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ABSTRACT
We carried out space experiments on thermocapillary convection in liquid bridges with large Prandtl number in the Tiangong-2 space lab-
oratory, studying the influence of geometrical parameters, including aspect ratio (Ar, height to diameter) and volume ratio (Vr). It is found
that there are two modes of temperature oscillation in thermocapillary convection in liquid bridges: low- and high-frequency oscillation,
corresponding to different critical temperature difference and geometrical parameters, respectively. In this paper, the geometrical effect on
the wave pattern and its transformation in the oscillating thermocapillary flow is studied in detail. Temperature signals from thermocouples
on five measuring spots are analyzed to distinguish different oscillation modes corresponding to characteristics of azimuthal waves, such as
wave number, traveling wave, and standing wave. Under a small volume ratio, the low-frequency traveling wave mode transits to the high-
frequency standing wave mode; under a large volume ratio, the high-frequency standing wave has abundant mode transformations, such as
standing wave → traveling wave, standing wave → traveling wave → standing wave, and so on, and the transformation process of the wave
mode is sensitive to the aspect ratio.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5143219., s

I. INTRODUCTION

Thermocapillary convection in a liquid bridge is a natural con-
vection driven by the surface tension gradient caused by the tem-
perature difference. With the increase in temperature difference, the
transition from steady flow to oscillatory flow occurs at a critical
Marangoni number Mac.1,2 Oscillatory thermocapillary flow is the
main reason for the appearance of striation in the crystal growth,
and so studying the flow in a liquid bridge has a significant mean-
ing to improve the quality of the crystal. Scientists have carried out
a great deal of research on the critical condition and the mechanism
of oscillatory convection. At present, liquid bridges have become an
important physics model for the study of thermocapillary instability.

Hydrothermal wave, a widely used explanation for such an
oscillatory convection, was first proposed by Smith and Davis3 using
linear-stability analysis (LSA). The method of LSA was soon used
to analyze the thermocapillary instability in liquid bridges. Xu and
Davis4 studied an infinite liquid bridge and obtained the hydrother-
mal waves with azimuthal wave number m = 0 and m = 1. The
hydrothermal wave of m = 1 traveled along the direction of surface
flows, while the hydrothermal wave of m = 0 propagated opposite to
the direction of surface flows. The existence of hydrothermal waves
was validated by the space experiment of Schwabe,5 who investi-
gated a long liquid bridge in a sounding rocket and found that
the hydrothermal wave of m = 1 was traveling counter to the flow
direction.
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The azimuthal wave number (m) is influenced by the Prandtl
number (Pr) of the fluid. Xu and Davis4 pointed out that, if the
heat dissipation on the free surface was neglected, the critical wave
number was m = 1 when Pr < 62.2, while the critical wave num-
ber changed to m = 0 when Pr > 62.2. Xun et al.6 demonstrated
that, if the liquid bridge was finite, the critical wave number would
transform from m = 2 to m = 1 with Pr being increased to 28. Vel-
ten et al.7 validated the existence of m = 0 wave and plotted a map
of transition with the increase in Marangoni number Ma. Frank
and Schwabe10 observed various oscillatory modes, including the
m = 1, 2 rotating wave and pulsating wave. Melnikov et al.8 observed
the mode of m = 1 and the mixed mode of m = 1 + 2 during the
transition to chaos. Mixed mode of m = 0 + 1 was discovered by
Shevtsova et al.9 However, Frank and Schwabe10 claimed that the
m = 0 waves and the obliquely running waves were not observed.
Ryzhkov11 reckoned that the mode of m = 0 did not exist, but instead
they found a new critical branch with m = 1. This new branch, which
was ignored by Xu and Davis,4 was closer to the result of Schwabe.5

The azimuthal wave number of hydrothermal waves still has a
dispute.

The geometry of a liquid bridge has a significant effect on
the stability of thermocapillary convection. Most studies focus on
the aspect ratio (Ar) effect in a cylindrical liquid bridge (volume
ratio Vr = 1.00). Preisser12 found that the relationship between the
wavenumber m and the aspect ratio Ar was m × Ar = 1.1 through
ground experiments. As the aspect ratio decreases, the wavenumber
of critical oscillation shows an increasing trend. On the International
Space Station (ISS), Japanese scientists conducted space experiments
on liquid bridges with different aspect ratios and large Prandtl num-
bers (Pr = 67 and 207).13,14 They found that the oscillatory flow with
m = 1 was related to a three-dimensional unsteady roll. When 1.00
≤ Ar ≤ 1.25, the roll propagated along the direction of surface flow;
when Ar ≥ 1.25, the roll propagated opposite to the direction of sur-
face flow, and the latter was consistent with the hydrothermal waves
observed by Schwabe.5

Hu et al.15 first discovered the volume ratio (Vr) effect in
ground experiments, in which the critical temperature difference is
very sensitive to the volume ratio. They pointed out that the criti-
cal curve was divided into two branches with a “gap” in the middle,
where the flow was steady. Chen and Hu16 carried out linear stabil-
ity analysis to investigate the volume ratio effect and found that the
two-branch theory existed only when the Pr of the liquid bridge is
large. Xun et al.17 re-analyzed the stability of the “gap” and suggested
that a new oscillation mode with m = 0 exists in the “gap.” Wang
et al.18 demonstrated that Hu’s two-branch theory was available to
the liquid bridge with a large diameter through ground experiment.
Recently, thermocapillary convection in an annular pool was stud-
ied on the SJ-10 satellite by Kang et al.19–21 They found that Hu’s
two-branch theory was also available to the volume ratio effect of an
annular pool.

The two branches of the critical curve infer different wave
modes. However, which oscillation modes the two branches of crit-
ical curve correspond to are still academically controversial. Chen
and Hu16 and Emkov22 proved by linear-stability analysis that
the two branches of the critical curve corresponded to the same
azimuthal wave number m = 1 (Ar = 1). However, Shevtsova et al.23

believed that the two branches corresponded to different azimuthal
wave numbers, namely, m = 1 for a slim liquid bridge and m = 2 for

a fat liquid bridge. Sim and Zebib24 also discovered traveling waves
with m = 1 and m = 2 through numerical simulation, but they were
the opposite to the result of Shevtsova. Masud et al.25 put forward
that the change of basic flow caused the two branches of the critical
curve, and the basic flow in the slim bridge consisted of two pairs of
rolls, while the basic flow in the fat bridge consisted of one pair of
rolls.

In the work described herein, we have carried out space exper-
iments in China’s Tiangong-2 (TG-2) space laboratory to systemat-
ically study how oscillatory thermocapillary flow is affected by the
geometry of a liquid bridge.26 The two-branch theory is expanded
from the volume ratio effect to the geometry effect, and two oscil-
latory zones are discovered in the Vr–Ar parameter space. The
zones correspond to different modes: low-frequency mode and high-
frequency mode. The low-frequency mode has a lower critical tem-
perature difference, and it happens in the slender liquid bridge with
a small volume ratio or a large aspect ratio; the high-frequency
mode has a higher critical temperature difference, and it happens
in the dumpy liquid bridge with a large volume ratio or a small
aspect ratio. These characteristics are consistent with the two-branch
phenomenon discovered by Hu et al.15 The critical condition, the
frequency characteristic, and transition of frequency in our space
experiment were discussed in Ref. 26. However, the wave number
and the spatial characteristics of wave were largely unknown.

In this paper, we studied the wave mode and the wave transfor-
mation in the thermocapillary convection of a liquid bridge with a
gradual increase in temperature difference. Based on the oscillation
measured by thermocouples installed on different spots, the wave
characteristics, such as the azimuthal wave number, the traveling
wave (TW), and the standing wave (SW), are analyzed depending
on the aspect ratio and the volume ratio. This study gives a more
clear description of the wave modes, and a map of supercritical
transformation is concluded.

II. SPACE EXPERIMENTS AND DATA ANALYSES
A. Space experiments

Space experiments on thermocapillary convection in liquid
bridges with large Prandtl number is a project of fluid dynamics
experiments carried out in the space laboratory TG-2. The aspect
ratio (height to diameter) Ar and volume ratio Vr are key parameters
in these space experiments. The aspect ratio is defined as Ar = H/D,
where the diameter D = 20 mm and the height H = 3 mm–22 mm,
and the aspect ratio is in the range of 0.15–1.10. The volume ratio is
defined as Vr = V/V0. V is the volume of liquid, which is calculated
by the volume of liquid injection or the ∫πr2(z)dz, where r(z) repre-
sents the free surface of a liquid bridge. V0 = πD2H/4 is the volume
of the circular column between the upper and lower bridge columns.
The range of volume ratio in our space experiment is Vr = 0.45–1.15.
The volume ratio Vr can represent the shape of the free surface of the
liquid bridge. Studying the joint effect of aspect ratio Ar and volume
ratio Vr on the thermocapillary instability is an important feature of
our space experiments.

In order to form thermocapillary convection inside the liquid
bridge, a temperature gradient in the axial direction is established
to generate the surface tension gradient for driving thermocapillary
convection. The temperature difference is established by gradually
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heating one end of the liquid bridge and keeping the other end
at 1 ○C lower than ambient temperature. The critical Marangoni
number Mac is the critical condition of thermocapillary convection
in the liquid bridge, and it is defined as

Ma = ∣σT ∣ΔTH
ρνκ

,

where ρ is the density, ν is the kinematics viscosity, σT is the sur-
face tension temperature coefficient, ΔTc is the temperature differ-
ence, and κ is the thermal diffusivity. When the temperature dif-
ference exceeds the critical value ΔTc, thermocapillary convection
will transit from the steady state [Fig. 1(a)] to the oscillatory state
[Fig. 1(b)].

The fluid medium used in the experiments is 5 cS silicone oil,
a product of Shin-Etsu, whose Prandtl number is Pr = ν

κ = 67. Since
the viscosity of silicone oil decreases with the increase in tempera-
ture, the value of viscosity, ν̄, at the average temperature of a liquid
bridge, Tm = T0 + ΔT/2 − 1, is used in the analysis. The fluid vis-
cosity depending on the temperature is provided in the data sheet of
Kf-96 silicone oil,

log10νT =
763.1

273 + T
− 2.559 + log10ν25.

Five thermocouples near the cold plate capture the oscillation
signal during the entire process, and both the critical and supercrit-
ical transitions can be clearly observed. As shown in Fig. 1(a), the
temperature measuring points by thermocouples marked as T1, T2,
T3, T4, and T5 are in the plane, which is 2.5 mm to the cold end, and
distributed in azimuth angles of 0○, −90○, −180○, −225○, and −270○,
respectively. The propagation of oscillation generates waves, and the
phase of oscillation depends on the measuring spot; therefore, from
temperature signals of T1 ∼ T5, the wave modes of flow field can be
analyzed.

Wave mode transformation in the liquid bridge occurs as the
temperature difference increases. For the liquid bridge at Ar = 0.5
and Vr = 0.54 (experimental results are shown in Fig. 2), the critical
temperature difference ΔTc1 is 14.89 ○C. As the temperature differ-
ence increases to ΔTc2, obvious secondary transition appears. In this
paper, spatial wave characteristics of thermocapillary convection are
analyzed by phase analysis method together with principal compo-
nent analysis method, and not only is the transformation mechanism
of wave mode that causes the change in oscillation frequency discov-
ered, but also the underlying wave mode transformation at the same
frequency is found.

FIG. 2. Thermocouple signals during linear temperature increasing process.

B. Phase analysis of thermocapillary oscillation signals
There are two probable azimuthal wave modes in oscillatory

thermocapillary flow: traveling waves and standing waves. Different
wave mode results in the different phase of the oscillations measured
by the five thermocouples, and it has different phase characteristics.
The oscillation signals in the small window in red color shown in
Fig. 2 in the liquid bridge at Ar = 0.5 and Vr = 0.54 are shown in
Fig. 3(a), which are obtained by deducting a long-term trend from
original temperature signals. Marking the wave trough by dotted
lines, we find that the trough passes thermocouples in turn as T5, T4,
T3, T2, and T1. Therefore, we judge that this kind of oscillation is a
counterclockwise traveling wave. A tiny change in volume ratio may
cause the change in critical mode. The oscillation signals of a liquid
bridge at Ar = 0.5 and Vr = 0.58 are shown in Fig. 3(b). By drawing
lines at time t1 and t2, we find that T4 and T5 are completely syn-
chronized, and T2 is opposite to them. We infer that the oscillation
is caused by an m = 1 standing wave where the nodes locate near T1
and T2 and the amplitudes of T1 and T2 are very small. T1 and T2
are near the node of standing wave with smaller amplitudes while
are double-frequency harmonic oscillations discussed in Sec. III B.

The phase relationship between thermocouple signals is calcu-
lated by cross-correlation method as follows:

First, remove the long-term trend in the temperature and nor-
malize the oscillation signals as Ti(t), select one signal as a reference
signal (T5 is selected in this paper), and define the phase of reference

FIG. 1. Schematic diagram of thermocapillary convection
and temperature measuring points in a liquid bridge. (a) 2D
steady flow and (b) 3D oscillatory flow (wave).
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FIG. 3. Temperature signals from five thermocouples. (a) Ar = 0.5, Vr = 0.54; (b) Ar = 0.5, Vr = 0.58.

signal as 0○ or 360○. Then, calculate the cross-correlation function
between other signals and the reference signal. At a time t = t0, the
correlation function between signal i (i = 1, 2, 3, 4, 5) and signal 5
can be expressed as

Ri5(τ, t0) =
t0+w/2

∫
t0−w/2

Ti(t + τ)T5(t)dt, (1)

where w is the width of the sampling window, which is set five times
larger than the oscillation period. In order to analyze the change of
phase with time, we use a moving window to calculate the corre-
lation functions. The time corresponding to the cross-correlation
peak value, τp

15, is the time needed for the oscillation signal propa-
gating from thermocouple 5 to thermocouple i. Then, find the main
frequency fm of these signals by Fourier transform. At last, phase
differences between signals 1–4 and signal 5 are obtained as

Δφi5 = 180 ⋅ fm ⋅ τpi5. (2)

The oscillation of thermocapillary convection can be deter-
mined to be a traveling wave or standing wave by phase differences.
Table I shows the phase differences of temperature signals shown
in Figs. 3(a) and 3(b). In a liquid bridge at Vr = 0.54, the phases
of T1–T5 are approximately 270○, 180○, 90○, 45○, and 360○, respec-
tively, and it is the phase relationship of a typical counterclockwise
traveling wave with m = 1. In a liquid bridge at Vr = 0.58, the
phase differences of the temperature oscillations are approximately
0○, 180○, and 360○, and it is a typical standing wave.

TABLE I. Phase difference of thermocouple signals. TW: traveling wave; SW:
standing wave.

Δφ15 Δφ25 Δφ35 Δφ45 Δφ55

Ar = 0.5, Vr = 0.54 [Fig. 3(a), TW] 269○ 179○ 96○ 44○ 0○

Ar = 0.5, Vr = 0.58 [Fig. 3(b), SW] 355○ 186○ 172○ 6○ 0○

C. Mode analysis of complex oscillation
Principal component analysis is a statistical method for dimen-

sion reduction. By this dimension reduction technique, independent
and unrelated oscillations are extracted from multiple thermocouple
signals. In experiments, temperature signals from five thermocou-
ples form a 5 × n signal array, and they are not independent but
correlated. For the traveling wave, as an example, the measured sig-
nal is related to the position of measuring point (ri, θi) and can be
expressed as

X(ri, θi, 0) = A(ri) cos[(θi + ωt + ψ)]

= A(ri)[cos(θi + ψ) cosωt − sin(θi + ψ) sinωt],

where ω and ψ are the angular frequency and the initial phase of the
cosine wave.

Any oscillation caused by a sinusoidal traveling wave can be
expressed as a linear combination of two orthogonal functions, cos
ωt and sin ωt. Therefore, suppose there are m × n signals, which are
time sequences captured m thermocouples, the dimension of signal
can be reduced from m × n to 2 × n if the wave is a traveling wave.

Similarly, for an ideal standing wave, its signal can always be
expressed as

X(ri, θi, 0) = A(r)cosmθicos(ωt + ψ).

Theoretically, the temperature oscillation of a standing wave only
needs one function, cos(ωt + ψ), to express; therefore, its dimension
can be reduced to a 1 × n signal array.

By principal component analysis, the signals can be decom-
posed into five orthogonal components, wi (i = 1, . . ., 5), and cor-
responding eigenvectors, λi(i = 1. . .5). In physics, λi represents the
energy of oscillation component wi, and it is defined as

λi =
5

∑
k=1
(Tkwi)2 (i = 1, 2, . . . , 5).
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FIG. 4. Principal component analysis of thermocouple signals. (a) Ar = 0.5, Vr = 0.54; (b) Ar = 0.5, Vr = 0.58.

The energy proportion of each principal component, Pi, is
defined as

Pi = λi/
5

∑
k=1

λk (i = 1, 2, . . . , 5).

The modes of traveling wave or standing wave can be judged
by energies of principal components. Theoretically, in the standing-
wave state, the proportion of the first principal component, P1, is
approximately 100%; in the traveling-wave state, the proportions of
the first and second principal components, P1 and P2, are 50% each,
and with the same frequency and waveform.

Principal component analysis is applied to the critical oscilla-
tions in Fig. 3(a) (Ar = 0.50 and Vr = 0.54) and the oscillations in
Fig. 3(b) (Ar = 0.50 and Vr = 0.58), respectively. They are decom-
posed into five orthogonal principal components, w1, w2, . . ., w5, as
shown in Figs. 4(a) and 4(b). Table II lists the frequencies, f i, eigen-
value, λi, and energy proportion, Pi. When Ar = 0.50 and Vr = 0.54,
the first and second principal components have the same frequency,
and their energy proportions are 60% and 39%, respectively. These
two components take 99% of the total energy, and the signals can be
dimensionally reduced to a 2 × n signal array, which conforms to
a traveling wave. When Ar = 0.50 and Vr = 0.58, the first principal
component constitutes 83.6%, and the flow oscillation appears as a
standing wave at this time.

In the Ar = 0.50 and Vr = 0.54 case, it is found that the sec-
ond principal component P2 constitutes 15.1%, which should be 0 in
theory. We find that the second principal component is a double-
frequency oscillation of the first principal component. This means
that the wave mode is a mixed oscillation of fundamental frequency
and double frequency. The advantage of principal component anal-
ysis is that the oscillation can be decomposed into different principal
components so that the underlying oscillation mode may be discov-
ered. The double frequency oscillation is decomposed from signals
by principal component analysis, and it is found to be a new wave
mode with m = 0 (see Sec. III B).

III. OSCILLATION MODES
A. Traveling wave and standing wave with m = 1

The azimuthal wave number, m, is a key parameter in rep-
resenting oscillatory thermocapillary flow, and it is influenced by
parameters such as the aspect ratio Ar, Prandtl number, and Biot
number. The fluid medium in our space experiments is 5 cSt silicone
oil with Pr = 69, and the wave number given by linear stability anal-
ysis is m = 1. Wang et al.18 found through ground experiments that
the wave number m in a short bridge is affected by the volume ratio.
Shevtsova et al.23 considered that the oscillation in a liquid bridge at

TABLE II. Principal component analysis of thermocouple signals. TW: traveling wave; SW: standing wave.

w1 w2 w3 w4 w5

Ar = 0.5 Frequency fi (Hz) 0.0585 0.0585 0.1220 0.0146 0.1220
Vr = 0.54 λi 0.0930 0.0613 0.0009 0.0003 0.0002
(TW) Pi (%) 59.73 39.37 0.58 0.19 0.13

Ar = 0.5 Frequency fi (Hz) 0.0878 0.1707 0.1707 0.0829 0.2537
Vr = 0.58 λi 0.1721 0.0311 0.0014 0.0010 0.0002
(SW) Pi (%) 83.62 15.11 0.68 0.49 0.10
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a small volume ratio is the mode of m = 1, and the oscillation in a liq-
uid bridge at a large volume ratio is the mode of m = 2; therefore, the
difference in azimuthal wave number m leads to the two branches
of critical curve. However, linear stability analyses of Xun et al.6 and
Ermakov22 indicated that both branches correspond to the mode of
m = 1. Therefore, it is necessary to study the azimuthal wave number
under different aspect ratios and volume ratios.

In polar coordinates, the azimuthal traveling wave is approxi-
mately expressed in terms of trigonometric functions as

X(r, θ, z) = A(r)cos[(mθ + kz + ωt + ψ)]. (3)

According to stability theory and the space experiment by
Schwabe,5 the propagation direction of hydrothermal wave is along
a tilt direction, that is, m ≠ 0 and k ≠ 0. However, the azimuthal wave
mode has been discovered in the ground experiments on short liq-
uid bridges, that is, m ≠ 0 and k = 0. Although we cannot decide the
axial wave number, k, we can decide the azimuthal wave number, m,
from phase differences of signals. As shown in Fig. 3(a), in the liq-
uid bridge at Ar = 0.5 and Vr = 0.54, the phases of signals T1 ∼ T5
obtained through correlation are 269○, 179○, 96○, 44○, and 0○ in turn.
The azimuthal angle difference between thermocouple measuring
points 1, 2, 3, and 5 is Δθ = 90○, and the adjacent phase difference,
Δϕ, is approximately −90○, with phase differences between measur-
ing points 1–2, 2–3, 3–5, and 5–1 being Δϕ12 = −90○, Δϕ23 = −83○,
Δϕ35 = −96○, and Δϕ51 = −91○, respectively. The azimuthal wave
number is equal to the ratio of phase difference to azimuthal angle of
signals, so m = |Δϕ/Δθ| = 1. As a result, when Ar = 0.5 and Vr = 0.54,
the oscillatory thermocapillary flow is a traveling wave mode with
m = 1 [Fig. 5(a)].

A standing wave can be interpreted as the superimposition of a
clockwise wave and a counter-clockwise wave,

X(r, θ, z) = A(r){cos[(mθ + kz + ωt + ψ)]
+ cos[(−mθ + kz + ωt + ψ)]}. (4)

By sum-to-product formulas of trigonometric function, we get

X(r, θ, z) = A(r)cosmθcos(kz + ωt + ψ). (5)

As can be seen in Eq. (5), on the standing wave, the phase
difference between any two signal points on the same horizontal sec-
tion is 0○ or 180○, and the amplitude of signal, A(r)cos mθ, varies
with the change of azimuthal angle, θ. For the oscillatory thermo-
capillary flow in the liquid bridge at Ar = 0.5 and Vr = 0.58, the

phases of T1 ∼ T5 are 355○, 186○, 172○, 6○, and 0○, and the posi-
tions of wave nodes are judged to be in between T1 and T2 as well
as T3 and T4. For the standing wave with m = 1, there are two wave
nodes with minimum amplitude and two wave loops with maximum
amplitude. By signal amplitudes in Fig. 3(b), it is judged that the
positions of wave nodes are approximately at T1 and T3; the posi-
tions of wave loops are approximately at T2 and T5. Therefore, this
oscillatory thermocapillary flow is a standing wave mode with m = 1
[Fig. 5(b)].

B. Harmonic mode with m = 0
On an ideal standing wave with m = 1, there are two wave loops

and two wave nodes, and the amplitudes of wave nodes should be
zero. However, the oscillation amplitudes at the nodes [such as T1
and T3 in Fig. 3(b)] are not zero, and a double-frequency oscilla-
tion appears there. From principal component analysis, as shown in
Fig. 4(b), the component w1 is the oscillation with the m = 1 stand-
ing wave and the frequency is 0.0878 Hz. The components w2 and
w3 are double-frequency oscillation modes whose frequencies are
0.1707 Hz. These two kinds of principal component are transferred
into two different physical oscillations, as shown in Fig. 6.

Figure 6(a) shows the physical oscillations of component w1. It
is an ideal oscillation signals of standing wave with m = 1, and their
phases are 0○, 186○, 186○, 0○, and 360○. Figure 6(b) shows the phys-
ical oscillations of components w2 and w3. The amplitudes of this
double-frequency oscillation are 0.17 ○C, 0.46 ○C, 0.21 ○C, 0.18 ○C,
and 0.26 ○C in the five thermocouple signals. Double-frequency
oscillations exist not only at wave nodes but in the entire flow field.
By phase analysis on double-frequency signals, it is found that the
phase differences of five thermocouple signals are 0○. Therefore, the
double-frequency oscillation is an oscillation mode with m = 0, and
temperature oscillations on a circumference reach their maximum
value or minimum value in synchronization.

The physical meaning of the m = 0 wave is a 2D axisymmetric
wave that the oscillations at different azimuth positions are synchro-
nized. There are two possible wave forms, which are radial wave and
axial wave. According to the present arrangement of thermocouples,
it is difficult to demonstrate which wave form it is. The wave form
can be verified by numerical simulation or linear stability analysis.
The linear stability analysis by Smith and Davis3 shows that them = 0
wave is traveling wave from the cold end to the hot end, which may
be available to this m = 0 mode. The m = 0 mode only occurs in the
liquid bridge with small volume ratio, while it cannot be observed at

FIG. 5. Schematic diagrams of traveling wave and standing
wave with m = 1. (a) Traveling wave (Ar = 0.5, Vr = 0.54).
(b) Standing wave (Ar = 0.5, Vr = 0.58).
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FIG. 6. Decomposition of principal components of standing wave signals in Fig. 3(b). (a) Oscillation signals of component w1. (b) Oscillation signals of components w2 and w3.

a large volume ratio in the liquid bridge with Ar = 0.5, 0.6, 0.7, 0.9,
and 1.0. This supports Ryzhkov’s theory11 that the m = 0 wave does
not happen in the critical instability of a cylindrical liquid bridge
(Vr = 1). The mixed mode of m = 0 + 1 wave found by Shevtsova
et al.9 may be different from the present work, because they found
that them = 0 is the wavenumber of the critical instability. Therefore,
the harmonic mode of them = 1 standing wave is a double-frequency
m = 0 wave in the liquid bridges with small volume ratio.

C. Harmonic mode with m = 2
In a liquid bridge at a small volume ratio, after a standing wave

with m = 1 has transformed into a traveling wave with m = 1, the
double-frequency harmonic mode will appear in the traveling wave.
For example, in the liquid bridge at Ar = 0.5 and Vr = 0.7, when
the critical temperature difference of 16.6 ○C is reached, the crit-
ical oscillation is the high-frequency standing wave mode with m

= 1. When ΔT ≥ 25.9 ○C, the high-frequency mode transforms from
the standing wave to the traveling wave. Figure 7(a) shows oscilla-
tion signals after the standing wave has transformed into the trav-
eling wave (temperature difference ΔT = 30.8 ○C). The amplitudes
and waveforms of all thermocouple signals are almost exactly the
same, and this is a typical traveling wave signal. The fundamental
frequency is 0.0781 Hz; peak-to-peak values are 1.45 ○C, 1.74 ○C,
2.02 ○C, 2.38 ○C, and 1.87 ○C; and phase relations are 275○, 182○, 92○,
38○, and 0○.

From Fig. 7(a), we can see that one main peak can be subdivided
into two sub-peaks with obvious characteristics of double-frequency
oscillation. The harmonic mode in the traveling wave with m = 1
has characteristics of traveling wave. It is found in experiments that
the signals measured by thermocouples at different positions have
the same waveform, which means that the azimuthal traveling wave
retains its waveform unchanged in azimuthal propagation. There-
fore, the azimuthal mode can be reflected by the waveform in a

FIG. 7. Signals of traveling wave and its
azimuthal waveform. (a) Traveling wave
with m = 1 superimposed with the har-
monic mode with m = 2. (b) Azimuthal
waveform.
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period, as shown in Fig. 7(b). It is clearly observed that this azimuthal
wave mode with m = 1 has characteristics of an azimuthal wave
mode with m = 2.

In fact, any traveling wave is not a sine or cosine mode with a
unique wavenumber in the azimuthal direction, but can be consid-
ered as a superimposition of sine or cosine modes with m = 1, 2, 3,
. . ., If the energy of a harmonic wave is not high enough, there is only
one peak and one trough in a period, and this oscillation is shown in
Fig. 3(a), in which the wave mode is a traveling wave with m = 1. If
the phenomenon of two sub-peaks appears, as shown in Fig. 7, we
believe that the traveling wave at this time is predominated by the
m = 1 traveling wave and mixed with the double-frequency mode
with m = 2. This double-frequency traveling wave with m = 2 occurs
at the transition from the standing wave (m = 1, low-frequency
mode) to the traveling wave (m = 1, high-frequency mode).

IV. TRANSFORMATION PROCESSES OF WAVE MODES
A. Oscillation characteristics and transformations of
low-frequency mode and high-frequency mode

Hu et al.15,16 put forward the theory of volume ratio effect first
as shown in Fig. 8(a), where the marginal curves were separated
into two branches with a stable gap. This conclusion was supported
by previous studies by Hu et al.,15 Wang et al.,18 and Shevtsova
et al.27 However, Sumner28 and Masud et al.25 opposed the exis-
tence of “gap,” and they ascribed the “gap” phenomenon to the

experiment limitations. Sakurai et al.29 discovered that the gap was
formed in 1 g condition but absent in 0 g condition (in drop tower).
In our space experiment, the marginal curve exhibits novel config-
uration, the two branches are intersectant, the left branch is a “

C

”
type, and the right branch extends into the left branch. The inter-
section of the two branches increases with the aspect ratio. Through
the careful analysis, we believe that this result is the expansion of the
volume ratio effect proposed by Hu. It provides important issues for
the future study of thermocapillary instability in a liquid bridge.

The two-branch phenomenon has been found in our space
experiments when the aspect ratio Ar ≥ 0.5. The two branches of
critical curve correspond to a low-frequency oscillation mode and
a high-frequency oscillation mode, respectively. The low-frequency
oscillation is the mode of the left-branch whose critical value is small,
while the high-frequency oscillation is the mode of the right branch
whose critical value is large and decreases with the increase in vol-
ume ratio. With an increase in temperature, the curves of critical
condition for the transition of thermocapillary convection in the liq-
uid bridge from steady flow to oscillatory flow, shown as pink dotted
lines in Fig. 8(b), are marked as the first critical temperature differ-
ence. There should be a volume ratio Vrc1, which is exactly at the
demarcation point between the low-frequency mode and the high-
frequency mode, where the critical temperature difference and oscil-
lation frequency have jump phenomena with the change in volume
ratio.

Taking the liquid bridge at the aspect ratio Ar = 0.5 as an exam-
ple, Fig. 9 shows the critical temperature difference with the change

FIG. 8. Curves of volume ratio effect.
(a) Volume ratio effect by Hu et al.15

(b) Volume ratio effect by TG-2 space
experiments.

FIG. 9. Critical temperature difference
and oscillation frequency at Ar = 0.5.
(a) Critical temperature difference. (b)
Oscillation frequency.
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in volume ratio. The volume ratio at the demarcation point between
the low-frequency mode and the high-frequency mode is Vrc1
= 0.56–0.58. Near this volume ratio, both the critical temperature
difference and oscillation frequency have jump phenomena. When
the volume ratio is Vr = 0.54, the critical temperature difference is
14.89 ○C, and the oscillation frequency is 59.3 mHz. Besides signifi-
cant differences in the critical temperature difference and oscillation
frequency, the wave characteristics are distinct. In the liquid bridge
at Ar = 0.5 and Vr = 0.54, as shown in Fig. 3(a), the low-frequency
mode is an azimuthal traveling wave with m = 1; in the liquid bridge
at Ar = 0.5 and Vr = 0.58, as shown in Fig. 3(b), the high-frequency
mode is an azimuthal standing wave with m = 1. Therefore, the crit-
ical oscillations of the low-frequency mode and the high-frequency
mode correspond to the traveling wave (m = 1) and the standing
wave (m = 1), respectively.

Figure 10(a) shows the phase relationship between the ther-
mocouple signals at the onset of oscillation. In liquid bridges at
Vr = 0.54 and 0.58, the phases of T1–T5 are about 270○, 180○, 90○,
45○, and 360○. This is the phase relationship of a typical counter-
clockwise traveling wave with m = 1. When Vr ≥ 0.62, the phase
differences of temperature oscillation are about 0○, 180○, and 360○,
and this is a typical standing wave oscillation. Figure 10(b) shows
proportions of principal components of critical oscillation at differ-
ent volume ratios. When Vr ≤ 0.56, the first principal component

takes about 60%, and the flow oscillation appears as a traveling wave.
When Vr ≥ 0.62, the first principal component takes about 90%, and
the flow oscillation appears as a standing wave. Therefore, the wave
number of the liquid bridge at Ar = 0.5 is m = 1, and the critical wave
is the traveling wave when Vr < Vrc1, while it is the standing wave
when Vr > Vrc1.

Critical conditions and critical oscillation modes are mainly
affected by geometric parameters such as the aspect ratio and the
volume ratio of a liquid bridge. Figure 11(a) shows the distribution
map of critical oscillation period in Vr–Ar space, where the low-
frequency mode and the high-frequency mode correspond to Zone
1 and Zone 2, respectively. Figure 11(b) shows the distribution map
of critical oscillation mode, where Zone 1 corresponds to the travel-
ing wave with m = 1, and Zone 2 corresponds to the standing wave
with m = 1. The demarcation line of the two zones in Vr–Ar space
is approximately a straight line: Ar − 3.2Vr + 1.4 = 0. Therefore, the
critical wave mode can be judged from the geometric parameters in
experiments.

With the increase in temperature difference, the low-frequency
oscillation mode (in Zone1) is unstable and will transit to the
high-frequency oscillation mode. This transition of frequency can
be explained by the competition of the two branches, as shown
in Fig. 8(b), when Vr < Vrc1. From the view of azimuthal wave
mode, the transition of frequency leads to a transformation from the

FIG. 10. Phase of critical oscillation and
proportion of principal component vs Vr
at Ar = 0.5. (a) Phases of five thermocou-
ple signals vs volume ratio Vr. (b) Pro-
portions of principal components Pi vs
volume ratio Vr.

FIG. 11. Distribution maps of oscillation
period and wave modes in Vr–Ar space.
(a) Critical oscillation period.26 Repro-
duced with permission from Kang et al.
J. Fluid Mech. 881, 968 (2019). Copy-
right 2019 Cambridge University Press.
(b) Wave modes (yellow: standing wave;
blue: traveling wave).
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FIG. 12. Transition process in the liquid bridge at Ar = 0.5 and Vr = 0.54. (a) Temperature signals and time-frequency map. (b) Phase relationship and proportion diagram of
principal components.

traveling wave to the standing wave with m = 1. Figure 12 shows the
transition process of thermocapillary convection in a liquid bridge
at Ar = 0.5 and Vr = 0.54. The original signal, time-frequency graph,
phase diagram, and principal components of T5 are shown in the
figure. The critical oscillation has characteristics of standing wave
with its oscillation phase of about 0○ or 180○, and the proportion of
first principal components P1 is very large, i.e., about 80%. However,
the standing wave transforms to a stable traveling wave immediately
with the first principal component decreasing to 60% quickly and
phases changing to 269○, 179○, 95○, 44○, and 360○. We consider the
critical mode as the stable oscillation after onset, and the transient
phenomena of standing wave in the initial stage are not discussed in
this paper. Therefore, we believe that the critical oscillation mode is
a low-frequency traveling wave with m = 1.

As shown in Fig. 12, the oscillation wave mode of thermocap-
illary convection changes obviously when time is at about 6500 s.
The oscillation frequency increases abruptly as seen in the time-
frequency map, which indicates that the oscillation transits from the
low-frequency mode to the high-frequency mode. It is found from
the phase diagram that the oscillation phase gradually evolves to
0○ or 180○, and the energy proportion of the first principal com-
ponent increases to more than 80%, so the wave mode transforms
from a traveling wave to a standing wave. The mixed oscillation pro-
cess when the traveling wave transforms to standing wave can be
observed in both phase diagram and proportion diagram of princi-
pal components. This mixed oscillation exists when the temperature
difference is 25.9 ○C < ΔT < 27.4 ○C. This has also verified the ratio-
nality of critical curves in Fig. 8(b). In addition, a second significant
change appears in the amplitude when time is at about 9900 s, but it
keeps in a standing wave mode with no frequency change. By analy-
sis, this is because of the change in positions of standing wave nodes.
Since the positions of standing wave nodes have randomness, the
change in positions of wave nodes does not belong to the change of
wave mode.

B. Wave mode transformations in liquid bridges
at different aspect ratios

The high-frequency mode appears as a standing wave with
m = 1 no matter it is transformed from the steady state directly in
a liquid bridge with a large volume ratio or from the low-frequency
mode in a liquid bridge with a small volume ratio. However, for
the high-frequency mode, the standing wave is not an absolutely
stable oscillation form. When the temperature increases, the high-
frequency wave mode has various transformations and evolutions.
Experiments show that the transformation process is very sensitive
to the aspect ratio; therefore, for liquid bridges at different aspect
ratios, we study the volume ratio dependence of transformation
process between the traveling wave and the standing wave.

1. Liquid bridges at Ar = 0.5–0.7
In order to give a vivid description of oscillation characteris-

tics of oscillatory thermocapillary flow, we show the wave signals
of thermocouples T1 and T2 in two periods simultaneously. Since
there is a 90○ azimuthal angle between measuring points T1 and T2,
when the traveling wave with m = 1 appears, the phase difference
between the two signals is 90○, and their amplitudes are close; when
the standing wave with m = 1 appears, the phase difference between
them is 0○ or 180○, and their amplitudes exhibit a difference. For
example, Fig. 13(a1) shows wave signals at the temperature differ-
ence of ΔT = 16.83 ○C, and T1 and T2 have the same waveform with
a phase difference of 90○, so the oscillation is a traveling wave. Fig-
ure 13(a2) shows wave signals at the temperature difference of ΔT
= 28.68 ○C, and the amplitude of T2 is big, but the amplitude of T1
is small and the frequency of T1 is as twice as that of T2. According
to analyses in Sec. III B, it is a standing wave oscillation with m = 1
accompanied by a double-frequency harmonic wave with m = 0. The
amplitude of T1 is small because the thermocouple T1 is close to the
wave node of standing wave; the amplitude of T2 is large because
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FIG. 13. Oscillation waveforms at different volume ratios when Ar = 0.5. (a) Vr = 0.54. (b) Vr = 0.62. (c) Vr = 0.70. (d) Vr = 0.78 (red: T1; blue: T2).

the thermocouple T2 is close to the wave loop of standing wave. It
is the double-frequency harmonic wave with m = 0 that makes T1
a double-frequency signal. Similarly by analysis, we know that the
oscillation in Fig. 13(c) is a traveling wave with m = 1 accompanied
by a double-frequency harmonic wave with m = 2.

Figure 13 shows waveforms at different temperature differences
and volume ratios when the aspect ratio Ar = 0.5. When Vr = 0.54
[Fig. 13(a)], the critical oscillation is a low-frequency traveling wave
withm = 1, and then it transforms to a high-frequency standing wave
with m = 1 accompanied by a double-frequency harmonic wave with
m = 0. When Vr = 0.62 [Fig. 13(b1)] and Vr = 0.70 [Fig. 13(c1)],
the critical oscillation is a high-frequency standing wave with m
= 1 accompanied by a double-frequency harmonic wave with m = 0.
When Vr = 0.62, the high-frequency standing wave in the liquid
bridge is very stable. When Vr = 0.70, the standing wave mode will
transform into the traveling wave mode in the liquid bridge, and
it finally develops into a high-frequency traveling wave with m = 1
accompanied by a double-frequency harmonic wave with m = 2. As
shown in Fig. 13(c2), there are two obvious sub-peaks on wave sig-
nals. The wave mode with m = 0 in the standing wave and the wave
mode with m = 2 in the traveling wave are both double-frequency
oscillations. With the increasing of volume ratio, the energy of the
double-frequency oscillation decreases gradually. When Vr = 0.78
and 0.90, the transformation process from standing wave to traveling
wave is also observed, but no obvious double-frequency oscillation
mode with m = 0 or m = 2 is found.

Figure 14 shows the transformation map of supercritical modes
when Ar = 0.5. The conditions of the critical waves and the super-
critical transitions are represented by three curves. The first curve
on the left is a low-frequency traveling wave mode, and it trans-
forms into the standing wave mode with the increase in Ma num-
ber. The second curve is a high-frequency standing wave mode,
and its critical Ma number decreases with the increase in volume
ratio. With the increase in Ma number, the high-frequency mode
will transform from a standing wave to a traveling wave, and the

Ma number for transformation shows a decreasing trend with the
increase in volume ratio (the third curve). From Fig. 14, one can
see that the oscillation region of standing wave is of band type, and
the standing wave band narrows down gradually with the increase
in volume ratio. Therefore, under the condition of a large volume
ratio, the standing wave only appears at the initial stage of oscilla-
tion onset, and then it transforms into the traveling wave in a short
time.

Liquid bridges at the aspect ratio Ar = 0.5–0.7 exhibit similar
transformation processes between the traveling wave and the stand-
ing wave. Figure 15 shows the transformation map of supercritical
modes when Ar = 0.7. With the increase in aspect ratio, the demar-
cation volume ratios of the first and second critical curves increase
gradually, with curves shifting to the right as a whole. As the aspect
ratio increases, the high-frequency oscillation band of traveling wave

FIG. 14. Transformation map of supercritical modes when Ar = 0.5. TW: travel-
ing wave, SW: standing wave, (L): low-frequency mode, and (H): high-frequency
mode.
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FIG. 15. Transformation map of supercritical modes when Ar = 0.7. TW: travel-
ing wave, SW: standing wave, (L): low-frequency mode, and (H): high-frequency
mode.

narrows, but the oscillation band of standing wave widens. There-
fore, in the range of Ar = 0.5–0.7, the wave transformation process
does not change essentially, critical curves shift to the direction of
large volume ratio, and the standing wave oscillation mode of the
branch of large volume ratios is increasingly stable.

2. Liquid bridges at Ar = 0.8
Figure 16 shows waveforms at different temperature differ-

ences and volume ratios when the aspect ratio Ar = 0.8. In liquid
bridges at small volume ratios of Vr = 0.56 and 0.67 [Figs. 16(a)
and 16(b)], the critical oscillation of thermocapillary convection
is a low-frequency traveling wave with m = 1 accompanied by a
double-frequency harmonic wave with m = 2. With the increase
in temperature difference, the low-frequency traveling wave mode
transforms to the high-frequency standing wave mode, and the
double-frequency harmonic wave transforms from m = 2 to m = 0.
The waveform in Fig. 16(a2) shows the quasi-periodicity in the

liquid bridge at Vr = 0.56. This is the mixed mode appearing in the
transition from low-frequency oscillation mode to high-frequency
oscillation mode. Although the oscillation at this time is in a quasi-
periodic oscillation state, it is still dominantly a traveling wave mode.
In liquid bridges at large volume ratios of Vr = 0.81, 0.83 and 0.87
[Figs. 16(c)–16(e)], the critical oscillation of thermocapillary convec-
tion is a high-frequency standing wave with m = 1 accompanied by
an obvious double-frequency harmonic wave with m = 0. For the
liquid bridge at Ar = 0.8, the high-frequency standing wave with
m = 1 is a very stable mode, and the phenomenon of a second mode
transformation does not appear during the temperature increasing
process.

Figure 17 shows the transformation map of supercritical modes
when Ar = 0.8. The left branch is a low-frequency traveling wave
with m = 1, and the right branch is a high-frequency standing wave
with m = 1. The low-frequency traveling wave of the left branch
will transform into the high-frequency standing wave mode with the
increase in Ma number, and there exists a mixed oscillation band
where the low-frequency mode transits to the high-frequency mode.
The mixed oscillation band expands with the decrease in volume
ratio; therefore, an obvious mixed oscillation can be observed at
Vr = 0.61. Compared with transformation processes in liquid bridges
at Ar = 0.5–0.7, the demarcation points between the low-frequency
mode and the high-frequency mode continues to shift to the right
as the aspect ratio increases. The high-frequency standing wave in
liquid bridges at Ar = 0.5–0.7 is unstable, and the transformation
process to the high-frequency traveling wave appears. However, the
oscillation region increasing of the high-frequency traveling wave
shows a shrinking trend with Ar. In liquid bridges at Ar = 0.8, the
disappearance of oscillation region of the traveling wave conforms to
this trend exactly. Therefore, when Ar = 0.5–0.8, the high-frequency
standing wave with m = 1 is increasingly stable as the aspect ratio
increases.

A special phenomenon appears in the liquid bridge at
Ar = 0.8, which is the jump phenomenon on the critical curve at
Vr = 0.82. The critical modes of the two oscillations are compared
in Figs. 16(c1) and 16(d1), and it is found that both of them are

FIG. 16. Oscillation waveforms at different volume ratios when Ar = 0.8. (a) Vr = 0.56. (b) Vr = 0.67. (c) Vr = 0.81. (d) Vr = 0.83. (e) Vr = 0.97 (red: T1; blue: T2).
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FIG. 17. Transformation map of supercritical modes when Ar = 0.8. TW: travel-
ing wave, SW: standing wave, (L): low-frequency mode, and (H): high-frequency
mode.

the typical standing wave mode with m = 1, with positions of wave
nodes at T1 and T3. The critical temperature difference at Vr = 0.81
is 15.4 ○C, while the critical temperature difference at Vr = 0.83 is
19.0 ○C. Although the critical condition changes abruptly, these two
oscillations correspond to the same mode. Near the breakpoint at
Vr = 0.83, we also observed the phenomenon that the oscillation
of thermocapillary convection disappears after the onset and then
starts again.

3. Liquid bridges at Ar = 0.9
Figure 18 shows waveforms at different temperature differ-

ences and volume ratios when the aspect ratio Ar = 0.9. The crit-
ical oscillations at Vr = 0.61 and Vr = 0.69 are the traveling wave
with m = 1 accompanied by a double-frequency mode with m = 2.
The flow field in the liquid bridge at Vr = 0.61 enters a disor-
dered state after the temperature difference is increased, and it is
not easy to judge its characteristics as traveling wave or standing
wave, as shown in Fig. 20(a2). Increasing the temperature differ-
ence until the flow field enters an orderly oscillation state. As shown
in Fig. 20(a3), the waveform is in a standing wave state. At Vr
= 0.69, where the volume ratio is close to the demarcation point,
the low-frequency traveling wave with m = 1 transforms to the high-
frequency standing wave with m = 1 directly, being accompanied by
the double-frequency oscillation with m = 0. The critical oscillations
at Vr = 0.71 and Vr = 0.81 are the stable standing wave mode with
m = 1, and the double-frequency oscillation at Vr = 0.81 [Fig. 20(c1)]
is much lower than the double-frequency oscillation at Vr = 0.69
[Fig. 20(b1)]. The critical oscillation at Vr = 0.89 shows characteris-
tics of standing wave temporarily, and it develops into a traveling
wave mode when stable. As shown in Fig. 20(e2), T1 and T2 are
not exactly synchronous, and the phase difference between them is
59○. This is not a standard standing wave mode or traveling wave
mode, so two thermocouple signals are not enough for the judg-
ment and it is necessary to analyze phases of all five thermocouple
signals together. The phases of T1–T5 are 115○, 174○, 316○, 342○,
and 360○, and the phase of T1–T2 and the phase of T3–T5 have a
difference about 180○. We judge that the oscillation is dominantly a

FIG. 18. Oscillation waveforms at different volume ratios when Ar = 0.9. (a) Vr = 0.61. (b) Vr = 0.69. (c) Vr = 0.71. (d) Vr = 0.81. (e) Vr = 0.89 (red: T1, blue: T2).
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FIG. 19. Transformation map of supercritical modes when Ar = 0.9. TW: traveling
wave, SW: standing wave, CW: chaotic wave, (L): low-frequency mode, and (H):
high-frequency mode.

standing wave mode with certain characteristics of traveling wave.
[Fig. 20(e2)].

Figure 19 shows the transformation map of supercritical modes
when Ar = 0.9. In the liquid bridges at Ar = 0.9, the chaotic wave
appears in the regions of small volume ratio and the traveling
wave dominated oscillation appear in the regions of large volume
ratio. When Vr < 0.69, as the Ma number is further increased,
the critical traveling wave can easily transform into the irregu-
lar oscillation at low Ma number (Ma > 2ΔMac) and then to
the standing wave. This transition process is: traveling wave (low-
frequency) → chaotic wave → standing wave (high-frequency). The

high-frequency oscillation of the fat liquid bridge branch is a sta-
ble standing wave mode when Vr = 0.70–0.83; but when Vr >
0.83, the high-frequency standing wave transforms to the traveling
wave immediately after its appearance, passing a very narrow high-
frequency traveling wave region, then transforms to the standing
wave.

4. Liquid bridges at Ar = 1.0
Figure 20 shows waveform at different temperature differences

and volume ratios when the aspect ratio Ar = 1.0. In Figs. 20(a)–
20(b), the critical mode in liquid bridges at Vr = 0.56 and Vr
= 0.68 is the low-frequency traveling wave with m = 1 accompanied
by a double-frequency harmonic wave with m = 2. With the increase
in temperature difference, distinct supercritical transformation pro-
cesses appear in the two liquid bridges. When Vr = 0.56, the wave
mode transformation process is traveling wave (low-frequency) →
standing wave (high-frequency) → chaotic wave; when Vr = 0.68,
the wave mode transformation process is low-frequency traveling
wave → chaotic wave → high-frequency standing wave. When Vr
= 0.72, 0.88, and 0.96, as shown in Figs. 20(c)–20(e), the critical oscil-
lation mode is the high-frequency standing wave with m = 1. With
the increase in temperature difference, the high-frequency standing
wave modes in the three liquid bridges have the same transfor-
mation process: standing wave (high-frequency) → traveling wave
(high-frequency)→ standing wave (high-frequency) [in Figs. 20(c)–
20(e)]. When Vr = 0.72 or 0.88, both the critical standing wave
mode and the standing wave mode after three transitions are cou-
pled with the double-frequency signal with m = 0, and the energy
of a double-frequency harmonic wave decreases with the increase in
volume ratio. When Vr = 0.96, the oscillation waveform is close to

FIG. 20. Oscillation waveforms at different volume ratios when Ar = 1.0. (a) Vr = 0.56. (b) Vr = 0.68. (c) Vr = 0.72. (d) Vr = 0.88. (e) Vr = 0.96 (red: T1; blue: T2).
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FIG. 21. Transformation map of supercritical modes when Ar = 1.0. TW: traveling
wave, SW: standing wave, CW: chaotic wave, (L): low-frequency mode, and (H):
high-frequency mode.

the sinusoidal signal, and no obvious double-frequency harmonic is
observed.

Figure 21 shows the transformation map of supercritical modes
when Ar = 1.0. In the liquid bridge at a small volume ratio, there
exist the traveling wave band, standing wave band, and chaotic
wave band. When Vr ≤ 0.58, thermocapillary oscillation transforms
as traveling wave → standing wave → irregular wave. When Vr
≥ 0.62, thermocapillary oscillation transforms as traveling wave →
irregular wave. The irregular wave transforms to the standing wave
near the demarcation point. In the liquid bridge at a large volume
ratio, the standing wave band, traveling wave band, and standing
wave band appear in turn as the Ma number increases. The crit-
ical oscillation is a narrow standing wave oscillation band, so the
high-frequency mode appears as a standing wave mode first and
then transforms to the traveling wave mode. With a further increase
in Ma number, the traveling wave mode will transform into the
standing wave mode. The critical condition for the transformation
from a high-frequency traveling wave to a high-frequency stand-
ing wave shows a trend of decreasing first and then increases with
the increase in volume ratio. When Vr > 0.8, the traveling wave
band widens significantly with the increase in volume ratio, and the
traveling wave is more stable under the condition of large volume
ratio.

V. CONCLUSIONS
As there are two zones of different critical frequencies on the

Vr–Ar plane in our space experiments,26 we have investigated the
wave characteristics and the supercritical transitions in this paper.
The low-frequency mode happens in the zone with a small volume
ratio or a large aspect ratio; the high-frequency mode happens in the
zone with a large volume ratio or a small aspect ratio. Both azimuthal
wavenumbers in these zones are m = 1, but the wave characteristics
are different. In the critical condition, the low-frequency mode is a
traveling wave (m = 1) and the high-frequency mode is a standing
wave (m = 1).

Two types of supercritical transitions are found with the
increasing of Ma: (1) transitions of frequency, that is, the

low-frequency mode transits to the high-frequency mode; (2) wave
transformations without frequency transition, that is, the wave
changes its mode among traveling waves, standing waves, and
chaotic waves. The change of azimuthal wave number is not found
during the supercritical process. The transition maps of Ar = 0.5–
1.0 have been given in Figs. 14, 15, 17, 19, and 21. Details of these
transition processes will be discussed as follows.

Transitions of frequency happen at the left branch (small vol-
ume ratio) of the critical curve, as shown in Fig. 8(b). Since the right
branch (large volume ratio) of the critical curve extends to the small
volume ratio, it results in transitions from a low-frequency mode to a
high-frequency mode. The frequency transition corresponds to the
transformation from a traveling wave (m = 1, low-frequency) to a
standing wave (m = 1, high-frequency). In liquid bridges at Ar = 0.8
and Ar = 1.0, the chaotic wave is observed, and the transition pro-
cess is as follows: traveling wave (m = 1, low-frequency) → chaotic
wave → sanding wave (m = 1, high-frequency). Since the transition
process, traveling wave (m = 1, low-frequency) → standing wave
(m = 1, high-frequency) → chaotic wave, has also been observed,
we believe that this kind of chaotic wave is not the mixed mode
during the transition process from a traveling wave to a standing
wave.

Wave transformations without frequency transition occur
when the Marangoni number Ma is beyond the right branch (large
volume ratio) of the critical curve. Without the transition of fre-
quency, the characteristic of wave changes with the Ma increasing.
The most commonly observed wave transformation is the critical
standing wave (m = 1, high-frequency) → supercritical traveling
wave (m = 1, high-frequency). It can be obtained from the transi-
tion map that the stable region of a standing wave is a band. When
the aspect ratio increases from Ar = 0.5–0.7, the standing wave
band expands and the transformation into a traveling wave is absent
in some small volume ratio. When the aspect ratio increases to
Ar = 0.8, the high-frequency standing wave mode is very stable and
no traveling wave mode appears. When Ar = 0.9, the traveling wave
band appears from the right side (Vr > 0.83). When Ar = 1.0, this
oscillation band extends to the entire right branch, and the wave
mode transformations are standing wave (m = 1, high-frequency)
→ traveling wave (m = 1, high-frequency) → standing wave (m = 1,
high-frequency).

Two types of double-frequency waves, which m = 0 and m = 2,
appear as harmonic waves in the small volume ratio case. The wave
mode withm = 0 and the traveling wave mode withm = 2 are double-
frequency harmonic components that superimposed the standing
wave with m = 1 and the traveling wave with m = 1, respectively.
The energy of this harmonic mode increases with the decrease of
volume ratio. These new harmonic modes have never been reported
before, probably because that they are hardly observed in the liquid
bridge of a large volume ratio, Vr ≈ 1; however, most experiments
have been carried out on liquid bridges at Vr ≈ 1.

For comparison, we have finished a ground experiment with a
similar set-up; 2 cSt silicone oil (Pr = 28) has been used as the fluid
media; the wave regimes have been investigated in a short liquid
bridge.18 The wave regimes are standing waves (1 ≤Ma/Mac < 1.2),
traveling wave (1.2 ≤Ma/Mac < 1.9), local two wave separation (1.0 ≤
Ma/Mac < 2.1), and chaotic waves (Ma/Mac ≥ 2.1). To some extent,
these transformation processes show similarity with space experi-
ment results (Pr = 67). However, the supercritical transformation is
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very sensitive to the geometry of a liquid bridge. Our space experi-
ment gives clear maps of supercritical transformation dependent on
aspect ratios and volume ratios for the first time. According to the
details of the transformation maps, new phenomena or conclusions
are obtained:

(1) In the high-frequency zone, the transformation from the
critical standing wave to the traveling wave occurs.

(2) In the low-frequency zone, the transition of frequency leads
to the transformation from the critical traveling wave to the
standing wave.

(3) When Ar = 0.7–0.9, there is a certain band of volume ratio in
which the critical standing waves are very stable.

(4) Supercritical transformations of “standing wave → traveling
wave→ standing wave” are found when Ar = 1.0.

(5) In most cases, the transition condition (Ma/Mac) to chaos is
estimated to be higher than 3; however, when Ar = 0.9–1.0,
the low-frequency mode (the branch of small volume ratio)
transits to chaos at a low transition condition, Ma/Mac ≈ 2.
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