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ABSTRACT
Vortex-induced vortex theory, commonly used for a flow past a disturbed bluff body, is applied in this paper to analyze an incompressible
flow through a circular-section pipe with the occurrence of a secondary flow. The disturbed flow field is solved based on the Stokes equations
by introducing a vortex or vortex pair uniformly distributed along the axial direction and periodically varying along the azimuthal direction
as a result of the secondary flow with the assumption of inertial force being neglected and the viscous force being dominant in the vicinity of
the pipe walls. Two kinds of boundary cases are considered to simulate the introduced vorticity distributed on and near the walls, and two
sign laws for vorticity are also derived and verified for the present internal flow. For original pipe flow with a specific velocity distribution,
such as a paraboloid of revolution at lower Reynolds numbers, these two sign laws are all positive upstream but negative downstream and
they physically reveal the intrinsic relationships of the vorticity sign among different vorticity components, which are generated inherently
with specific signs in secondary flows. Furthermore, two basic viscous force mechanisms are identified: a direct effect for vorticity generated
on the walls due to shear flows and an indirect effect for vorticity induced by a vortex with former vorticity near the walls. Examples to
demonstrate these two sign laws under geometric disturbances at a laminar Reynolds number of 200 and physical meaning are also presented
briefly.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5128414., s

I. INTRODUCTION

As a basic internal flow, pipe flow is employed in a wide range
of engineering applications, such as marine pipelines used to con-
vey single or multiphase fluid media (oil, gas, and water) and,
more recently, separation of oil and water carried through specially
designed pipes. Similarly, pipe flow could also be regarded as flow
through an open channel or a duct and wind tunnel for hydrody-
namic and aerodynamic experiments. The typical cross section of
a pipe is circular; nevertheless, such an internal flow is commonly
complicated due to not only geometric disturbances, but also tur-
bulence. It is closely related to the physical mechanism responsible
for the formation of vorticity along the walls, which is an important
consideration in vortex dynamics.

For a circular-section pipe, the axial flow is commonly dom-
inant. In a laminar state, the velocity profile is parabolic, that is,
the axial velocity nonlinearly decreases from the maximum at the

center to zero at the wall. Within a turbulent flow at a high influx
rate, the mean axial velocity first increases rapidly in the boundary
layer and then increases slowly out of the boundary layer. How-
ever, regardless of whether the flow is laminar or turbulent, only
azimuthal (time-averaged) vorticity is predominantly generated on
the pipe wall.

Except for such a primary axial flow, subordinate secondary
flows are generated under several circumstances. The first is the
introduction of large-scale geometric disturbances into a common
pipe, i.e., with a circular cross section and straight centerline. The
characteristic length is mostly equivalent to the pipe diameter.
Such disturbances can be represented by non-circular cross sections
(e.g., rectangular, triangular, or trapezoidal), radial variations in
the diameter, or axially curved pipes, all of which are reviewed
in the literature.1 For example, secondary flows could exist in a
straight pipe with a non-circular cross section; as a result, the veloc-
ities at the corners will be very large. These secondary flows are
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characterized by a fluid that flows toward the corner along the bisec-
trix of the angle and then outward in both directions. Such secondary
flows continuously transport momentum from the center to the cor-
ners and generate high velocities there. These secondary flows also
play important roles in open channels or square ducts,2 as they lead
to a reduction in the effective region in the measured experimen-
tal data. Through numerical simulations, close connection between
Reynolds stress on the horizontal wall close to the corner and the
interaction of bursting events between the horizontal and inclined
walls is found in hexagonal ducts.3 This interaction leads to the for-
mation of the secondary flow. Even when the radius of the corner
is rounded to minimize the inhomogeneous interactions associated
with near-wall events, a cross-flow still appears that is similar to that
found in ducts with sharp corners.4 Recently, the secondary flow of
Prandtl’s second kind was simulated in fully developed spanwise-
periodic channels with in-plane sinusoidal walls by direct numerical
simulations,5 which included the multiscale nature of the secondary
flow. In such wavy channels, two counter-rotating streamwise vor-
tices are present for each wavelength such that the secondary flow
is directed from the corner of the channel to the wall along the
centerplanes of the valleys; then, the flow turns in the wall-tangent
direction along the wall and leaves the near-wall region through the
peaks.

The second set of circumstances is the introduction of small-
scale disturbances, such as a three-dimensional (3D) intrinsic insta-
bility (e.g., a T-S wave or horse-shoe and hairpin vortices in the
boundary layer of a flat plate) in the transition region, local turbu-
lent flow due to small-scale eddies, surface roughness and obstacles
(e.g., a rock or a clod of mud stuck to the wall), and notches for circu-
lar pipes. For instance, simulations of the two-dimensional (2D) and
3D roughness by the superposition of sinusoidal surfaces with vary-
ing roughness heights and wavelengths revealed that streaky struc-
tures persist near the wall and are selectively modified by the rough-
ness.6 While these structures are abruptly broken by 2D roughness
elements, as the infinite spanwise length of a roughness element
allows for the fluid to flow only over and not around the rough-
ness element, the arrangements of such roughness elements can sub-
stantially alter turbulent near-wall flow; such arrangements include
cube array roughness elements in a staggered arrangement,7 rectan-
gular prism-shaped roughness elements8 and converging-diverging
riblets.9 In recent years, scholars have discovered that the spanwise
heterogeneity of roughness elements causes secondary flows that
disrupt the near-wall cycle at the boundary with a critical param-
eter, namely, the ratio of the spanwise length scale of the rough-
ness heterogeneity to the boundary layer thickness.10 Accordingly,
the outer layer similarity, as well as the occurrence of secondary
flows, depends on the ratio of the roughness spanwise spacing to the
boundary layer thickness.11

The third set of circumstances is a change in the incoming flow
not only along the axial direction but also along the other direc-
tions, mainly the wall-tangent direction, caused by adopting a spe-
cific mechanism, such as a swirling flow through the azimuthal inlet
of a cylindrical cyclone12,13 or a guide vane installed in the center of
a pipe.14–16 In such a rotational flow, the length scale is rather large
and approximates the pipe diameter.

In summary, these secondary flows not only result in the gen-
eration of axial vorticity on and near pipe walls, but also play an
important role in organizing a complex pipe flow associated with

the motion and evolution of vorticity and vortices as well as with
the interactions between vortices and pipe walls; hence, secondary
flows constitute an important component of the vorticity and vortex
dynamics in an internal flow. However, few studies have investi-
gated the radial vorticity component, including its spatial distribu-
tion and physical relationships with other vorticity components in
the above mentioned secondary flows; the same is true for the sign
laws identified in the wake of a bluff body, which will be discussed as
follows.

Recently, an interesting physical phenomenon was discovered
in a flow passing by peak-perforated conic shrouds at a Reynolds
number of 100.17 As shown in Fig. 1, the strong effect of a conic
disturbance with a wavy steepness W/λ, where W and λ are the
non-dimensional wave height and wavelength, respectively, of the
introduced conic disturbance, is taken as a typical example. The
dominant vorticity is characterized by a special distribution with a
specific sign in the near-wake region. For example, at a certain span-
wise position of z = 1

4λ, as shown in Fig. 1, the streamwise vorticity
ωx with opposite signs is distributed alternatively in the upper and
lower shear layers, but the vertical vorticity ωy is quite large with a
single sign. Generally, the spanwise vorticity ωz is mainly negative
in the upper shear layer, but positive in the lower shear layer. For
convenience, in this phenomenon, the three vorticity components
with specific signs can be described by (+|ωx|, +|ωy|, and −|ωz|) in
the upper shear layer and (−|ωx|, +|ωy|, and +|ωz|) in the lower shear
layer at z = 1

4λ, whereas they can be described by (−|ωx|, −|ωy|, and
−|ωz|) in the upper shear layer and (+|ωx|, −|ωy|, and +|ωz|) in the
lower shear layer at z = 3

4λ.
Based on the above four groups of sign combinations for the

three vorticity components in shear layers, two sign laws are first
summarized18 and then theoretically confirmed by vortex-induced
vortex (VIVor) theory,19 as shown in Fig. 1. For the first sign law
across the span, the sign of ωx ⋅ ωy is always positive in the top shear
layer but negative in the bottom shear layer. For the second sign law,
the sign of ωx ⋅ ωy ⋅ ωz is always negative in both the top and bottom
shear layers. These sign laws reveal the intrinsic relationship among
the three vorticity components and help us further understand wake
vortex dynamics.

In light of previous studies on secondary flows and the present
sign laws in the wake of a bluff body, a curious question natu-
rally arises, that is, whether similar sign laws appear in an internal
flow through a pipe, particularly, when the secondary flows men-
tioned above are generated. The main aim of the present paper is to
apply VIVor theory for an incompressible flow through a straight
pipe as a basic internal flow to obtain the vorticity sign character-
istics and to determine the basic physical mechanism responsible
for generating these complex secondary flows. The problem how
vorticity might be generated either on a wall or near to a wall, asso-
ciated with the above secondary flows, is not discussed here. In
Sec. II, the VIVor theory for pipe flow is briefly introduced. Two
types of boundary cases are taken into account for different cir-
cumstances of vortex evolution. In Sec. III, three sign laws, namely,
for radial and axial vorticity components only, for all three vor-
ticity components, and for radial and axial velocity components,
are presented under their unique conditions. Examples are illus-
trated at a laminar Reynolds number of 200. However, the physi-
cal meaning is discussed. Finally, the conclusions are presented in
Sec. IV.
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FIG. 1. Iso-surfaces of (a) ωx = ±0.2, (b)
ωy = ±0.2, and (c) ωz = ±0.2 [Repro-
duced with permission from L. M. Lin, X.
F. Zhong, and Y. X. Wu, “Effect of per-
foration on flow past a conic cylinder at
Re = 100: Vortex-shedding pattern and
force history,” Acta Mech. Sin. 34, 238–
256 (2018). Copyright 2017 Springer
Nature], color contours of (d) ωx and (e)
ωy at z = 1

4 λ = 1, and iso-surfaces
of (f) ωx ⋅ωy = ±0.01 and (g) ωx ⋅ωy ⋅ωz

= ±0.01 [Reproduced with permission
from Lin et al., “Mechanism of wavy
vortex and sign laws in flow past a
bluff body: Vortex-induced vortex,” Acta
Mech. Sin. 35, 1–14 (2019). Copyright
2018 Springer Nature.] in a flow passing
through a circular-section cylinder with
a conic disturbance at t = 230, λ = 4,
W /λ = 0.2, and Re = 100, where the
red and blue colors as well as the solid
and dashed contours of ωz = ±0.1 and
±0.5 in (d) and (e) denote the positive
and negative values, respectively. In the
sub-figures showing the iso-surfaces, the
contours of ωz at z = 0 are presented as
the background.

II. VORTEX-INDUCED VORTEX (VIVor) THEORY
As reported in a previous study,19 the VIVor theory is intended

to illustrate the resultant vorticity and velocity fields induced by
introducing a specific vortex (or vortex pair) under a particular set
of boundary conditions. In the present circumstance of the typical
internal flow through a pipe with a circular cross section shown in
Fig. 2, the characteristics of the 3D vorticity field are theoretically
investigated.

A. Basic assumptions and preconditions in the flow
analysis

Before presenting the governing equations for the internal flow
considered herein, some basic assumptions and preconditions are
listed as follows:

FIG. 2. Sketch of a flow through a circular-section pipe in a cylindrical coordinate
system.

(A1) A local cylindrical coordinate system (r, ϕ, z) is established,
in which r, ϕ, and z denote the radial, azimuthal, and axial
coordinates, respectively, as shown in Fig. 2. Moreover,
the local pipe flow in this local system is consistent with
the pipe flow at the inlet, i.e., the +z-axis is aligned with
+|U(r)|, except for some recirculation regions or reversed
flows where the local pipe flow is opposite to the incoming
flow, i.e., −|U(r)|, a typical example of which is a local flow
separated from the wall.

(A2) The incoming stream is a typical pipe flow with only an
axial velocity U(r) and a cross-sectional averaged veloc-
ity ū, indicating that there merely exists an initial tangen-
tial vorticity Ωϕ(r) that always has a positive sign on the
walls.

(A3) The density ρ and viscosity μ of the fluid as well as the kine-
matic viscosity, ν = μ/ρ, are constants, and, thus, the flow is
incompressible.

(A4) The pipe is straight without any geometric disturbances
along the z-axis or in the (r, ϕ) plane.

(A5) The body forces, e.g., the gravitational force, are
conservative.

(A6) The transport of energy is ignored without any change in
temperature.

(A7) The introduced axial vortex or vortex pair with an axial vor-
ticity ωz , which occurs naturally as a result of secondary
flows near the pipe wall is first assumed to be distributed
uniformly and locally along the z-axis, i.e., along the finite
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axial length λz or z ∈ (0, ±λz). Conveniently, a pair of vor-
tices with opposite signs is varied periodically along the cir-
cumferential direction with a non-dimensional wavelength
of λ, as shown in Fig. 3. Furthermore, at the start of z = 0
and r < R (where R is the pipe radius), there is only an intro-
duced axial vorticity, and the radial and azimuthal vorticity
components, namely, ωr and ωϕ, respectively, are zero.

(A8) The flow in the immediate neighborhood of the pipe walls
at a normal distance h, i.e., r ∈ [R − h, R], is analyzed, sim-
ilar to the work of Lin et al.19 In such a region, viscous
forces are dominant and inertial forces can be neglected.
Based on an analysis of Kelvin’s circulation theorem,20 the
circulation and vorticity flux are always invariant if only
a single vortex with a specific sign is taken into account.
This condition indicates that the evolution of the sign of
the vorticity is also unchanged and unaffected only by the
inertial forces. It is well known that inertial forces play an
important role in the evolution of nonzero vorticity, such as
convective and stretching effects.21 However, inertial forces
are not intrinsically fundamental for the generation of vor-
ticity, which is, instead, determined by viscous forces under
the present circumstances. In this sense, the following can
be anticipated: at a certain low Reynolds number, a near-
wall vorticity would be dissipated quickly far away from the
walls due to relatively high viscous forces, even though this
vorticity is induced by a certain disturbance (similar to a 3D
instability); in contrast, at a sufficiently high Reynolds num-
ber, such an induced vorticity would be transported outside
and downstream and possibly shed from the walls owing
to the relatively strong effect of inertial forces. Therefore,
the present flow analysis can be carried out without inertial
forces in the local nearest-wall region to investigate the evo-
lution of the sign of the vorticity. On the other hand, such
a local region is also occupied mainly by an axial vorticity
with a specific sign, while an opposite-signed axial vorticity
appears in the outer layer far away from the wall.11 There-
fore, in consideration of the (A7) above, we simply take
such axial vorticity on and near the wall into account in the
following analysis.

FIG. 3. Sketch of the introduced axial vortex pair (−|ωz |, +|ωz |) distributed on or
near the walls of a circular-section pipe and periodically along the circumferential
direction ϕ in a certain sectional plane (r, ϕ), where the symbols ⊕ and ⊖ denote
positive and negative signs of ωz , respectively.

B. Governing equations in an internal flow
Based on the above conditions, the governing equations, i.e., the

mass conservation and momentum equations, are written in non-
dimensional forms as follows:

0 =
∂vr
∂r

+
vr
r

+
1
r
∂vϕ

∂ϕ
+
∂vz
∂z

, (1a)

∂p
∂r
=

1
Re
(
∂2vr
∂r2 +

1
r
∂vr
∂r
−
vr
r2 +

1
r2

∂2vr
∂ϕ2 −

2
r2

∂vϕ

∂ϕ
+
∂2vr
∂z2 ), (1b)

1
r
∂p
∂ϕ
=

1
Re
(
∂2vϕ

∂r2 +
1
r
∂vϕ

∂r
−
vϕ

r2 +
1
r2

∂2vϕ

∂ϕ2 +
2
r2

∂vr
∂ϕ

+
∂2vϕ

∂z2 ),

(1c)

∂p
∂z
=

1
Re
(
∂2vz
∂r2 +

1
r
∂vz
∂r

+
1
r2

∂2vz
∂ϕ2 +

∂2vz
∂z2 ), (1d)

where vr , vϕ, and vz denote the velocity components in their cor-
responding cylindrical coordinate directions, p is the static pressure
still scaled by ρū2, and Re is the Reynolds number based on the mean
velocity in a pipe ū and the characteristic diameter of the pipe D, i.e.,
Re = ūD/ν. The velocities are scaled by ū and the lengths by D. These
equations must be supplemented with the proper boundary condi-
tions, namely, those expressing the absence of slip in the fluid at the
pipe walls r = R: vr = vϕ = vz = 0, where R is the non-dimensional
radius of the pipe actually equal to 0.5. Correspondingly, the solu-
tions prevail in the range from R − h to R, i.e., r ∈ [R − h, R] and
z ∈ (0, ±λz).

C. Theoretical solutions of vortex-induced velocity
and vorticity fields

Because non-linear inertial forces are ignored according to
assumption (A8), the principle of superposition of different veloc-
ity fields can, thus, be applied in the further analysis of Eq. (1).
Accordingly, the local flow field in the pipe can be divided into two
parts. The first part is the 2D or axisymmetric original flow (rela-
tive to the following induced flow) with velocity U(r) through the
pipe without any 3D perturbation. The second part is the resultant
3D flow field with an induced velocity (vr , vϕ, vz) and vorticity (ωr ,
ωϕ, ωz), mainly in secondary flows caused by a 3D geometric dis-
turbance, e.g., a non-circular cross section, and in the transition
region from a laminar regime to a turbulent regime after the criti-
cal Reynolds number is reached, as mentioned before. VIVor theory
is initially focused on the induced flow fields, (vr , vϕ, vz) and (ωr ,
ωϕ, ωz), without the original flow; then, the coupled effects of these
two flow field parts, (vr , vϕ, U + vz) and (ωr , Ωϕ + ωϕ, ωz), are
considered.

Here, two concepts regarding induction in a VIVor and an
induced velocity/vorticity field are clearly explained. First, induc-
tion in a VIVor indicates that the vortex is induced by the intro-
duced vortex, which already exists or is generated early. Sec-
ond, the velocity and vorticity fields with all three components
are induced by any kind of 3D disturbance, such as a geometric
disturbance. Therefore, the second kind of induction distinguishes
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the different physical mechanisms responsible for generating vortic-
ity, while the first kind simply illustrates the physical relationship
among the different components of vorticity already generated.

Two kinds of boundary cases are applied in flow analysis. The
first type of boundary is the introduced vorticity generated on the
walls, corresponding to the disturbed vortices attached to the present
positions. The second boundary is the introduced vorticity dis-
tributed near the walls and reduced to zero on the walls; this vorticity
is related to the already or earlier generated vortices convected or
evolved downstream. In addition, if the vortex moves into the outer
layer (r < R − h) and then induces the vorticity with an opposite sign
on the walls, it could be treated similar to the first situation but with
opposite signs.

As shown in Fig. 3, on the basis of assumption (A7), an intro-
duced axial vortex pair centered around z = 0 with opposite signs
is distributed uniformly along the z-axis on or near the inner side
of the straight circular-section pipe. Such induced vorticity varies
periodically along the azimuthal direction with the non-dimensional
azimuthal wavelength λ and gradually disappears far away from the
inner walls (r→ 0).

The induced velocities, mainly for the radial and azimuthal
components, which are associated with the introduced axial vortex
according to the Biot–Savart law and are, therefore, independent of
z according to assumption (A7), are assumed as

vr(r,ϕ) = Ar(r) cos(kϕ), (2a)

vϕ(r,ϕ) = −Aϕ(r) sin(kϕ), (2b)

where Ar and Aϕ are the positive and dimensionless amplitudes of
vr and vϕ, respectively, and k is the non-dimensional wave number,
k = π/λ. Here, the maximal wavelength is 2πR and scaled by D; there-
fore, λ ≤ π and k ≥ 1. Because the azimuthal periodicity for a circular
pipe represents a single cycle from head to tail, different from the
spanwise periodicity for a bluff body with an infinite span, k also
indicates the number of introduced disturbed vortex pairs and is,
therefore, a natural number, k ∈ N.

Consequently, by substituting the above radial and azimuthal
components of the induced velocity shown in Eq. (2) in the
continuity equation, Eq. (1a), the axial component is obtained
as

vz(r,ϕ, z) = −z(
dAr

dr
+
Ar

r
− k

Aϕ

r
) cos(kϕ) + Cz(r,ϕ), (3)

where Cz(r, ϕ) is an unknown coefficient.
Therefore, the three components of the induced vorticity are

defined in the cylindrical coordinate system as follows:

ωr =
1
r
∂vz
∂ϕ
−
∂vϕ

∂z

=
kz
r
(

dAr
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+
Ar

r
− k

Aϕ

r
) sin(kϕ) +

1
r
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, (4a)

ωϕ =
∂vr
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−
∂vz
∂r

= z
d
dr
(

dAr

dr
+
Ar

r
− k

Aϕ

r
) cos(kϕ) −

∂Cz

∂r
, (4b)

ωz =
∂vϕ

∂r
+
vϕ

r
−

1
r
∂vr
∂ϕ

= −(
dAϕ

dr
+
Aϕ

r
− k

Ar

r
) sin(kϕ). (4c)

Correspondingly, under the non-slip boundary conditions and
the present vorticity distribution limited only to the local flow region
in assumption (A7), that is, r ∈ [R − h, R] and z ∈ (0, ±λz) according
to (A7) we have

Cz(r,ϕ) = 0, (5a)

Ar ∣r=R = 0, (5b)

Aϕ∣r=R = 0, (5c)

dAr

dr
∣
r=R
= 0. (5d)

In flow analysis, it is convenient to eliminate the pressure p
in the momentum equations, Eqs. (1b)–(1d). On the other hand,
through observing the vorticity components in Eq. (4), the following
two functions can be defined:

X(r) =
dAr

dr
+
Ar

r
− k

Aϕ

r
, (6a)

Y(r) =
dAϕ

dr
+
Aϕ

r
− k

Ar

r
. (6b)

Due to the special distributions of the velocity and vorticity fields in
the present study, we consider two relationships. The first relation-
ship states that Eqs. (1b) and (1c) are independent of the axial coor-
dinate z. Therefore, one unsolved function about X(r) is obtained
based on Eq. (1d) as follows:

∂2p
∂ϕ∂z

= 0, ⇒
d2X
dr2 +

1
r

dX
dr
−
k2

r2 X = 0. (7)

The second relationship describes the cross-partial derivative
between Eqs. (1b) and (1c). As a result, another unsolved function
about Y(r) is obtained as follows:

d2Y
dr2 +

1
r

dY
dr
−
k2

r2 Y = 0. (8)

1. The first boundary case (f.b.c.): Vorticity generated
on the walls

In the f.b.c., the axial vorticity is generated with a constant
amplitude of intensity Aωz (>0), which is assumed to be maximal on
the wall. Thus, with the aid of Eqs. (5b), (5c), and (4c) and in consid-
eration of the present flow in the cylindrical coordinate system, we
have

∣ωz ∣r=R = Aωz , ⇒ −
dAϕ

dr
∣
r=R
= Aωz > 0. (9)

Introducing the transformation γ = ln r, Eqs. (7) and (8) can be
rewritten as

d2X
dγ2 − k

2X = 0, with X∣r=R = 0, (10a)

d2Y
dγ2 − k

2Y = 0, with Y ∣r=R = −Aωz . (10b)
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As a result, taking into account the boundary condition in Eq. (4c),
describing the intensity of the axial vorticity on the pipe walls, the
solutions of Eq. (10) can be obtained as follows:

X(r) =
dAr

dr
+
Ar

r
− k

Aϕ

r

= C1(rk − R2kr−k), (11a)

Y(r) =
dAϕ

dr
+
Aϕ

r
− k

Ar

r

= −C2rk, (11b)

where C1 and C2 are both positive constants. Equation (10b) gives
C2 = AωzR

−k.
Furthermore, by eliminating Ar , Eq. (11) gives the following

relationship:

d2Aϕ

dr2 +
3
r

dAϕ

dr
+

1 − k2

r2 Aϕ = C1k(rk−1
− R2kr−k−1

) − C2(k + 2)rk−1.

(12)

Thus, the above equation presents two sets of solutions: one with
k = 1 and another with k ≥ 2.
A: Special solutions with k = 1

Under the condition, where the wave number k = 1, Eq. (12) is
simplified as

d2Aϕ

dr2 +
3
r

dAϕ

dr
= C1(1 −

R2

r2 ) − 3C2, (13)

where C2 = Aωz/R. Introducing the transformation Γ = 1
r

dAϕ
dr into

Eq. (13), we have

r
dΓ
dr

+ 4Γ = (C1 − 3C2) − C1
R2

r2 , (14)

with condition Γ|r=R = −C2. The solution is obtained as follows:

Γ =
C1 − 3C2

4
−
C1

2
β−2 +

C1 − C2

4
β−4, (15)

where β = r/R is the relative radial position. Then, with the boundary
condition of Eq. (5), we have

Ar(β) =
C1

8
R2
(3β2 + β−2

− 4) −
C1

2
R2 lnβ +

C2

8
R2
(2 − β2

− β−2
),

(16a)

Aϕ(β) =
C1

8
R2
(β2
− β−2

)−
C1

2
R2 lnβ+

C2

8
R2
(2 − 3β2 + β−2

), (16b)

with the following conditions:

C1 ∈ [
3
2
C2, 3C2), C2 =

Aωz

R
, h = (1 − β0)R,

β0 =

¿
Á
ÁÀ
√

4C1C2 − 3C2
2 − C1

3C2 − C1
.

(17)

The variations in the amplitudes of the radial and azimuthal
velocity components, Ar and Aϕ, respectively, with the relative radial
position β are shown in Fig. 4 with C1 = 2C2. Evidently, Aϕ almost
linearly increases toward the center of the pipe, while Ar gradu-
ally increases away from the pipe wall. In association with the axial
vorticity introduced on the pipe wall and the non-slip boundary con-
ditions, Fig. 4 shows that the magnitude of Aϕ is greater than that of
Ar , and thus, vϕ is larger than vr .

Correspondingly, the induced axial velocity vz is also obtained
as

vz = C1zR(β−1
− β) cosϕ. (18)

The pressure p is presented as follows:

p =
R
Re
[(C1 − C2)β − C1β−1

] cosϕ + Cp, (19)

where Cp is a constant. Thus, the three vorticity components in
Eq. (4) are given by

ωr = −C1z(β−2
− 1) sinϕ, (20a)

ωϕ = C1z(β−2 + 1) cosϕ, (20b)

ωz = C2Rβ sinϕ. (20c)

B: Ordinary solutions with k ≥ 2
Continually, introducing the transformation γ = ln r in Eq. (12),

we have

d2Aϕ

dγ2 + 2
dAϕ

dγ
− (k2

− 1)Aϕ = [C1k − C2(k + 2)]e(k+1)γ

−C1kR2ke−(k−1)γ, (21)

FIG. 4. Variations in the relative amplitudes, Ar and Aϕ in the nearest-wall region
of the pipe divided by the product of C2 and R2, in the f.b.c. with C1 = 2C2 and
k = 1 with respect to the relative radial position β = r /R(≤1) away from the pipe
walls.
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with the boundary conditions of Eqs. (5c) and (9). Thus, considering
Eq. (11b), we obtain the following solutions:

Ar(β) =
C1Rk+1

4
[
(k + 2)βk+1 + kβ−(k+1)

k + 1
−
kβk−1 + (k − 2)β−(k−1)

k − 1
]

+
C2Rk+1

4
[βk−1

−
kβk+1 + β−(k+1)

k + 1
], (22a)

Aϕ(β) =
C1kRk+1

4
[
βk+1
− β−(k+1)

k + 1
−
βk−1
− β−(k−1)

k − 1
]

−
C2Rk+1

4
[(βk+1

− βk−1
) +

βk+1
− β−(k+1)

k + 1
], (22b)

with the following requirements (at least):

C1 >
1
2
C2, C2 = AωzR

−k. (23)

The variations in the amplitudes of the radial and azimuthal
velocity components, Ar and Aϕ, respectively, with the relative radial
position β and different wave numbers k ≥ 2 are shown in Fig. 5
with C1 = C2. Ar first increases slowly because dAr/dβ = 0 at
β = 1 and then rapidly grows nonlinearly far away from the pipe
wall; in contrast, Aϕ first increases almost linearly within a certain
distance away from the inner wall of the pipe, but then quickly
decreases beyond a certain distance. At the same radial position β,
when the wave number k increases, Ar gradually increases, while
Aϕ decreases. Moreover, where the present analysis is effective, the
radial distance h away from the pipe wall becomes smaller with
increasing wave number, as shown in Fig. 5(b). In fact, from the
following physical explanation, we can also anticipate that as the
wave number increases, the number of introduced disturbed vor-
tex pairs also increases, indicating that the azimuthal region or
wavelength for each vortex pair gradually decreases, as well as the
radial region. As a result, the effective region of analysis decreases as
well.

Hence, the induced axial velocity is obtained as

vz = C1zRk
(β−k − βk) cos(kϕ). (24)

Meanwhile, the three components of the induced vorticity are
expressed as

ωr = −C1zRk−1k[β−(k+1)
− βk−1

] sin(kϕ), (25a)

ωϕ = C1zRk−1k[β−(k+1) + βk−1
] cos(kϕ), (25b)

ωz = C2Rkβk sin(kϕ). (25c)

The above equations demonstrate that such solutions with
k ≥ 2 include the special solutions at k = 1 for only the induced
vorticity and axial velocity, namely, Eqs. (20) and (18), respectively,
although the derivation process is different.

FIG. 5. Variations in the relative amplitudes (a) Ar and (b) Aϕ in the nearest-wall
region of the pipe divided by 1

4C2Rk+1 in the f.b.c. with C1 = C2 and different wave
numbers k ≥ 2 with respect to the relative radial position β = r /R(≤1) away from
the pipe walls. Notice that only amplitude values satisfying Aϕ ≥ 0 are presented
in sub-figure (b).

2. The second boundary case (s.b.c.): Vorticity
distributed near the walls

In the s.b.c., the axial vorticity is already generated upstream,
after which it is convected into and distributed just above the present
positions, and then it finally disappears on the pipe walls. Therefore,
with the help of Eqs. (5b), (5c), and (4c), the disappearance of the
axial vorticity on the pipe walls gives the following condition:

∣ωz ∣r=R = 0, ⇒
dAϕ

dr
∣
r=R
= 0. (26)

This condition is exactly the same as that for the radial amplitude Ar
in Eq. (5d). Considering the governing equations of Ar and Aϕ, i.e.,
Eqs. (7) and (8), the same boundary conditions for Ar and Aϕ, as well
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as those for X and Y, i.e., X|r=R = Y|r=R = 0, would display the same
variation along the radial position. The solutions in the inner region
of the pipe walls, r ∈ [R − h, R], are obtained as follows,

Ar = Aϕ = A, (27a)

X = Y =
dA
dr

+
1 − k
r

A = C(rk − R2kr−k), (27b)

where C is a positive constant. Similar to the f.b.c., two situations
must be discussed individually: the special solutions with k = 1 and
the ordinary solutions with k ≥ 2.
A: Special solutions with k = 1

In the present condition where k = 1 in Eq. (27b), we can obtain

A(β) = CR2
(
β2
− 1
2
− lnβ). (28)

As shown in Fig. 6, the variations in the amplitudes of vr and
vϕ in the present case are very similar to that of vr in the f.b.c. shown
in Figs. 4 and 5(a).

Therefore, the induced axial velocity is obtained as

vz = CzR(β−1
− β) cosϕ. (29)

In addition, the pressure is given by

p =
2CRβ
Re

cosϕ + Cp, (30)

where Cp is a constant. The three components of the vorticity are
thus given by

ωr = −Cz(β−2
− 1) sinϕ, (31a)

ωϕ = Cz(β−2 + 1) cosϕ, (31b)

ωz = CR(β−1
− β) sinϕ. (31c)

FIG. 6. Variations in the relative amplitude A in the nearest-wall region of the pipe
divided by CRk +1 in the s.b.c. at different wave numbers k with respect to the
relative radial position β = r /R(≤1) away from the pipe walls.

B: Ordinary solutions with k ≥ 2
In the present case, where k ≥ 2, the solution of Eq. (27b) is

obtained as

A(β) =
CRk+1

2
[βk+1

−
kβk−1

− β−(k−1)

k − 1
]. (32)

As shown in Fig. 6 with k ≥ 2, the variations in the amplitude A of
vr and vϕ at different wave numbers along with the radial distance
away from the pipe wall are also similar to either the same variations
with k = 1 or those of vr in the f.b.c. in Fig. 5(a). Moreover, as the
wave number increases, the amplitudes of both Ar and Aϕ gradually
increase at a certain radial position.

Therefore, the induced axial velocity is obtained as

vz = CzRk
(β−k − βk) cos(kϕ). (33)

Thus, the three components of the induced vorticity are thus
given by

ωr = −CzRk−1k[β−(k+1)
− βk−1

] sin(kϕ), (34a)

ωϕ = CzRk−1k[β−(k+1) + βk−1
] cos(kϕ), (34b)

ωz = CRk
(β−k − βk) sin(kϕ). (34c)

Similarly, the above equations show that such solutions include
the solutions at k = 1 mainly for the induced vorticity and axial veloc-
ity components, namely, Eqs. (31) and (29), respectively, although
the derivation process is different.

III. RESULTS
A. The first sign law for the radial and axial
components of vorticity

According to the above analysis of the spatial distributions of
the radial and axial vorticity components in the f.b.c. and the s.b.c.,
the first sign law is obtained. As an example, Eqs. (25) and (34) for
k ≥ 2 present the following relationship:

ωr ⋅ ωz =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−C1C2zR2k−1kβ−1
(1 − β2k

) sin2
(kϕ),

in f.b.c.,

−C2zR2k−1kβ−1
(β−k − βk)

2
sin2
(kϕ),

in s.b.c.,

where r ∈ [R − h, R] in the inner region or the near-wall region of
the pipe walls. Then, we can rewrite the above relationship by intro-
ducing the sign function, sgn(x), and the first sign variable, ϖ1, as
follows:

sgn(ωr ⋅ ωz) = sgn(ϖ1) =

⎧⎪⎪
⎨
⎪⎪⎩

1, z < 0

−1, z > 0,
(35)

except for some specific positions (e.g., ϕ = 0 and λ) at which
ϖ1 = 0, as well as that obtained from the solutions with k = 1.
This relationship shows that ±|ωz| induces ∓|ωr| in the downstream
region (z > 0) and ±|ωz| induces ±|ωr| in the upstream region
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(z < 0). This relationship is referred to as the first sign law for the
radial and axial components of the vorticity distributed within the
internal flow through a pipe, as shown in Fig. 7, and clearly demon-
strates that the first sign law for the secondary flow in a pipe is inde-
pendent of the spatial distribution of both the induced azimuthal
vorticity ωϕ and the original flow U(r). The first sign law is also
independent of the wave number k and Reynolds number Re. This
indicates that the first sign law is an intrinsic physical mechanism for
vorticity and vortex dynamics, regardless of the kind of disturbance
resulting in the secondary flow.

On the other hand, the first sign law in the upstream region
(z < 0) is effective mainly when the introduced axial vortex or vortex
pair always exists or is sustained. Considering this aspect, the dis-
turbances leading to the generation of an induced axial vortex can
be classified into two categories. The first category is an intermit-
tent or random disturbance, such as the turbulence at large Reynolds
numbers. The second category is a persistent disturbance, such as a
geometric disturbance or surface roughness. For the stretching and
convective mechanisms of non-linear inertial forces,21 an axial vor-
tex generated by the first category of disturbance is easily suppressed
in the upstream region (z < 0), but tends to evolve and convect into
the downstream region (z > 0) along with the original pipe flow
+|U(r)|; therefore, the first sign law is mostly dominant in the down-
stream region, where z > 0. For the second category of disturbance,
similar to the analysis in the flow past the bluff body,19 the first sign
law is consistently effective in the upstream region, where z < 0 and
develops into the downstream region where z > 0 in a certain range
under the inertial effect of the local pipe flow +|U(r)|.

Interestingly, such a sign relationship between the radial and
axial vorticity components is consistent with the first sign law for
the streamwise and vertical components of the vorticity on the upper
surface or upper side in the wake of a bluff body,19 if we adopt con-
dition R → ∞ and a local Cartesian coordinate system in the inner
region of the pipe walls, where the vertical direction is perpendic-
ular to the pipe walls and the streamwise direction is aligned along
the pipe flow direction +|U(r)|. This suggests that the first sign law is
universal in both an external flow past a bluff body and an internal
flow in a pipe.

Moreover, the different effects of viscous forces are also dis-
tinguishable and can be classified into two types for both exter-
nal and internal flows: a direct effect and an indirect effect. For

FIG. 7. Schematic of the first sign law for the radial and axial components of the
vorticity distributed within the flow through a circular-section pipe caused by an
introduced axial vortex or vortex pair uniformly distributed along the axial direc-
tion but periodically varying along the azimuthal direction, where U(r) (denoted by
hollow arrows) is the velocity profile of the pipe flow.

example, in the present pipe flow, the introduced axial vortex with
axial vorticity on the walls is the direct consequence of shear flow
near the walls, i.e., secondary flows, which is also similar to the origi-
nal tangential vorticity Ωϕ(r) due to the pipe velocity U(r). However,
the radial vorticity component is always zero on the pipe walls. Obvi-
ously, the appearance of radial vorticity is certainly not the result of
the shear flow near the walls; rather, radial vorticity is induced by the
present physical mechanism of the VIVor described by the Stokes
equations that is dominated by viscous forces. Therefore, the direct
effect of viscous forces leads to the generation of two wall-tangent
vorticity components on the walls, while the generation of a sin-
gle wall-normal vorticity component is the indirect effect of viscous
forces.

B. The second sign law for the three vorticity
components

Before presenting the second sign law for the three compo-
nents of the vorticity distributed within the flow through a pipe, let
us review the basic laminar pipe flow solved with Hagen–Poiseuille
theory at low Reynolds numbers.1 Generally, the flow through a
straight tube of circular cross section is the case with rotational sym-
metry corresponding to the case of 2D flow through a channel. As
shown in Fig. 2, the original flow (relative to the nearest-wall flow
induced by a disturbance) with axial velocity U(r) parallel to the axis
of the pipe, that is, the z-axis, depends only on the radial coordi-
nate. The velocity components in the radial and tangential directions
are zero and the pressure is constant in every cross section. With
the non-slip boundary condition on the pipe walls r = R or β = 1,
the classic pipe flow solution gives the non-dimensional velocity
distribution

U(r) = 2(1 −
r2

R2 ) = 2(1 − β2
), (36a)

ū =
D2

32μ
(−

dP
dZ
), (36b)

where P is the dimensional pressure and Z is the dimensional
axial coordinate. Such velocity over the cross section is distributed
in the form of a paraboloid of revolution. Based on the defini-
tion of vorticity in Eq. (4), we have the following typical vorticity
distribution:

Ωϕ = −
dU(r)

dr
=

4r
R2 =

4β
R

and Ωr = Ωz = 0, (37)

where Ωr , Ωϕ, and Ωz are the radial, azimuthal, and axial vorticity
components, respectively, due to the original pipe flow U(r). This
equation shows that the azimuthal vorticity is always positive, except
at the pipe center with Ωϕ = 0, as shown in Fig. 8. Alternatively, this
relationship can be expressed by

sgn(Ωϕ) = 1, r ∈ (0,R]. (38)

On the other hand, another assumption is introduced here.
Compared with the magnitude of the azimuthal vorticity Ωϕ, the
induced azimuthal vorticity ωϕ, attributable to the introduction
of the axial vorticity ±|ωz|, is assumed to be very small, that is,
|ωϕ| < Ωϕ; similarly, the induced axial velocity is also assumed to
be very small with the assumption that |vz| < U. As a result of the
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FIG. 8. Schematic of the second sign law for the three components of the vorticity
distributed within the flow through a circular-section pipe caused by an introduced
axial vortex or vortex pair uniformly distributed along the axial direction but peri-
odically varying along the azimuthal direction, where U(r) (denoted by hollow
arrows) is the velocity profile of the pipe flow and Ωϕ is the resultant azimuthal
vorticity.

superposition of these two flow fields, for example, in which the f.b.c.
with k ≥ 2 is employed, we can write the total azimuthal vorticity and
axial velocity in r ∈ [R − h, R] as follows:

ωϕ + Ωϕ = C1zRk−1k[β−(k+1) + βk−1
] cos(kϕ) + 4βR−1, (39)

vz + U = C1zRk
(β−k − βk) cos(kϕ) + 2(1 − β2

). (40)

These equations clearly indicate that the appearance of ωϕ is just
a quantitative modification of Ωϕ and causes the total azimuthal
vorticity and induced axial velocity vz with an original velocity
U(r) to sinusoidally vary along the tangential direction. In addition,
along the ϕ-axis, the periodically varying total azimuthal vorticity
(ωϕ + Ωϕ) and total axial velocity (vz + U) are in phase. Fur-
thermore, the assumption that |ωϕ| < Ωϕ corresponds to precon-
dition (A1); otherwise, the invalidation of such an assumption, i.e.,
|ωϕ| > Ωϕ, could lead to |vz| > U and the appearance of the local
reversed flow. However, this situation is excluded from the present
paper and will be investigated in the future.

Consequently, regarding the evolution of the sign of the vor-
ticity, we have the following modified sign function of the coupled
azimuthal vorticity:

sgn(Ωϕ + ωϕ) = 1, r ∈ [R − h,R]. (41)

With the help of the above analysis and in consideration of the
first sign law [Eqs. (35) and (41)], the second sign law for the three
components of the vorticity is obtained as follows by introducing the
second sign variable, ϖ2 = ωz ⋅ ωr ⋅ (Ωϕ + ωϕ), except for some special
positions at which ϖ2 = 0 (e.g., ϕ = 0 and λ),

sgn(ϖ2) =

⎧⎪⎪
⎨
⎪⎪⎩

1, z < 0

−1, z > 0.
(42)

As shown in Fig. 8, this relationship for the coupled vorticity field
shows that the sign of the combination of the three vorticity com-
ponents is positive upstream and negative downstream relative to
the center of the disturbance. Additionally, the wave number k and
Reynolds number Re are irrelevant to this feature. Interestingly, the
second sign law is exactly the same as the sign law in the flow past

the bluff body,19 i.e., with a negative sign downstream and a positive
sign upstream, which further demonstrates that the second sign law
is universal in both external and internal flows and is independent of
the coordinate system, i.e., the Cartesian system for flat surfaces or a
cylindrical system for curved pipe walls.

C. The third sign law for the radial and axial velocity
components

In addition to the two sign laws for the vorticity components
above, we obtain the specific relationship, referred to as the third
sign law, between the radial and axial components of the induced
velocity. By introducing the third sign variable, ϖ3 = vr ⋅ vz , and
based on Eqs. (2a) and (3) under the specific boundary cases, we
have

sgn(ϖ3) =

⎧⎪⎪
⎨
⎪⎪⎩

−1, z < 0

1, z > 0,
(43)

except for some special positions at which ϖ3 = 0 (e.g., ϕ = 1
2λ and

3
2λ). This velocity sign law can also be verified as being consistent
with the sign law in the flow past a bluff body,19 particularly, for a
flat plate when R→∞.

Interestingly, the third sign law is independent of the distri-
bution of the induced tangential velocity vϕ, the influence of the
original flow U(r), the wave number k, and the Reynolds number
Re; this also indicates that such a relationship is an intrinsic physical
mechanism for the flow through a pipe. Considering that ωr and ωz
originate mainly from the 3D disturbed flow field and disappear in
the original pipe flow field (except in a turbulent state), the first sign
law is easily demonstrated by the iso-surfaces of the vorticity com-
ponents. However, it is difficult to illustrate the third sign law by
the iso-surfaces of the velocity components due to the difficulty in
distinguishing the induced velocity components, especially vz , from
the original pipe flow velocity. With a turbulent flow, in which the
induced velocity is regarded as the fluctuating velocity generated by
turbulence, some physical phenomena, such as the special sign of the
Reynolds stress in a boundary layer on a flat plate, could be better
understood or explained.22

D. Examples: Reduced and expanded pipes
with a square cross section

Examples to illustrate the above two sign laws for the three vor-
ticity components are briefly presented through direct numerical
simulations (DNS). The first kind of secondary flow is adopted by
introducing geometric disturbances along the axial and azimuthal
directions. As shown in Figs. 9(a) and 10(a), the axial distur-
bances are represented by the reduction and expansion of the pipe
diameter, respectively. The azimuthal disturbance of a square cross
section is typically taken into account. Regarding the local dis-
turbed pipe flow, the reduced pipe represents the upstream dis-
turbance because the normal direction of the disturbance points
to the inlet, while the expanded pipe represents the downstream
disturbance because the disturbance points to the outlet. The
reduced and expanded pipes could be compared with conic dis-
turbances upstream and downstream, respectively, as shown in
Fig. 1.
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FIG. 9. (a) Schematic of the longitudinal section for a
reduced pipe and contours of (b) ωz , (c) ωr , and (d)
Ωϕ + ωϕ in the middle axial position (A-A) with a square
cross section at Re = 200, where solid and dashed lines
denote positive and negative values, respectively.

In present DNS, governing equations are written by

∇ ⋅ u = 0, (44a)

∂u
∂t

+ (u ⋅ ∇)u = −∇p +
1
Re
∇

2u, (44b)

where u is the total velocity vector, t is the time, and ∇ is the gradi-
ent operator. The boundary conditions are presented as follows: (i)
the uniform incoming velocity at the inlet; (ii) the simple outflow at
the exit; and (iii) non-slip boundary conditions on the walls. In the
numerical method, the second-order scheme is applied for both tem-
poral and spatial derivatives, and the SIMPLEC algorithm is adopted
in the pressure–velocity coupling.

The spatial distributions of the three vorticity components at
the middle axial position of the pipe are presented in Figs. 9 and 10
at Re = 200, when the flow is laminar and steady without any tur-
bulent disturbance. For the upstream disturbance in Fig. 9, the sign
of ωz is always the same as that of ωr in most regions. However, for
the downstream disturbance in Fig. 10, the sign of ωz is just opposite
to that of ωr , mainly in corners and the central area. Regardless of
whether the pipe is reduced or expanded, the sign of (Ωϕ + ωϕ) is
predominantly positive. Consequently, the first sign law for ωz ⋅ωr is
strictly valid near the corner region with a strong geometric distur-
bance. Furthermore, except for the local recirculation in the corners
of the expanded pipe, the second sign law always prevails in most
regions.

E. Physical meaning of two vorticity sign laws
As discussed in the previous subsections, for the two vortic-

ity sign laws, there are some similarities in both external flow (EF)
past a bluff body and internal flow (IF) through a pipe. The physical
meaning can be summarized as follows:

(i) The first sign law indicates the distorted or inclined direc-
tion of the spanwise vortex in EF or the azimuthal vortex in
IF, which is already formed in the 2D flow, in the longitu-
dinal section, i.e., the x − y plane in EF or the z − r plane
in IF;

(ii) The second sign law illustrates the rotational direction of the
3D vortex predominantly distributed in both EF and IF;

(iii) Both sign laws indicate that the swirling direction of the 3D
primary vortex is specific, rather than random;

(iv) From the point of the vorticity sign, the special feature in
the vorticity vector is newly explained, i.e., there are only
two independent components in three vorticity components.
Among them, the first sign law clearly indicates the closely
dependent relationship between ωx and ωy in EF, as shown in
Fig. 1, or between ωz and ωr in IF, as shown in Fig. 9; How-
ever, the second sign law just indicates the intrinsic physi-
cal relationship between the independent spanwise (EF) or
azimuthal (IF) vorticity and the other two vorticity compo-
nents based on the first sign law.
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FIG. 10. (a) Schematic of the longitudinal section for an
expanded pipe and contours of (b) ωz , (c) ωr , and (d)
Ωϕ + ωϕ in the middle axial position (A–A) with a square
cross section at Re = 200, where solid and dashed lines
denote positive and negative values, respectively.

Presently, based on Eq. (44b), the total vorticity transport
equation is obtained as follows:

∂ω
∂t

+ (u ⋅ ∇)ω = (ω ⋅ ∇)u +
1
Re
∇

2ω, (45)

where ω is the total vorticity vector defined as ∇ × u. Therefore, in
the immediate neighborhood of walls, Eq. (45) is simplified as

∇
2ω ≈ 0. (46)

In addition, far away from the walls, there is

∂ω
∂t

+ (u ⋅ ∇)ω − (ω ⋅ ∇)u ≈ 0. (47)

Accordingly, as described in the previous assumption (A8), once the
vorticity is generated on the walls, the feature of the vorticity sign
is determined by Eq. (46). When the vorticity is transported and dif-
fused into the region far away from the walls, the vorticity with a spe-
cific sign is invariant due to Kelvin’s circulation theorem in Eq. (47).
Therefore, before such vorticity is totally dissipated owing to fluid
viscosity, the sign of vorticity is always constant in the present vortex
dynamics.

As pointed out in a recent study23 for EF and discussed in the
first sign law, the effect of nonlinear inertial forces including the con-
vection term (u ⋅ ∇)ω and the twisting and stretching terms (ω ⋅ ∇)u
can be summarized. As for the first category, i.e., an intermittent or

random disturbance, the only downstream region is valid. While for
the second category, i.e., a persistent disturbance, as illustrated in
Figs. 9 and 10, the upstream or downstream region is dependent
on the introduction of such disturbance, related to the main flow
or local flow direction. Therefore, the upstream region for two sign
laws only exists in the upstream persistent disturbance, while the
downstream region always exists in both types of disturbance.

IV. CONCLUSIONS
Based on the VIVor theory in the flow past a bluff body

reported in a previous study,19 the flow through a pipe is investigated
as another basic kind of fluid flow, namely, an internal flow. As the
first part of the present subject, the features of the vorticity sign are
theoretically presented, particularly when secondary flows appear.
In the immediate vicinity of the pipe walls where inertial forces can
be neglected and viscous forces are dominant, the flow field induced
by the introduction of a disturbed vortex or vortex pair as a result of
secondary flow is analyzed. Then, two kinds of boundary cases are
taken into account: introduced vorticity distributed on the walls and
introduced vorticity distributed near the walls (but is absent on the
walls).

Considering the typical features of pipe flow, such as taking the
form of a paraboloid of revolution, the first sign law for only the
radial and axial vorticity components and the second sign law for
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the three vorticity components are obtained. Under specific distri-
butions of pipe flow and a resultant azimuthal vorticity that always
has a positive sign throughout the pipe, the second sign law is exactly
equivalent to the first sign law, i.e., a positive sign upstream and a
negative sign downstream. Due to their independence of the induced
azimuthal vorticity, original pipe flow, wave number k of the dis-
turbance, and Reynolds number Re, these two sign laws are intrin-
sic physical mechanisms of the evolution of vortices and vorticity
dynamics. These laws reveal physical relationships not only among
the three vorticity components, but also between the wavily vary-
ing total azimuthal vorticity and azimuthal vorticity induced by a
3D perturbation or secondary flow. Furthermore, these sign laws
are well consistent with those found in the wake flow of a bluff
body if the pipe radius reaches infinity. Finally, examples are briefly
illustrated by direct numerical simulations.

The physical meaning of these two vorticity sign laws mainly
shows that the rotational direction of the 3D primary vortex in the
longitudinal plane is specific. In addition, from the point of the vor-
ticity sign, these sign laws present that two vorticity components
in the longitudinal plane are closely dependent, while the original
2D primary vortex normal to the longitudinal plane is independent.
Considering the effect of nonlinear inertial forces, the downstream
region in both vorticity sign laws only exists for an intermittent
or random disturbance, while both the upstream and downstream
regions could coexist in a persistent disturbance related to the main
or local flow.

In addition, two basic effects of viscous forces are revealed
with regard to the physical mechanisms responsible for generating
vorticity. The first is the direct effect of viscous forces resulting in
two wall-tangent components of vorticity generated on surfaces due
to shear flows, such as the introduced vorticity ωz in the present
secondary flows. The second is the indirect effect leading to a sin-
gle wall-normal vorticity component induced by a vortex with for-
mer vorticity near the walls, e.g., the vorticity ωr induced by ωz in
the present pipe flow. Furthermore, if the (pipe) wall is removed,
Kelvin’s circulation theory indicates that a 2D introduced vortex
or vortex pair is invariable without viscous forces, even under a
certain 3D transient disturbance. Even if the fluid is viscous, the
main viscous effects, diffusion, and dissipation, would also eliminate
such disturbances. Therefore, the wall is necessary for the present
indirect effect of viscous forces, indicating that the mechanism of
the VIVor is actually a kind of interaction between a vortex and
structure.

In the future, as the second part of the present subject, direct
numerical simulations of flows through a square-section pipe at the
lower Reynolds number will be carried out to verify the characteris-
tics of the first and second sign laws and the relationships with the
geometric disturbances that induce secondary flows in non-circular
cross sections.
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