presented in Sec. V.

II. PROBLEM FORMULATION
We consider the case of a flat droplet placed on a horizontal and

rigid plane with a constant temperature gradient in Fig. 1.10 Here,

FIG. 1. Thermocapillary migration of a flat droplet on the rigid plane.

the height of the droplet d is far less than the width L. Thus, the
droplet can be seen as a thin film. x, y, and z are the streamwise,
spanwise, and wall-normal directions, respectively. The droplet is
in contact with an inviscid atmosphere while φ is the contact angle.
Hence, there is also a temperature gradient on the free surface, which
leads to the thermocapillary migration of the droplet.

In the presence of gravity, one would expect a droplet with an
oval shape. However, the variation of d is often not obvious except
in the vicinity of the three-phase contact line, which can also be seen
in Fig. 2 of Ref. 10. As the flow near the rim of film is not of our
interest in this paper, d is supposed to be a constant in the follow-
ing for simplicity. With this assumption, the theoretical approach is
still able to capture the main physical aspects of flow instability in
thermocapillary migration.

Brochard28 has derived that when the width of the droplet is
far larger than the capillary length κ̂−1

=
√
σ′0/(ρ0g), the drop

is flattened by gravity and forms a pancake with the thickness d
= 2κ̂−1 sin(φ/2). Here, σ′0, ρ0, and g are the surface tension, fluid
density, and gravitational acceleration, respectively. It can be seen
that d has the same order as κ̂−1 when φ is not too small. Thus,
L ≫ κ̂−1 as we have assumed that L ≫ d, and the assumption of
a flat surface is reasonable.

The surface tension is big enough so that the liquid surface is
nondeformable.14 For simplicity, we suppose that the viscosity of the
droplet is constant and the contact angle is not very sensitive to the
temperature, then the difference between the left contact angle and
the right one is neglected.

A. Governing equations
In this work, we assume that the surface tension is linearly

related to the temperature T: σ′ = σ′0−γ(T−T0), where γ is the nega-
tive rate of the change of surface tension with temperature. Re is the
Reynolds number defined as Re = ρUd/μ, where μ is the dynamic
viscosity. U is the characteristic velocity with the expression U
= λγd/μ, where λ is the temperature gradient of the plane. The vari-
ation of surface tension with temperature on the free surface leads
to the thermocapillary effect. It can be measured by the Marangoni
number Ma = λγd2/(χμ), which compares the thermal transport via
flow due to a surface tension gradient (λγ) with thermal diffusion
(χ). The migration velocity is not directly related to Ma. We also
have that Ma = Re ⋅ Pr. Here, Pr is the Prandtl number defined as
Pr = μ/(ρχ). S = ρdσ′0/μ2 is the nondimensional surface-tension
number.

The magnitude of the surface deformation can be measured by
the capillary number14

Ca =
Ma
Pr ⋅ S

. (2.1)

Phys. Fluids 31, 122101 (2019); doi: 10.1063/1.5125846 31, 122101-2

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

TABLE I. The scales of nondimensionalization.

Length Velocity Stress Density Temperature

d = 2
√
σ′0/ρ0g sin(φ/2) U = λγd/μ F0 = μU/d ρ0 λd

For the silicone oil, S and Ca are typically of the order of 25 000
and 0.001 in the experiments,15 respectively. Therefore, Ca is far less
than 1, indicating that the assumption of a flat free surface is reason-
able. Moreover, the surface wave instability caused by thermocapil-
lary shear stresses is not preferred when the surface-tension number
S is large enough.29 Hence, we only consider the thermocapillary
instability in the flow with a nondeformable surface.

In the presence of gravity, the buoyancy force may have a great
effect on the flow. Suppose the fluid density depends on tempera-
ture with the form ρ = ρ0[1 − κ(T − T0)], where κ is the thermal
expansion coefficient. The buoyancy effect can be measured by the
dynamic Bond number:30 Bo = ρgκd2/γ. The reason why the Bond
number is chosen instead of the Rayleigh number can be explained
as follows. The former compares the buoyancy to the thermocap-
illary force, while the latter is independent of the surface tension
gradient. Therefore, we prefer the former, which is more relevant
to the thermocapillary migration.

For example, 10 cSt silicone oil31 has ρ = 0.93 × 103 kg/m3, v = 1
× 10−5 m2/s, κ = 1 × 10−3/K, γ = 6.4 × 10−5 N/(K m), χ = 9.8 × 10−8

m2/s, σ′0 = 19.9 × 10−3 N/m, and Pr = 102. When φ = 140○, λ and
g are on the order of 1 K/mm and 2.5 m/s2, respectively, and d ∼ O
(5 mm), Bo ∼ O(1), and Ma ∼ O (2 × 103), which are in the range we
considered in this paper.

The dimensionless governing equations, which are the conti-
nuity equation, the momentum equation, and the energy equation,
are given below.32 The scales of nondimensionalization are summa-
rized in Table I. The variations of the density due to the temperature
are taken into account in the momentum equations via Boussinesq’s
approximation30

∇ ⋅ u = 0, (2.2)

Re(
∂u
∂t

+ u ⋅ ∇u) = −∇p +∇ ⋅ τ + Bo ⋅ Tez , (2.3)

∂T
∂t

+ u ⋅ ∇T =
1
Ma
∇

2T. (2.4)

Here, u = (u, v, w), p, and T stand for the velocity field, pressure,
and temperature, respectively. τ is the stress. For a Newtonian fluid,

τ = S, (2.5)

where S is the strain-rate tensor with the form S = ∇u + (∇u)T. The
reference frame we choose is traveling with the droplet.10 Thus, the
plane moves in the negative x direction. The boundary conditions
are set as follows: On the rigid plane,

u∣z=0 = −ζ, T∣z=0 = −x. (2.6)

Here, ζ is the nondimensional migration velocity of the droplet.

In the reference frame, the flux in the x direction is zero:
1
∫
0
udz = 0.

The temperature gradient of the plane is linear in x. On the free
surface,

τ13∣z=1 = −
∂T
∂x
∣
z=1

, τ23∣z=1 = −
∂T
∂y
∣

z=1
,
∂T
∂z
∣
z=1
= 0. (2.7)

The first two equations stand for the relation between the tempera-
ture gradient and stress caused by the thermocapillary effect, while
the last stands for zero heat flux.

We use the thin film model as d ≪ L. Then, the basic flow is
assumed to be parallel, while its temperature is linear in x as imposed
plus a distribution in z as follows:14

u = (u(z), 0, 0),T(x, z) = −x + Tb(z). (2.8)

Then, the solutions of the basic flow can be derived as follows,
and the details are presented in the Appendix:

u(z) = −ζ(1 − 3z +
3
2
z2
) + (−

1
2
z +

3
4
z2
) +

Bo
4
(−

1
2
z +

5
4
z2
−

2
3
z3
),

(2.9a)

Tb = z
2Ma(

ζ
8
(−2 + z)2 +

z
4
(

1
3
−
z
4
) +

Bo
24
(

1
2
z −

5z2

8
+
z3

5
)).

(2.9b)

The velocity and temperature distributions in the presence of
buoyancy are displayed in Figs. 2 and 3, respectively. It can be
seen that both the average of the velocity gradient and the surface
temperature increase with Bo and ζ.

Next, we investigate the range of ζ. Ignoring the change of d at
the rim of the thin film, the dimensionless viscous resistance force
Fv can be obtained as

Fv = ∫
L/d

0
τxz ∣z=0dx =

L
d
(3ζ −

1
2
−

1
8
Bo). (2.10)

FIG. 2. The velocity distributions in the presence of buoyancy.
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FIG. 3. The temperature distributions in the presence of buoyancy at Ma = 15.

In Fig. 1, L is the width of the droplet. However, we choose d
as the length scale, and so the nondimensional width is L/d. This
is the reason why the integration is performed by with 0, L/d
limits.

The driving force exerted on the droplet is λγL cosφ10. In
order to derive its dimensionless form Fd, we should use the stress
scale defined as F0 = μU/d. Then, it can be deduced that Fd(F0d)
= λγL cosφ. Substituting the expression of characteristic velocity
U = λγd/μ, we can obtain the dimensionless driving force as follows:

Fd =
L
d

cosφ, (2.11)

where φ is the contact angle. The contact angle of a flat water drop
is 5.6○ at a glass substrate,33 while the contact angle of Al alloys to
SiC is 157○.34 Thus, we consider the case of the contact angle φ ∈ [0○,
180○] in this paper. There is a balance between the driving force and
the viscous force (Fd = Fv), and so

ζ =
2 cosφ + 1

6
+
Bo
24
∈ [−

1
6

+
Bo
24

,
1
2

+
Bo
24
]. (2.12)

B. Perturbation equations
Suppose an infinitesimal perturbation in the normal mode form

is added to the basic flow

(u,T,P, τ) = (u0,T0,P0, τ0) + δ, (2.13)

δ = (⌢u, ⌢v, ⌢w,
⌢

T, ⌢p, ⌢τ)exp[σt + i(αx + βy)]. (2.14)

Hereafter, the subscript 0 stands for the basic flow, and the vari-
ables without subscript 0 stand for the perturbation. σ = σr + iσi,
where σr and σi are the growth rate and frequency, respectively. The
wave number, wave speed, and wave propagation angle are defined
as k =

√
α2 + β2, c = −σi/k, and θ = tan−1(β/α), respectively. Due to

symmetry, we shall confine ourselves to the case of θ ∈ [0○, 180○).

Substituting (2.13) and (2.14) into the governing equations
(2.2)–(2.5), we can obtain the linearized perturbation equations as
follows:

iα⌢u + iβ⌢v + D ⌢w = 0, (2.15)

Re(σ ⌢u + ⌢wDu0 + u0iα⌢u) = −iα⌢p + iα⌢τ11 + iβ⌢τ12 + D⌢τ13, (2.16)

Re(σ ⌢v + u0iα⌢v) = −iβ⌢p + iα⌢τ12 + iβ⌢τ22 + D⌢τ23, (2.17)

Re(σ ⌢w + u0iα ⌢w) = −D⌢p + iα⌢τ13 + iβ⌢τ23 + D⌢τ33 + Bo
⌢

T, (2.18)

Ma(⌢u
∂T0

∂x
+ ⌢w

∂T0

∂z
+ u0iα

⌢

T) + (α2 + β2
)
⌢

T −D2 ⌢T = −σMa
⌢

T,

(2.19)
⌢τ11 − (2iα⌢u) = 0, ⌢τ12 − (iα

⌢v + iβ⌢u) = 0, ⌢τ13 − (D
⌢u + iα ⌢w) = 0,

(2.20)
⌢τ22 − (2iβ⌢v) = 0, ⌢τ23 − (iβ

⌢w + D⌢v) = 0, ⌢τ33 − (2D
⌢w) = 0. (2.21)

Here, D stands for d/dz. The stress tensor is solved in (2.20)
and (2.21) separately from the velocity. The advantage is that
this form of equation can be easily generalized to non-Newtonian
fluids, where we only need to change the constitutive equations
[(2.20) and (2.21)], while other equations [(2.15)–(2.19)] remain the
same.

In (2.16)–(2.18), ⌢p can be eliminated, and the following equa-
tions are derived:

Re[β( ⌢wDu0 + u0iα⌢u) − α(u0iα⌢v)] − β(iα⌢τ11 + iβ⌢τ12 + D⌢τ13)

+α(iα⌢τ12 + iβ⌢τ22 + D⌢τ23) = −σRe(β
⌢u − α⌢v), (2.22)

Reα(D ⌢w ⋅Du0 + ⌢wD2u0 + Du0 ⋅ iα
⌢u + u0iαD⌢u)

+Reβ(Du0 ⋅ iα
⌢v + u0iαD⌢v) − Reik2

(u0iα ⌢w)

− (iα2D⌢τ11 + 2iαβD⌢τ12 + αD2 ⌢τ13 + iβ2D⌢τ22 + βD2 ⌢τ23)

+ i k2
(iα⌢τ13 + iβ⌢τ23 + D⌢τ33 + Bo ⋅

⌢

T)

= −σRe(αD⌢u + βD⌢v − ik2 ⌢w). (2.23)

The boundary conditions for the perturbation are determined
as follows:

⌢u = ⌢v = ⌢w =
⌢

T = 0, z = 0, (2.24)

⌢τ13 + iα
⌢

T = 0, ⌢τ23 + iβ
⌢

T = 0, ⌢w = 0,D
⌢

T = 0, z = 1. (2.25)

In order to obtain the eigenvalue σ, the Chebyshev collocation
method35 is used. Nc Gauss-Lobatto points are set in the flow region
z = (1 − cos( jπ

Nc+1))/2, j = 1 ∼ Nc for Eqs. (2.15)–(2.21), while
2 points are set at the boundaries z = 0, 1 for Eqs. (2.24) and (2.25).
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TABLE II. The eigenvalues of neural modes computed by different numbers of nodes.

Case 1 Case 2

Nc σr (×10−6) σi (×10−1) σr (×10−6) σi (×10−2)

70 1.819 430 4.299 003 3.736 183 6.834 245
80 1.819 234 4.299 003 3.736 175 6.834 245
90 1.819 271 4.299 003 3.736 152 6.834 245

The perturbation quantities are expanded in Chebyshev polynomials
as

⌢u =
Nc+1

∑
j=1

ajAj−1(
⌢z). (2.26)

Here, ⌢z = 1 − 2z,Aj−1(
⌢z) = cos[(j − 1)cos−1

(
⌢z)] is the (j − 1)th

Chebyshev polynomial, and aj is the coefficient. The general eigen-
value problem can be solved in the form of Wv = σZv, where W,
Z are two matrices, and v is the eigenvector. The eigenvalues are
obtained by using the QZ algorithm available in the Matlab-software
package. In the computation, the results are sufficiently accurate
when Nc = 70–90. The convergence can be seen in Table II.

Here, case 1 has Pr = 1, ζ = 0.3, Bo = 5, Mac = 124.13, k = 1.896,
and θ = 89○, while case 2 has Pr = 0.01, ζ = 0.6, Bo = 10, Mac = 15.43,
k = 1.098, and θ = 88○.

III. NUMERICAL RESULTS
We compute the neutral Marangoni number MaN of neutral

mode (σr = 0). The critical Marangoni number Mac is defined as the
global minimum of neutral Marangoni numbers for all (α, β),

Mac = min
α,β

MaN(ζ,Pr). (3.1)

When the Marangoni number is below the critical value, Mac, the
flow is linear stable for any normal mode perturbation. In contrast,
there can be an unstable mode in the flow when Ma >Mac.

In the computation, we find there are two different kinds
of preferred modes (see Fig. 4), which are the streamwise wave
(θ = 0○) and the oblique wave (θ ≠ 0○, 90○), respectively. The
counter-rotating rolls are arranged periodically for both of them.

The results at Pr = 0.01, Pr = 1, and Pr = 100 are presented in
Secs. III A–III C, respectively. The perturbation fields of preferred

FIG. 5. The variation of Mac with ζ and Bo at Pr = 0.01. Here, UOW stands for
upstream oblique waves [θ ∈ (90○, 180○)]. The curves correspond to (1) Bo = 0,
oblique wave (a); (2) Bo = 10, oblique wave (b); and (3) Bo = 20, oblique wave (c).

modes are displayed in Sec. III D, and the energy analysis is per-
formed in Sec. III E.

A. Pr = 0.01
The variation of Mac with ζ and Bo at Pr = 0.01 is displayed in

Fig. 5. When Bo = 0 [curve (a)], there is a significant decrease in Mac
with ζ. When Bo = 10 and 20, [curves (b) and (c)], Mac decreases
slightly with the increase in ζ. However, the variation of Mac with Bo
is nonmonotonic. Mac increases with Bo at ζ = 0.4 but decreases at
ζ = 0.8. The preferred modes are always the upstream oblique wave
[θ ∈ (90○, 180○)].

The wave number, the propagation angle, and the wave speed
corresponding to the modes in Fig. 5 are displayed in Fig. 6. It can
be seen that the wave numbers are on the order of 1. k is nearly a
constant at Bo = 10 and 20. The oblique waves are upstream and
close to spanwise traveling waves. The propagation angle tends to
90○ when Bo and ζ increase. The wave speed significantly increases
with Bo.

B. Pr = 1
The neutral curves at Pr = 1 are displayed in Fig. 7. It can be

found that Mac always decreases with the increase in ζ but increases
with Bo. The preferred modes include upstream and downstream
oblique waves.

FIG. 4. The schematic of preferred modes: (a) streamwise
wave and (b) oblique wave.
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FIG. 6. The (I) wave number, (II) wave propagation angle, and (III) wave speed
corresponding to the modes in Fig. 5.

The wave number, the wave propagation angle and the wave
speed corresponding to the modes in Fig. 7 are displayed in
Fig. 8. It can be found that the wave numbers are the order of 2.
The preferred modes change from upstream to downstream when
Bo is large enough. The variation of the wave speed with ζ is almost

FIG. 7. The variation of Mac with ζ and Bo at Pr = 1. Here, DOW stands for
downstream oblique waves [θ ∈ (0○, 90○)]. Curve (b) changes from upstream to
downstream when ζ increases. So we use OW to stand for the oblique wave (b).
The curves correspond to (1) Bo = 0, oblique wave (a); (2) Bo = 5, oblique wave
(b); and (3) Bo = 10, oblique wave (c).

linear. The increase in the wave speed with Bo is obvious, which is
similar to the case at Pr = 0.01.

C. Pr = 100
The neutral curves at Pr = 100 are displayed in Fig. 9. It can

be seen that Mac significantly increases with Bo. When Bo = 0, Mac
obviously decreases with ζ, which is similar to the cases at Pr = 0.01
and Pr = 1, and the preferred modes include oblique and stream-
wise waves. When Bo = 5 and 10, all preferred modes are streamwise
waves, and the variation of Mac with ζ is little.

The wave number, the wave propagation angle, and the wave
speed corresponding to the modes in Fig. 9 are displayed in Fig. 10.
Both the wave number and wave speed increase with Bo signifi-
cantly. The preferred modes at Bo = 0 is upstream, while those at
Bo ≥ 5 are downstream. The wave speed increases linearly with ζ
when Bo ≥ 5.

D. The perturbation flow field
The streamlines and isothermals of the preferred mode at

Pr = 0.01 are displayed in Fig. 11. Ts is the temperature perturbation
on the surface. The hot spots are on the surface in Figs. 11(I) and
11(II). These differ from the cases in the liquid layer,36 where the
isothermals are nearly vertical at small Prandtl numbers. The differ-
ence is due to the boundary condition. There is zero heat flux on the
rigid plane for the liquid layer, while the temperature perturbation
is zero at the position z = 0 in this paper [see (2.24)].

The perturbation flow field at Pr = 1 is displayed in Fig. 12.
When Bo = 0, there are hot spots in the middle region (z = 0.5).
The fluid at the position (z = 0.5, phase = 4) is heated, as the ver-
tical down flow brings hotter fluid from the surface. So the tem-
perature in this region increases and the wave travels upstream.
When Bo = 10, the fluid at the position (z = 0.5, phase = 2.5) is
heated by the vertical down flow, and the wave travels downstream.
The streamlines near the hot spot are clockwise and close to the
isothermals.
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FIG. 8. The (I) wave number, (II) wave propagation angle, and (III) wave speed
corresponding to the modes in Fig. 7.

The streamlines and isothermals of the preferred mode at Pr
= 100 are displayed in Fig. 13. The downstream streamwise wave in
Fig. 13 has hot spots in the interior. The temperature of the fluid at
the position (z = 0.5, phase = 3.2) will be decreased by the vertical
upflow, as it brings cooler fluid from the bottom. So the wave travels
upstream.

FIG. 9. The variation of Mac with ζ and Bo at Pr = 100. Here, USW and DSW stand
for upstream (θ = 180○) and downstream (θ = 0○) streamwise waves, respectively.
The curves correspond to (1) Bo = 0, oblique wave [(a) and (c)]; (2) Bo = 0, stream-
wise wave (b); (3) Bo = 5, streamwise wave (d); and (4) Bo = 10, streamwise
wave (e).

E. Energy analysis
The energy mechanism is studied in this section. The rate of

change for perturbation energy can be written as follows:37,38

∂Ekin
∂t
= −

1
2Re ∫V

(τ : S)d∀ +
1
Re ∫S

u ⋅ τ ⋅ nds

− ∫
V
u ⋅ ((u ⋅ ∇)u0)d∀ + ∫

V
(
Bo
Re

Te3 ⋅ u)d∀

= −N + M + I + G, (3.2)

where N is the viscous dissipation, M is the work done by Marangoni
forces on the surface, I is the interaction between the perturbation
flow and the basic flow, and G is the work done by gravity.30 Here,
the subscripts V and S stand for the volume and surface integral,
respectively.

The terms of perturbation energy growth at different Prandtl
numbers and Bond numbers are displayed for neutral modes in
Fig. 14. As σr = 0, the sum of three terms in the table has
(M + I + G)/N = 1. It can be found that either I or M is the
main energy source, while G is not important. M is dominant at
Pr = 1 and 100, while the importance of M depends on Bo and ζ at
Pr = 0.01.

IV. DISCUSSION
A. Comparison of the droplet with liquid layers

First, we want to compare the droplet with liquid layers in the
following. The basic flow in the liquid layer30 is the same as the case
of ζ = 0 in (2.9), and so the migrating droplet seems similar to a
thin film with a moving bottom wall. However, there are three main
differences between them. First, their basic flow and boundary con-
ditions are different. The migration velocity of the droplet depends
on the contact angle, and so the velocity distribution is a function
of both Bo and ζ in (2.9). In contrast, the velocity distribution in
the thin film layer only depends on Bo.30 Meanwhile, the droplet is
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FIG. 10. The (I) wave number, (II) wave propagation angle, and (III) wave speed
corresponding to the modes in Fig. 9.

placed on a nonuniformly heated solid surface, and the temperature
perturbation on the wall is zero in (2.24).8 However, the wall of the
film layer has zero heat flux,14,16,17 and sometimes, the temperature
perturbation on the wall is not zero.30,35

Second, in liquid layers of Newtonian fluids at Pr = 13.917

and viscoelastic fluids at Pr = 100, 0.02,30 the gravity only leads to

FIG. 11. The perturbation flow field of the preferred mode at Pr = 0.01: (I) upstream
oblique wave (Bo = 0, ζ = 0.3) and (II) upstream oblique wave (Bo = 10, ζ = 0.8).

the buoyancy. The cases studied in these works can be degener-
ated to that at g = 0. However, besides buoyancy, the gravity has
another important effect in this paper that makes the drop flat and
form a pancake with thickness d = 2

√
σ′0/(ρ0g)sin(φ/2). Thus, the

assumption of a flat surface will be invalid if g → 0. In addition, d is
not an independent parameter, which differs from the case in liquid
layers.

Third, the buoyancy effect on the stability for the liquid layer is
also different from that of the droplet. In Refs. 17 and 30, the buoy-
ancy often makes the flow more stable at high Pr. This conclusion
also holds for the droplet. However, for small Pr, the buoyancy is
destabilizing in the liquid layer,30 while the variation of Mac with Bo
is nonmonotonic for the droplet (see Fig. 5).

B. Instability mechanism and the properties at
different Prandtl numbers

We will then discuss the instability mechanism and the prop-
erties of preferred modes. The cases of three Prandtl numbers are
discussed and compared.
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FIG. 12. The perturbation flow field at Pr = 1: (I) upstream oblique wave (Bo = 0,
ζ = 0.3) and (II) downstream oblique wave (Bo = 10, ζ = 0.7).

1. Pr = 0.01
The modes in this work have similar mechanisms as the

hydrothermal wave.36 For small Pr, Smith36 has suggested that the

FIG. 13. The perturbation flow field at Pr = 100: streamwise wave (Bo = 0,
ζ = −0.1).

FIG. 14. The terms of perturbation energy growth at different Prandtl numbers and
Bond numbers for neutral modes.

key to the mechanism is the inertial-driven streamwise flow for the
return flow in the liquid layer. The cold spot on the surface is mainly
caused by the horizontal convective cooling (⌢u∂T0

∂x ). This is also true
for the droplet at Bo = 0. However, the vertical convection ( ⌢w∂T0

∂z )
can also cool the cold spot and will be important for the temperature
field when the vertical gradient of temperature for the basic flow ∂T0

∂z
is large enough. As ∂T0

∂z significantly increases with Bo and ζ (see
Fig. 3), Mac decreases with ζ and the flow becomes more unstable
when Bo is large enough (see Fig. 5).

2. Pr = 1
For Pr = 1, Mac always decreases with the increase in ζ but

increases with Bo (see Fig. 7). The reason can be explained as fol-
lows. The computation shows that the vertical convection ( ⌢w∂T0

∂z ) is
dominant for the temperature field at Pr = 1. Figure 3 shows that ∂T0

∂z
increases with ζ. Therefore, the flow becomes more unstable when ζ
increases. Suppose a neutral mode of Bo = 0 in Fig. 12(I) is added
in the basic flow at Bo > 0, the down flow near the hot spot leads to
G < 0 and stabilizes the flow, and so a higher Mac is needed when Bo
increases.

3. Pr = 100
For Pr = 100, the instability is closely related to the heat con-

vection by the basic flow (u0iα
⌢

T). Its increase with the wave num-
ber can make the perturbation more unstable. This is the reason
why the wave numbers corresponding to the preferred mode in
Fig. 10(I) are much higher than those at Pr = 1 and Pr = 0.01 [see
Figs. 6(I) and 8(I)]. It also agrees with the results in Ref. 30, where
the modes with high wave numbers are excited when Bo is large
enough. The reason why Mac increases with Bo is similar to the that
at Pr = 1.

We want to compare k, θ, and c at different Pr. The wave num-
bers are O(1), O(2), and O(10) at Pr = 0.01, 1, and 100, respectively
[see Figs. 6(I), 8(I), and 10(I)]. However, there are only quantitative
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variations of k with ζ. The wave propagation angle depends highly
on Pr. For Pr = 0.01, the preferred modes are upstream oblique
waves [see Fig. 6(II)]. For Pr = 1, the preferred modes change from
upstream oblique waves to downstream oblique waves when Bo is
large enough [see Fig. 8(II)]. In contrast, for Pr = 100, the pre-
ferred mode includes oblique and streamwise waves [see Fig. 10(II)].
The preferred modes at Bo = 0 are upstream, while those at
Bo ≥ 5 are downstream. The wave speed always increases with Bo,
while its variation with ζ is nonmonotonic [see Figs. 6(III), 8(III),
and 10(III)].

We can compare the perturbation fields at different Pr. In
Fig. 13 (Pr = 100), the amplitude of Ts is much smaller than that
of the hot spot; in Fig. 12 (Pr = 1), the amplitude of Ts is about half
of that of the hot spot; while in Fig. 11 (Pr = 0.01), their amplitudes
are very close. The reason can be explained as follows: In most cases,
the hot spot is in the interior of the droplet. As the heat conduction
is important at small Pr, the surface can be heated by conduction
quickly, and so the amplitude of Ts is close to that of the hot spot. In
contrast, the surface is mainly heated by convection at high Pr, and
the conduction from the hot spot is limited. The vertical convection
is very small as ∣ ⌢w∣ tends to zero near the surface; thus, the amplitude
of Ts is far less than that of the hot spot. For moderate Pr, the impor-
tance of convection is comparable with that of conduction, and so
the amplitude of Ts is less than that of the hot spot but larger than
that at high Pr.

The energy analysis shows that, for Pr = 0.01, I is the most
important energy source for the perturbation. In contrast, M is often
the main energy source for the liquid layer.32 When Bo is large
enough, G is not negligible anymore. For Pr = 1, M becomes the
main energy source, I is still important, while G is very small. For
Pr = 100, both I and G are negligible, and so the thermocapillary
force is the driving force for the perturbation, while the perturbation
stresses cause damping.

C. Comparisons with experiments
We want to make a comparison of this work with experimen-

tal studies. There are many experiments of internal flows in heated
drops. The theoretically predicted Marangoni flows are observed in
Refs. 39 and 40. For thermocapillary migration, many authors have
made comparisons between the experiments and theoretical descrip-
tions.5,10,41 As their models are also used here, we can compare our
results with their expressions. When Bo = 0, the velocity distribution
(2.9a) coincides with (8) of Pratap et al.,5 and the migration velocity
(2.12) is the same as (20) of Dai et al.10 In Ref. 5, the theoretical pre-
diction of radius is comparable with the experiment value, while in
Ref. 10, the experimental migration velocity fits the numerical results
well. These ensure the validity of the model and velocity distribution
we used in this paper.

Sefiane et al.42 have observed hydrothermal waves in sessile
drops, where the thermocapillary convection is caused by spatially
nonuniform evaporative flux. The temperature gradient on the sur-
face is self-generated in this experiment, while that of thermocap-
illary migration in this paper is imposed. However, their instability
mechanisms are similar.

Then, we want to discuss the contact angle, which is an impor-
tant factor in the droplet migration. In theoretical analysis, both
the migration speed and thickness depend on φ [see (2.12) and

Brochard’s formula:28 d = 2κ̂−1 sin(φ/2)]. In experiments, the influ-
ences of the contact angle are complex. For example, the contact
angle hysteresis appears in the thermocapillary motion,5,41,43 where
the advancing and receding contact angles (φa, φr) are different.
However, typical contact angle hysteresis is δ̃ = cosφa − cosφr

= 1.5 × 10−2 for silicone oils and δ̃ = 10−2 for n-alkanes, while the
variations of φa, φr with temperature are extremely small.41 Hence,
we believe that contact angle hysteresis will not affect the flow insta-
bility qualitatively, and our simplifying assumption (φa = φr = φ) is
still valid. Pratap et al.5 have observed that the spherical drops in
thermocapillary motion are elongated in the direction on the solid
surface that is perpendicular to that of motion. It was attributed to
the variation of the contact angle around the periphery of the drop.
This phenomenon will make the internal flow of the spherical drop
more similar to the flow in a two-dimensional droplet,9 which is the
model we used in this paper.

V. CONCLUSION
In this paper, the linear stability analysis is performed on the

thermocapillary–buoyancy convection in droplet migration. The
conclusions are drawn as follows:

For the basic flow, the temperature difference between the
surface and the bottom always increases with the migration veloc-
ity ζ and the Bond number Bo. The critical Marangoni number
Mac always decreases with ζ. For small and moderate Pr, the pre-
ferred modes are oblique waves, which travel either upstream or
downstream. For high Pr, the preferred mode includes oblique and
streamwise waves, while the amplitude of temperature on the surface
is much smaller than that of the hot spot in the flow region.

The buoyancy effect on the instability depends on the Prandtl
number. For small Pr, the variation of Mac with Bo is nonmono-
tonic, and the perturbation energy mainly comes from the basic
flow. For high Pr, Mac increases with Bo significantly, and the work
done by Marangoni forces becomes the main energy source. The
preferred modes with high wave numbers are excited when Bo is
large enough. For moderate Pr, Mac increases with Bo. However, the
work done by gravity for perturbation energy is small for all Prandtl
numbers.
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APPENDIX: THE DERIVATION OF THE BASIC FLOW
Substituting the form of basic flow (2.8) and the viscous stress

tensor (2.5) into the momentum equation (2.3), we can derive that

x : 0 = −
∂p
∂x

+
d2u
dz2 , (A1)

z : 0 = −
∂p
∂z

+ Bo(−x + Tb(z)). (A2)

Phys. Fluids 31, 122101 (2019); doi: 10.1063/1.5125846 31, 122101-10

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

p can be eliminated as follows:

0 = −
∂2p
∂z∂x

− Bo, 0 = −
∂2p
∂z∂x

+ −
d3u
dz3 . (A3)

Therefore, we can obtain the velocity,

u(z) = −
Bo
6
z3 + C1z2 + C2z + C3, (A4)

whereC1 = −
3
2 ζ+ 3

4 + 5
16Bo,C2 = 3ζ− 1

2−
1
8Bo, andC3 =−ζ. These con-

stants are determined by the velocity on the plane u∣z=0 = −ζ from
(2.6), the stress on the surface τ13∣z=1 =

du
dz = −

∂T
∂x = 1 from (2.7), and

the zero flux condition
1
∫
0
udz = 0. Then, substituting (A4) and (2.8)

into (2.4), we can derive −Ma ⋅ u = d2

dz2 Tb, and so the temperature is

Tb(z) =Ma(
Bo
120

z5
−
C1

12
z4
−
C2

6
z3
−
C3

2
z2
), (A5)

where the boundary condition ∂T
∂z ∣z=1

= 0 in (2.7) and the assump-
tion Tb∣z=0 = 0 are used.

REFERENCES
1A. Karbalaei, R. Kumar, and H. J. Cho, “Thermocapillarity in microfluidics—A
review,” Micromachines 7, 13 (2016).
2R. B. R. Shankar Subramanian, The Motion of Bubbles and Drops in Reduced
Gravity (Cambridge University Press, 2005).
3O. A. Basaran, H. J. Gao, and P. P. Bhat, “Nonstandard inkjets,” Annu. Rev. Fluid
Mech. 45, 85 (2013).
4H. H. Liu and Y. H. Zhang, “Modelling thermocapillary migration of a microflu-
idic droplet on a solid surface,” J. Comput. Phys. 280, 37 (2015).
5V. Pratap, N. Moumen, and R. S. Subramanian, “Thermocapillary motion of a
liquid drop on a horizontal solid surface,” Langmuir 24, 5185 (2008).
6Z. B. Wu, “Steady thermocapillary migration of a droplet in a uniform tem-
perature gradient combined with a radiation energy source at large Marangoni
numbers,” Phys. Rev. E 98, 013110 (2018).
7J. B. Bostwick, “Spreading and bistability of droplets on differentially heated
substrates,” J. Fluid Mech. 725, 566 (2013).
8M. K. Smith, “Thermocapillary migration of a 2-dimensional liquid droplet on a
solid-surface,” J. Fluid Mech. 294, 209 (1995).
9M. L. Ford and A. Nadim, “Thermocapillary migration of an attached drop on a
solid surface,” Phys. Fluids 6, 3183 (1994).
10Q. Dai, M. M. Khonsari, C. Shen, W. Huang, and X. Wang, “Thermocapil-
lary migration of liquid droplets induced by a unidirectional thermal gradient,”
Langmuir 32, 7485 (2016).
11Q. W. Dai, W. Huang, X. L. Wang, and M. M. Khonsari, “Ringlike migration of
a droplet propelled by an omnidirectional thermal gradient,” Langmuir 34, 3806
(2018).
12T. Duffar, Crystal Growth Processes Based on Capillarity (John Wiley & Sons,
Ltd., USA, 2010).
13J. P. Singer, S. E. Kooi, and E. L. Thomas, “Focused laser-induced Marangoni
dewetting for patterning polymer thin films,” J. Polym. Sci., Part B: Polym. Phys.
54, 225 (2016).
14M. K. Smith and S. H. Davis, “Instabilities of dynamic thermocapillary liquid
layers. Part I. Convective instabilities,” J. Fluid Mech. 132, 119 (1983).
15R. J. Riley and G. P. Neitzel, “Instability of thermocapillary–buoyancy con-
vection in shallow layers. Part 1. Characterization of steady and oscillatory
instabilities,” J. Fluid Mech. 359, 143 (2000).

16Y. R. Li, N. Imaishi, T. Azami, and T. Hibiya, “Three-dimensional oscilla-
tory flow in a thin annular pool of silicon melt,” J. Cryst. Growth 260, 28
(2004).
17C. L. Chan and C. F. Chen, “Effect of gravity on the stability of ther-
mocapillary convection in a horizontal fluid layer,” J. Fluid Mech. 647, 91
(2010).
18L. Zhang, Y.-R. Li, C.-M. Wu, and L. Zhang, “Effect of surface heat dissipa-
tion on thermocapillary convection of moderate Prandtl number fluid in a shallow
annular pool,” J. Cryst. Growth 514, 21 (2019).
19L. A. Davalos-Orozco, “Sideband thermocapillary instability of a thin film flow-
ing down the outside of a thick walled cylinder with finite thermal conductivity,”
Int. J. Non-Linear Mech. 109, 15 (2019).
20Q. Kang, J. Wang, L. Duan, Y. Su, J. He, D. Wu, and W. Hu, “The volume ratio
effect on flow patterns and transition processes of thermocapillary convection,”
J. Fluid Mech. 868, 560 (2019).
21X. Zhong and F. Duan, “Stable hydrothermal waves at steady state evaporating
droplet surface,” Sci. Rep. 7, 16219 (2017).
22T.-S. Wang and W.-Y. Shi, “Influence of substrate temperature on Marangoni
convection instabilities in a sessile droplet evaporating at constant contact line
mode,” Int. J. Heat Mass Transfer 131, 1270 (2019).
23D. L. Albernaz, G. Amberg, and D.-Q. Minh, “Simulation of a suspended droplet
under evaporation with Marangoni effects,” Int. J. Heat Mass Transfer 97, 853
(2016).
24G. V. Kuznetsov, S. Y. Misyura, R. S. Volkov, and V. S. Morozov, “Marangoni
flow and free convection during crystallization of a salt solution droplet,” Colloids
Surf., A 572, 37 (2019).
25S. Kim, J. Kim, and H.-Y. Kim, “Dewetting of liquid film via vapour-mediated
Marangoni effect,” J. Fluid Mech. 872, 100 (2019).
26G. Karapetsas, K. C. Sahu, and O. K. Matar, “Effect of contact line dynamics on
the thermocapillary motion of a droplet on an inclined plate,” Langmuir 29, 8892
(2013).
27L. Zheng, S. Zheng, and Q. Zhai, “Continuous surface force based lattice Boltz-
mann equation method for simulating thermocapillary flow,” Phys. Lett. A 380,
596 (2016).
28F. Brochard, “Motions of droplets on solid surfaces induced by chemical or
thermal gradients,” Langmuir 5, 432 (1989).
29M. K. Smith and S. H. Davis, “Instabilities of dynamic thermocapillary
liquid layers. Part 2. Surface-wave instabilities,” J. Fluid Mech. 132, 145
(1983).
30K.-X. Hu, M. He, Q.-S. Chen, and R. Liu, “Effect of gravity on the stability of
viscoelastic thermocapillary liquid layers,” Int. J. Heat Mass Transfer 123, 776
(2018).
31M. Teitel, D. Schwabe, and A. Y. Gelfgat, “Experimental and computational
study of flow instabilities in a model of Czochralski growth,” J. Cryst. Growth 310,
1343 (2008).
32C.-Y. Yan, K.-X. Hu, and Q.-S. Chen, “Thermocapillary instabilities of liquid
layers on an inclined plane,” Phys. Fluids 30, 082101 (2018).
33H. K. Dhavaleswarapu, C. P. Migliaccio, S. V. Garimella, and J. Y. Murthy,
“Experimental investigation of evaporation from low-contact-angle sessile
droplets,” Langmuir 26, 880 (2010).
34S. Takahashi and O. Kuboi, “Study on contact angles of Au, Ag, Cu, Sn, Al and
Al alloys to SiC,” J. Mater. Sci. 31, 1797 (1996).
35P. J. Schmid and D. S. Henningson, Stability and Transition in Shear Flows
(Springer-Verlag, 2001).
36M. K. Smith, “Instability mechanisms in dynamic thermocapillary liquid layers,”
Phys. Fluids 29, 3182 (1986).
37M. Wanschura, V. M. Shevtsova, H. C. Kuhlmann, and H. J. Rath, “Convec-
tive instability mechanisms in thermocapillary liquid bridges,” Phys. Fluids 7, 912
(1995).
38K. X. Hu, J. Peng, and K. Q. Zhu, “The linear stability of plane Poiseuille flow of
Burgers fluid at very low Reynolds numbers,” J. Non-Newtonian Fluid Mech. 167,
87 (2012).
39A. Askounis, Y. Kita, M. Kohno, Y. Takata, V. Koutsos, and K. Sefiane, “Influ-
ence of local heating on Marangoni flows and evaporation kinetics of pure water
drops,” Langmuir 33, 5666 (2017).

Phys. Fluids 31, 122101 (2019); doi: 10.1063/1.5125846 31, 122101-11

Published under license by AIP Publishing

https://scitation.org/journal/phf
https://doi.org/10.3390/mi7010013
https://doi.org/10.1146/annurev-fluid-120710-101148
https://doi.org/10.1146/annurev-fluid-120710-101148
https://doi.org/10.1016/j.jcp.2014.09.015
https://doi.org/10.1021/la7036839
https://doi.org/10.1103/physreve.98.013110
https://doi.org/10.1017/jfm.2013.196
https://doi.org/10.1017/s0022112095002862
https://doi.org/10.1063/1.868096
https://doi.org/10.1021/acs.langmuir.6b01614
https://doi.org/10.1021/acs.langmuir.7b04259
https://doi.org/10.1002/polb.23906
https://doi.org/10.1017/s0022112083001512
https://doi.org/10.1017/s0022112097008343
https://doi.org/10.1016/j.jcrysgro.2003.08.017
https://doi.org/10.1017/s0022112009994046
https://doi.org/10.1016/j.jcrysgro.2019.02.060
https://doi.org/10.1016/j.ijnonlinmec.2018.10.015
https://doi.org/10.1017/jfm.2019.108
https://doi.org/10.1038/s41598-017-16582-0
https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.155
https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.073
https://doi.org/10.1016/j.colsurfa.2019.03.051
https://doi.org/10.1016/j.colsurfa.2019.03.051
https://doi.org/10.1017/jfm.2019.390
https://doi.org/10.1021/la4014027
https://doi.org/10.1016/j.physleta.2015.11.033
https://doi.org/10.1021/la00086a025
https://doi.org/10.1017/s0022112083001524
https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.088
https://doi.org/10.1016/j.jcrysgro.2007.11.164
https://doi.org/10.1063/1.5039149
https://doi.org/10.1021/la9023458
https://doi.org/10.1007/bf00372193
https://doi.org/10.1063/1.865836
https://doi.org/10.1063/1.868567
https://doi.org/10.1016/j.jnnfm.2011.11.001
https://doi.org/10.1021/acs.langmuir.7b00957


Physics of Fluids ARTICLE scitation.org/journal/phf

40S. Dash, A. Chandramohan, J. A. Weibel, and S. V. Garimella, “Buoyancy-
induced on-the-spot mixing in droplets evaporating on nonwetting surfaces,”
Phys. Rev. E 90, 062407 (2014).
41J. B. Brzoska, F. Brochard-Wyart, and F. Rondelez, “Motions of droplets on
hydrophobic model surfaces induced by thermal gradients,” Langmuir 9, 2220
(1993).

42K. Sefiane, J. R. Moffat, O. K. Matar, and R. V. Craster, “Self-excited
hydrothermal waves in evaporating sessile drops,” Appl. Phys. Lett. 93, 074103
(2008).
43J. Z. Chen, S. M. Troian, A. A. Darhuber, and S. Wagner, “Effect of contact
angle hysteresis on thermocapillary droplet actuation,” J. Appl. Phys. 97, 014906
(2005).

Phys. Fluids 31, 122101 (2019); doi: 10.1063/1.5125846 31, 122101-12

Published under license by AIP Publishing

https://scitation.org/journal/phf
https://doi.org/10.1103/physreve.90.062407
https://doi.org/10.1021/la00032a052
https://doi.org/10.1063/1.2969072
https://doi.org/10.1063/1.1819979

