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We theoretically construct a rectangular phononic crystal (PC) structure surrounded by water with C2v symmetry, and
then place a steel rectangular scatterer at each quarter position inside each cell. The final complex crystal has two forms:
the vertical type, in which the distance s between the center of the scatterer and its right-angle point is greater than 0.5a,
and the transverse type, in which s is smaller than 0.5a (where a is the crystal constant in the x direction). Each rectangular
scatterer has three variables: length L, width D, and rotation angle θ around its centroid. We find that, when L and D
change and θ is kept at zero, there is always a linear quadruply degenerate state at the corner of the irreducible Brillouin
zone. Then, we vary θ and find that the quadruply degenerate point splits into two doubly-degenerate states with odd and
even parities. At the same time, the band structure reverses and undergoes a phase change from topologically non-trivial to
topologically trivial. Then we construct an acoustic system consisting of a trivial and a non-trivial PC with equal numbers
of layers, and calculate the projected band structure. A helical one-way transmission edge state is found in the frequency
range of the body band gap. Then, we use the finite-element software Comsol to simulate the unidirectional transmission
of this edge state and the backscattering suppression of right-angle, disorder, and cavity defects. This acoustic wave system
with rectangular phononic crystal form broadens the scope of acoustic wave topology and provides a platform for easy
acoustic operation.

Keywords: double Dirac cone, topological edge state, rectangular phononic crystal, topological phase transi-
tion
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1. Introduction
The discovery of the quantum spin Hall effect not

only opened a new chapter in condensed matter physics[1–5]

but also brought the mathematical concept of topology into
physical systems. Topological states have many special
features,[6–10] such as the edge states of unidirectional trans-
mission and backscatter suppression that is insensitive to de-
fects. Some researchers break the time-reversal symmetry
of optoelectronic systems by applying a magnetic field to
form topological states of unidirectional transmission on the
edges of non-trivial and trivial structures.[11–14] Photonic and
phononic crystals (PCs) are highly similar to electron sys-
tems in terms of band structures and Bloch’s law, whereby
they can also achieve topological states similar to quantum
systems.[15–17] An acoustic system belongs to the Bose sub-
system, which is essentially different from an electromagnetic
system. Therefore, it is impossible to break the time-reversal
symmetry of an acoustic system using a magnetic field.

Accordingly, some researchers have mimicked the sym-
metry of a magnetic field in acoustic systems by introducing

a rotating airflow or an acoustic pseudospin to form acous-

tic edge states.[18,19] Some have used the classical graphene

model of an electronic system to construct a two-dimensional

structure with C3v symmetry in an acoustic system, thus form-

ing a degenerate Dirac cone at the corner of the Brillouin zone,

and then rotated the scatterer. Reducing the symmetry of the

structure to C3 opens the Dirac cone to form a band gap.[20–26]

Lu et al. constructed a three-layer structure similar to a sand-

wich with multiple single-layer structures with different topo-

logical phases, realizing an edge state with topological valley

properties.[20] Xia et al. designed a photonic crystal that si-

multaneously exhibits the topological states of sound and light

using cylindrical spacing of different diameters.[27] By adjust-

ing the impedance ratio between the cylindrical scatterer and

the matrix in the honeycomb crystals, they found a Dirac cone

and a double Dirac cone at different degenerate points of the

structure. By reducing the symmetry of the structure (from C6v

to C3v), the authors simultaneously implemented the topologi-

cal edge transmission of sound and light.

Early studies focused on the corner point or center points
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of the Brillouin zone. Later, researchers discovered that a
Dirac point can also exist at the edge of the Brillouin zone.[28]

For example, researchers found that increasing the ratio of the
scatterer of a rectangular PC moves the Dirac point from the
midpoint of the edge to the corner. Some have further pro-
posed a doubly degenerate point in a square crystal and found
a topological phase transition by adjusting the rotation angle
of the scatterer.[29] Then the author constructed a ”back” shape
acoustic model and demonstrated its topological edge state and
topological angle state. However, no study has been done on
the edge state properties of rectangular PCs with double dirac
cone.

This paper models a PC structure with rectangular cells
placed in water. A rectangular scatterer is placed at each
of the four quarter positions of each cell, and the phononic
band structure is studied by changing the following variables
of each scatterer: its length L, width D, and rotation angle
θ around its centroid. We find that when θ = 0, there is
always a quadruply degenerate point at the corner M of the
irreducible Brillouin zone, but its value changes as L and D

change. Changing θ splits the four simple points and causes
the system to undergo a topological phase transition. Then,
using the finite-element simulation software Comsol, we find
that the edge structure constructed by topologically trivial and
nontrivial PCs is robust to right-angle, disorder, and cavity de-
fects.

2. Rectangular acoustic system

We study a two-dimensional crystal in water with rectan-
gular cells, as shown in Fig. 1. The crystal constant in the x

direction is a = 10 mm, and that in the y direction is b = 2a.
An identical steel rectangular scatterer is placed at each of the
four quarter positions of each unit: (a/4, a/2), (a/4, −a/2),
(−a/4, −a/2), and (−a/4, a/2). When changing either L,
D, or θ , the mirror symmetry of the entire cell is maintained.
The cell basis vectors are 𝑎1 = â𝑖 and 𝑎2 = 2a𝑗̂. The acoustic
wave equation for propagation in such a system is

∇ ·
(

∇p
ρr(x)

)
=−ω2

c2
0

p
Br(x)

, (1)

where p is the sound pressure field in space, ρr and Br re-
spectively represent the mass density and body modulus of the
acoustic propagation medium relative to the aqueous medium,
ω is the angular frequency, and c0 = 1530 m/s is the speed
of sound in water. Each steel scatterer has a density of
7800 kg/m3, and the longitudinal wave velocity is 5650 m/s.
The effect of sound propagation in the scatterer is ignored be-

cause the impedances of water and steel differ greatly, and the

steel column is treated as a rigid body.
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Fig. 1. (a) PC consisting of rectangular scatterers surrounded by wa-
ter positioned in a rectangular lattice. (b) Cell of a rectangular PC. (c)
Irreducible Brillouin zone of a cell.

The distance s from the center of the scatterer to its right-

angle point is

s =
√

D2 +L2/2. (2)

For scatterers with s greater than 0.5a, the maximum rotation

angle is

θ = arctan
(

L
D

)
− arccos

(
a

2
√

D2 +L2

)
, θ < 90◦. (3)

For a scatterer with s smaller than 0.5a, the angle of rotation

is ±180◦. Then, keeping θ at zero and varying L and D, we

study the band structure and frequency variation at the cor-

ner M of the irreducible Brillouin zone. It can be seen from

Fig. 2(a) that when D is fixed, the frequency at M decreases as

L increases. To further understand this variation, figure 2(b)

shows a case with D = 0.1a, and the frequency at M mono-

tonically decreases in the form of a nearly straight line as L

increases. At the same time, it can also be seen from Fig. 2(a)

that when L is in the range of 0.4a–0.8a, the frequency at M

decreases slightly as D increases, and then increases slowly.

In Fig. 2(c), L takes 0.48a. When D increases from 0.04a to

0.46a, the frequency decreases from 72200 Hz at D = 0.04a

to 71700 Hz at 0.1a, and then gradually increases to 76300 Hz

at 0.46a.

Next, we will study two cases with different s of the scat-

terer, as shown by points A and B in Fig. 2(a). The rotation

angle θ of case A is ±180◦, which is called T (transverse)

type. The maximum rotation angle θ of case B is±31◦, which

is called V (vertical) type.
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Fig. 2. (a) Frequency of the quadruply degenerate state at the corner M of the Brillouin zone as a function of scatterer width D and length L.
(b) When D = 0.1a, the frequency of M changes with L. (c) When L = 0.48a, the frequency of M changes with D.

3. The k·p perturbation analysis of the system
In order to study the dispersion relation near the point M,

we transform the acoustic wave equation into an eigenvalue
problem

Hψn,𝑘(𝑟) = ω
2
n,𝑘κ

−1(𝑟)ψn,𝑘(𝑟), (4)

where H = −∇ ·
[
ρ−1(r)∇

]
is the system Hamiltonian, and

ψn,𝑘 and ωn,𝑘 are the sets of wave functions and character-
istic frequencies of the Bloch wave vector in the n-th band,
respectively. According to the 𝑘 ·𝑝 perturbation theory,[30–34]

the wave function at one wave vector can be represented by a
linear combination of wave functions at the near-wave vector
𝑞 around it. Therefore, 𝑞 is considered to be small here. The
theoretical Hamiltonian of the system is

Hnn′ = ω
2
n δnn′ +𝑞 ·𝑃nn′ + · · · , (5)

where ωn is the characteristic frequency in the n-th band at the
degenerate point. Only the first-order term of 𝑞 is used in the
formula, and higher-order terms are omitted. The matrix term
is expressed as

𝑃nn′ =
∫

u.c
ψ
∗
n,𝑘(𝑟)

{
−i
[
2ρ
−1(𝑟)∇+∇ρ

−1(𝑟)
]}

ψn′𝑘(𝑟)d𝑟.

(6)
If two states of the sound pressure field at a certain point have
odd parity, the other two states have even parity. Other acous-
tic frequencies are farther away from the degeneracy point.
According to the perturbation theory, we can only consider the
contribution of the two double degenerate states at this point.
Then, 𝑞 can be expressed on the basis (|s〉 , |d〉 , |px〉 ,

∣∣py
〉

as

qxPx +qyPy =


0 0 aqx bqy
0 0 cqy dqx

a∗qx b∗qy 0 0
c∗qy d∗qx 0 0

 . (7)

Analysis of the slip symmetry of the applied structure then re-
sults in a linear quadruply degenerate state at this point.

4. Band structure and topological phase transi-
tion

Now we change the third scatterer variable θ , and find
that the double Dirac cone appears open or closed as θ varies;
that is, a topological phase transition of the structure occurs.
Figure 3 shows the band structure and topological phases of
the V- and T-type structures, revealing the change from non-
trivial to trivial as the rotation angle of the scatterer changes.
Figure 3(a) is the band structure of a V-type PC with four lin-
ear quadruply degenerate points at M for θ = 0◦. On the left
side, θ = −20◦, and M is divided into two doubly degenerate
points, where the low frequency is the q state with even parity
and the high frequency is the p state with odd parity. On the
right side, θ = 20◦, and the band structure and band gap fre-
quency are the same as those for θ =−20◦, but the sound pres-
sure distribution at M is opposite; that is, the low frequency is
the p state while the high frequency is the q state. Figure 3(b)
further shows the variation of the q and p states with the rota-
tion angle. When θ increases from −30◦ to 0◦, the bandwidth
at M gradually decreases. In this angular range, the q state is
always below the p state; the system is in a non-trivial state.
At θ = 0, the q and p states coincide and the system is in a
quadruply degenerate state. When θ increases from 0◦ to 30◦,
the bandwidth at M increases gradually. In this angular range,
the q state is always above the p state; the system is in a trivial
state. Therefore, figures 3(a) and 3(b) show that the system
undergoes a transition from a non-trivial to a trivial phase as
θ changes from negative to positive. Figure 3(c) shows the
band structure of a T-type PC, which is similar to the V-type
one, with a linear quadruply degenerate point at M for θ = 0.
When θ = −60◦ and 60◦, the band structures are the same,
but the frequencies of the q and p states are opposite. When
θ increases from −90◦ to 0◦, the bandwidth at M increases

124301-3
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first and then decreases to 0. In this angular range, the q state
is always below the p state, so the system is in a non-trivial
state. When θ increases from 0◦ to 90◦, the bandwidth at M
increases first and then decreases to 0. In this angular range,

the q state is always above the p state, so the system is in a
trivial state. Therefore, the T-type system also undergoes a
phase transition from non-trivial to trivial as θ changes from
negative to positive.
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Fig. 3. (a) Band structure of a V-type PC when θ is −20◦, 0◦, and 20◦ respectively. (b) Variation of q and p states with rotation angle θ

increasing from−30◦ to 30◦, the inset shows the distribution of sound pressure of q and p states when θ =±20◦. (c) Band structure of a T-type
PC when θ is −60◦, 0◦, and 60◦ respectively. (d) Variation of q and p states with θ increasing from −90◦ to 90◦ for the T-type PC, the inset
shows the distribution of sound pressure of q and p states when θ =±60◦.

5. Topological edge state

From the perturbation analysis of the system and the
phase diagram of its topology, we find that the two PC types
proposed in this paper are similar to a system with a quan-
tum spin Hall effect, so the V and T sound waves should have
an acoustic spin Hall effect. Accordingly, we use topologi-
cally trivial and non-trivial PCs to splice in the x and y direc-
tions. Then, we analyze the projection bands of the spliced
structure in the corresponding direction. We splice a 10-layer
topologically trivial V-type PC with θ =−20◦ and a 10-layer
topologically non-trivial V-type PC with θ = 20◦ along the
x and y directions. We also splice a 10-layer trivial T-type
PC with θ = −60◦ and a 10-layer non-trivial T-type PC with
θ = 60◦. The result is shown in Fig. 4. The gray area in
Fig. 4(a) represents the bulk state of the spliced structure, the
red dotted line represents the edge state existing in the band
gap, and the four illustrations represent the sound pressure dis-
tribution of the edge state at different positions. The black
arrows represent the direction of energy flow. We can see
from Fig. 4(a) that when kx = 0.96π/a, the energy at the low-
frequency point flows clockwise downward, and the energy
at the high-frequency point flows counterclockwise. When
kx = 1.04π/a, the energy at the low-frequency point flows

counterclockwise, and the energy at the high-frequency point
flows clockwise downward, opposite to the direction of the
energy flow at 0.96π/a. The other three boundary states show
the similar phenomenon. The boundary state shapes and band-
widths are slightly different for the different splices of the V-
and T-type PCs. Therefore, if the two boundaries are con-
centrated into one structure, such as the Z-shaped boundary
shown in the text below, the frequency range through which
sound waves can pass should be the intersection of the two
boundary state bands.

The topological edge is different from an ordinary edge.
It is immune to corner, cavity, and disorder defects, and can en-
sure that the incident sound wave propagates smoothly along
the edge without reflection. We simulate a plane wave inci-
dent from the left side into a hydroacoustic region consisting
of 20× 15 hybrid PCs with topological edges (Fig. 5). The
area is composed of a V-type trivial PC with θ = −20◦ and a
non-trivial PC with θ = 20◦, and contains two right-angled Z-
shapes, as shown in Fig. 5(a). Figure 5(b) shows the addition
of cavity and disorder defects on the basis of Fig. 5(a). We
can see from Figs. 5(a) and 5(b) that the sound waves prop-
agate without reflection along the edge, and the sound pres-
sure of the transmitted wave is hardly affected. Figures 5(c)
and 5(d) show the Z-shaped edge composed of a T-type trivial
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PC with θ = 60◦ and −60◦. Injecting an acoustic wave with
f = 79.5 kHz into the left side yields a similar phenomenon to
that of the V-shaped structure. Therefore, both V-type T-type

topological edges have good immunity to right angle, cavity,
and disorder, and sound waves can bypass these defects and
continue to propagate without reflection.
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Fig. 4. Projection band structure of V- and T-type PCs. Panels (a) and (b) are projection band structures of a spliced structure of a V-shaped
phononic crystal with θ = 20◦ and −20◦ (10 layers each) in the x and y directions, respectively. The gray area indicates the bulk state, and red
dotted line indicates the edge state. Panels (c) and (d) are projection band structures of a spliced structure of a T-type phononic crystal with
θ = 60◦ and −60◦ (10 layers each) in the x and y directions, respectively. The illustrations in (a)–(d) show the distributions of sound pressure
around the splicing boundary at different wave vectors. The black arrows represent the energy flow directions.
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Fig. 5. (a) and (b) Field pattern of V-type edge simulated at 68 kHz without
and with defects, respectively. (c) and (d) Field pattern of T-type edge sim-
ulated at 79.5 kHz without and with defects, respectively. The green arrow
indicates that the plane wave is incident from the left side.

6. Conclusion
This study has theoretically constructed a rectangular PC

with C2v symmetry and placed four steel rectangular scatterers
at each quarter position inside the crystal. The final composite

crystal has two different forms: the V-type, where the distance
between the center point of the scatterer and its right-angle
point, s, is greater than 0.5a, and the T-type, where s is smaller
than 0.5a. We found a quadruply degenerate state when the
length L and width D of the scatterer are varied at θ = 0. This
quadruply degenerate state consists of two odd-parity degen-
erate states and two even-parity states at the corner M. With
the spatial symmetry of the sound pressure field at the corner
M and the sliding symmetry of the structure, the perturbation
method was used to calculate the effective Hamiltonian of the
structure and the linear degeneracy of the band at the quadru-
ply degenerate point. We also found that when D is fixed, the
frequency at M decreases with increasing L; when L is in the
range 0.4a–0.8a, the frequency at M first decreases slightly
as D increases and then increases. By changing θ , we found
that the quadruply degenerate state splits into two doubly de-
generate states, and the band structure reverses as θ changes
from negative to positive. Then, we spliced the systems with
trivial and nontrivial states along the x and y directions and
calculated the projection band structures. We found a one-way
transmission edge of the “spin–momentum” locking in the fre-
quency range of the body band gap. The finite-element soft-
ware Comsol was then used to simulate the acoustic reflection
of a Z-shaped edge consisting of two right angles composed
of 20× 15 PCs, and we found that the sound waves could
propagate without reflection along the edge. Then, we intro-
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duced disorder and cavity defects to the edge, and found that
the sound wave can still propagate around these defects. This
shows the backscattering suppression of the topological edge.

The topological PC composed of steel rectangular scat-
terers surrounded by water is simple and practical, and can re-
alize stable underwater acoustic wave edge transmission with
good performance. This has potential application to underwa-
ter acoustic communication.
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