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a b s t r a c t 

Direct numerical simulations of incident shock wave and supersonic turbulent boundary layer interactions 

near an expansion corner are performed at Mach number M ∞ 

= 2.9 and Reynolds number Re ∞ 

= 5581 

to investigate the expansion effect on the characteristic features of this phenomenon. Four expansion an- 

gles, i.e. α = 0 0 (flat-plate), 2 0 , 5 0 and 10 0 are considered. The nominal impingement point of the oblique 

shock wave with a flow deflection angle of 12 0 is fixed at the onset of the expansion corner, and flow 

conditions are kept the same for all cases. The numerical results are in good agreement with previous ex- 

perimental and numerical data. Various flow phenomena, including the flow separation, the post-shock 

turbulent boundary layer and the flow unsteadiness in the interaction region, have been systematically 

studied. Analysis of the instantaneous and mean flow fields indicates that the main effect of the ex- 

pansion corner is to significantly decrease the size and three-dimensionality of the separation bubble. A 

modified scaling analysis is proposed for the expansion effect on the interaction length scale, and a satis- 

factory result is obtained. Distributions of the mean velocity, the Reynolds shear stress and the turbulent 

kinetic energy show that the post-shock turbulent boundary layer in the downstream region experiences 

a faster recovery to the equilibrium state as the expansion angle is increased. The flow unsteadiness is 

studied using spectral analysis and dynamic mode decomposition, and dynamically relevant modes asso- 

ciated with flow structures originated from the incoming turbulent boundary layer are clearly identified. 

At large expansion angle ( α= 10 0 ), the unsteadiness of the separated shock is dominated by medium fre- 

quencies motions, and no low frequency unsteadiness is observed. The present study confirms that the 

driving mechanism of the low frequency unsteadiness is strongly related to the separated shock and the 

detached shear layer. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Shock wave and turbulent boundary layer interactions (SWTB-

Is), owing to their ubiquitous occurrence and significant impact

n the performance of high speed vehicles, have received exten-

ive and sustained attention in the past decades. A large body of

xperimental and numerical studies on this subject has been per-

ormed and the advances are quite encouraging. Comprehensive

ummary on this subject can refer to the notable works reviewed

y Clemens & Narayanaswamy [1] and Gaitonde [2] . When an in-

ident oblique shock wave impinges at an expansion corner, the

nteractions are much more complicated as the flow structures can

e significantly affected by the presence of the expansion corner.
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ue to a favorable pressure gradient induced by the expansion ef-

ect, SWTBLIs might be dramatically weakened with large expan-

ion. Additionally, a turbulent boundary layer subjected to an ex-

ansion corner can undergo an acceleration and relaminarization

rocess [ 3 , 4 ], unlike the strong amplification of turbulence inten-

ity related to shock interactions. The combined effect of the shock

ancellation and relaminarization on SWTBLIs is still not fully un-

erstood and the associated physical mechanisms need to be fur-

her investigated. 

Numerous experimental investigations have been performed to

tudy the behaviors of shock interactions near an expansion cor-

er. Chew [5] experimentally investigated SWTBLIs in the presence

f a 6 0 expansion corner at Mach numbers of 1.8 and 2.5. They
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found that the interaction region could be strongly affected by the

expansion corner only when the interaction occurred within three

to four times of the boundary layer thicknesses upstream of the

corner. Chung & Lu [6] carried out detailed experimental studies

on the interactions between a Mach 8 turbulent boundary layer

and an impinging shock near an expansion corner. The incident

shock generated by an external sharp wedge impinged at three dif-

ferent locations, i.e. at the corner, ahead of the corner and after

the corner. Their experiments showed that the upstream influence

was significantly attenuated by the favorable pressure gradient in-

duced by the expansion effect, especially when the shock impinged

after the corner. However, due to small corner and wedge angles

considered in their experiments, the boundary layers were all un-

separated. White & Ault [7] carried out a similar experiment with

stronger shock interactions and the separated flow occurred near

the expansion corner. Collectively, measurements of the wall static

pressure and heat transfer showed that as the separation region

moved closer to the expansion corner, the separation was even-

tually suppressed. A small influence was also observed when the

separation region was fully upstream of the corner. In recent years,

Sathianarayanan & Verma [8] used surface oil-flow technique and

the mean pressure measurement to investigate the incident shock

and boundary layer interactions in the vicinity of an expansion cor-

ner and in the presence of sidewalls at M ∞ 

= 3.9. Their focus was

laid on the effect of geometrical parameter variations on the three-

dimensional nature of the separation, such as the wedge angle, the

expansion angle and the impingement locations. Their experiments

demonstrated that the three dimensionalities of the separated flow

depended strongly on the wedge angle, rather than on the expan-

sion angle, and the suppression of the separation was not fully

completed even though the expansion angle was larger than the

wedge angle. 

In contrast to the relatively extensive experimental studies, only

a very limited number of high-fidelity numerical studies, i.e. direct

numerical simulation (DNS) and large eddy simulation (LES), on

SWTBLIs near an expansion corner have been reported so far. Re-

cently, Konopka et al. [9] performed LESs of a shock wave imping-

ing on the supersonic boundary layer downstream of an expansion

corner at M ∞ 

= 1.76, with focus on the turbulence statistics. They

found that the Reynolds stress components were significantly am-

plified and a maximum amplification factor of 11 occurred for the

wall-normal component. Analysis of the Reynolds stress anisotropy

tensor also showed that the tendency towards the one-component

limit at the expansion corner was reversed to approach the two-

component limit for the near-wall turbulence due to shock inter-

actions. 

The main objective of this paper is to investigate the fun-

damental mechanisms associated with the SWTBLIs near an ex-

pansion corner using DNS. To the authors’ knowledge, such DNS

studies of SWTBLIs near an expansion corner are relatively rare

in the literature. In present simulations, the nominal impinge-

ment location and the strength of the incident shock are fixed,

and the expansion effect is highlighted with increasing the an-

gle of the expansion corer. The inflow conditions and flow con-

figurations are chosen to be similar to those used in the DNS of

Priebe et al. [10] and in the experiments of Bookey et al . [11] .

We focus particularly on the analysis of the separation region,

turbulence statistics and unsteadiness in the interaction region

to provide further insight about the complicated flow phenom-

ena. The content of this paper is organized as follows. In Sec.

II, details about the direct numerical simulations are introduced.

The expansion effects on the separation region and the length

scales are then presented in Sec. III. The characteristics of the

post-shock turbulent boundary layer and the unsteadiness are dis-

cussed in Sections IV and V, respectively. In Sec. VI, conclusions are

finally given. 
. Direct numerical simulations 

.1. Governing equations and numerical method 

The compressible Navier–Stokes equations in conservative form

an be written in curvilinear coordinates as follow, 

 t U + ∂ ξ ( F − F v ) + ∂ η( G − G v ) + ∂ ζ ( H − H v ) = 0 , (1)

ere, U = J −1 ( ρ, ρu, ρv , ρw, ρE ) denotes the conservativ e v ect or

ux, with ρ the density, ( u, v, w ) velocity components in three di-

ections, and ρE the total energy. J −1 is the Jacobian matrix trans-

orming Cartesian coordinates into curvilinear coordinates. F and

 v are inviscid and viscous fluxes in the direction ξ, which can be

xpanded as 

 = J −1 

⎡ 

⎢ ⎢ ⎢ ⎣ 

ρ ˜ U 

ρu ̃

 U + ξx P 

ρv ̃  U + ξy P 

ρw ̃

 U + ξz P 

( ρE + P ) ̃  U 

⎤ 

⎥ ⎥ ⎥ ⎦ 

F v = J −1 

⎡ 

⎢ ⎢ ⎣ 

0 

ξx σ11 + ξy σ21 + ξz σ31 

ξx σ12 + ξy σ22 + ξz σ32 

ξx σ13 + ξy σ23 + ξz σ33 

ξx S 1 + ξy S 2 + ξz S 3 

⎤ 

⎥ ⎥ ⎦ 

(2)

here, 

˜ 
 = u ξx + v ξy + w ξz 

 1 = u σ11 + v σ21 + w σ31 − q 1 

 2 = u σ12 + v σ22 + w σ32 − q 2 

 3 = u σ13 + v σ23 + w σ33 − q 3 

nd 

i j = 2 μ
∂ u i 

∂ x j 
− 2 

3 

μ
∂ u k 

∂ x k 
δi j , q i = −k 

∂T 

∂ x i 

n the above equations, p and T are the pressure and tempera-

ure, respectively. The working fluid air is considered as thermally

erfect gas and the relationship between pressure and tempera-

ure is given by the ideal gas law. The dynamic molecular viscos-

ty is obtained using the Sutherland law: μ = μ0 ( 
T 
T 0 

) 3 / 2 
( T 0 +110 . 4 ) 
( T +110 . 4 ) 

ith μ0 = 1 . 711 × 10 5 kg ·m 

−1 ·s −1 and T 0 = 273 . 15K . Flux terms in

he other two directions, i.e. G and G v , H and H v , are in similar

orm to F and F v , and thus are not given for simplicity. 

The in-house code OPENCFD-SC is employed to perform the

NS in the present work. This code has been widely applied

o a series of studies involving SWTBLIs in a compression ramp

12] , hypersonic boundary layer transition over a blunt cone

13] . The inviscid terms are solved using a bandwidth-optimized

ourth-order weighted essentially non-oscillatory (WENO) scheme

14] with the Steger-Warming vector flux splitting method. By em-

loying a limiter technique based on the total variation, the nu-

erical dissipation is greatly reduced so that turbulence in smooth

egions can be accurately captured. An eighth-order central dif-

erence scheme is used to calculate the viscous flux terms. The

ime integration is performed using the third-order Runge-Kutta

ethod. More details about the numerical method can be found

n [12–14] . 

.2. Simulation setup 

The inflow parameters are similar to those used in the DNS

y Priebe et al. [10] . The Mach number and the static temper-

ture of the free-stream flow are M ∞ 

= 2 . 9 and T ∞ 

= 181 K , re-

pectively. The Reynolds number based on the momentum thick-

ess of the boundary layer is R e θ = 2300 . As shown in Fig. 1 , the

omputational domain is partitioned into two zones. A zero pres-

ure gradient flat-plate boundary layer extends from x = −365

m to x = 0 mm, followed by an expansion corner ranging from

 = 0 mm to x = 100 mm. The flow direction is from the left to the
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Fig. 1. Schematic of the computational domain and boundary conditions. 

Fig. 2. Sketch of (a) computation grid and (b) streamwise grid spacing. The grid points are plotted at an interval of every ten points in both streamwise and wall-normal 

directions. 
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ight in this figure. The streamwise length L x and the wall-normal

ength L y are about 460 mm and 60 mm, respectively. The width

n the spanwise direction is L z = 14 mm. 

The boundary conditions are imposed as follows. At the do-

ain inlet, a steady laminar profile is imposed, which is obtained

rom an additional laminar simulation with similar inflow condi-

ions. To obtain a supersonic turbulent boundary layer upstream

f the expansion corner, the laminar-transition-turbulent method

s used to trigger the laminar flow. A region of blowing and suc-

ion is added on the wall, extending from x = -335 mm to x = -

15 mm. The wall-normal velocity disturbance is defined as V bs =
 U ∞ 

f (x ) g(z) h (t) , where A = 0.2 is the disturbance amplitude and

 ∞ 

is the free-stream velocity. For more details about the distur-

ance parameters, readers can refer to the direct numerical sim-

lation of a spatially evolving supersonic turbulent boundary layer

y Pirozzoli et al. [15] . The incident shock wave is generated by ap-

lying the inviscid Rankine-Hugoniot jump conditions on the up-

er boundary, without considering the effects of geometries and

hock generators. The incident location on the upper boundary is

et at x in = -104 mm. In the current simulation, the flow deflection

ngle Ф through the shock is about 12 0 . Based on the inflow con-

itions, the extrapolated point of the incident shock is at x = 0 mm,

hich is just at the onset of the expansion corner. In addition, the

o-slip and isothermal boundary conditions with a wall tempera-

ure T w 

= 307K are used for the wall. To avoid the reflection of dis-

urbance waves, a non-reflecting boundary condition [16] with the

ponge layer [15] is applied at the domain outlet. In the spanwise

irection, a periodic boundary condition is applied. 

The computation grid employed in the simulation is shown in

ig. 2 (a). Compared with the coarse grid spacing in the transition
egion upstream, grids in the interaction region are significantly re-

ned and distributed with equal spacing in the streamwise direc-

ion, as shown in Fig. 2 (b). A sponge region with gradually coars-

ned grid is placed at x > 35 mm to eliminate disturbance re-

ection from the outlet. The grids are clustered in the near wall

egion and equally distributed in the spanwise direction. A total

f four DNS cases with the same domain size and grid resolution

re performed for this study, listed in Table 1 . IN-0 is the baseline

ase, corresponding to the interactions between an incident shock

ave and a flat-plate turbulent boundary layer, and it is compared

ith previous experimental data and DNS results for validation.

he other three cases, i.e. IN-2, IN-5 and IN-10, are SWTBLIs near

n expansion corner with fixed impingement location for three

ifferent expansion angles, i.e. α = 2 0 , 5 0 and 10 0 , respectively.

able 2 lists the parameters of a fully developed supersonic turbu-

ent boundary layer at the reference location ( x = −60 mm). Un-

ess otherwise stated, variables δ, δ∗and θ in this paper denote the

ominal thickness, displacement thickness and momentum thick-

ess at the reference location, respectively. The present incoming

urbulent boundary layer is close to the one studied by Priebe

t al. [10] , except for a slightly higher skin-friction coefficient in

he present study. 

Based on wall units at x = -60 mm, the streamwise and span-

ise grid spacing in the interaction region are �x + = 5 . 2 and

z + = 7 . 5 , respectively. In the wall-normal direction, the grid

pacing just above the wall is �y + w 

= 0 . 7 and about 50 nodes are

istributed inside the turbulent boundary layer. It is noticed that

his grid resolution is comparable to that used by Priebe et al. [10] .

o assess the spanwise domain size, Fig. 3 shows two-point auto-

orrelations of velocity fluctuations as a function of the spanwise
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Table 1 

Parameters for the DNS cases studied. 

Case M ∞ Ф (deg) α ( deg) ( L x × L y × L z )/ δ N x × N y × N z �x + × �y + w × �z + 

IN-0 2.9 12.0 0.0 71.54 × 9.23 × 2.15 3200 × 200 × 140 5.2 × 0.7 × 7.5 

IN-2 2.9 12.0 2.0 71.54 × 9.23 × 2.15 3200 × 200 × 140 5.2 × 0.7 × 7.5 

IN-5 2.9 12.0 5.0 71.54 × 9.23 × 2.15 3200 × 200 × 140 5.2 × 0.7 × 7.5 

IN-10 2.9 12.0 10.0 71.54 × 9.23 × 2.15 3200 × 200 × 140 5.2 × 0.7 × 7.5 

Table 2 

Parameters for the supersonic turbulent boundary layer at the reference location. 

Case M ∞ T ∞ ( k ) δ (mm) δ∗ (mm) θ (mm) C f 

x = −60 mm 2.9 108 6.5 2.06 0.41 0.00246 

Priebe et al. [10] 2.9 107 6.4 1.80 0.38 0.00217 

Bookey et al. 11 2.9 108 6.7 2.36 0.43 0.00225 

Fig. 3. Two-point autocorrelation of velocity fluctuations as a function of spanwise space at x = 17 mm: (a) streamwise velocity; (b) wall-normal velocity. Open symbols: 

y/ δ = 0.03; solid symbols: y/ δ = 0.6. Squares: IN-0; circles: IN-2; deltas: IN-5; diamonds: IN-10. 

Fig. 4. Instantaneous flow fields in the transition region: (a) density gradient in the x - y plane; (b) streamwise velocity in the x - z plane at y + = 10. 
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distance in the interaction region. It is clear that all correlations

decrease rapidly towards zero within half the domain width, indi-

cating that the domain width is large enough for the present study.

2.3. Incoming supersonic turbulent boundary layer 

Fig. 4 shows the instantaneous fields of the den-

sity gradient and the streamwise velocity in the transi-

tion region. The density gradient ( ds ) is defined as ds =
0 . 8 e −10( | ∇ρ|−| ∇ρ| min ) / ( | ∇ρ| max −| ∇ρ| min ) , similar to Wu & Martin

[17] . At x > −150 mm, irregular turbulent bulges are clearly

visible and the flow fields are characterized by typical elongated
treaky structures, indicating that the flow is approaching a fully

eveloped turbulent state. 

To further check the incoming turbulent boundary layer, first-

nd second-order turbulence statistics at the reference location

 x = −60 mm) are shown in Fig. 5 . The van Direst-transformed

ean velocity profile in inner scaling is shown in Fig. 5 (a), and

NS data by Priebe et al. [10] are also included for comparison.

learly, the agreement is satisfactory that a linear law is attained

or y + < 7 and the region for 40 < y + < 100 is characterized

y a logarithmic scaling. Fig. 5 (b) shows the root mean square

RMS) of wall density scaled velocity fluctuations. According to

orkovin’s hypothesis, the present compressible DNS results show
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Fig. 5. Statistics of incoming supersonic turbulent boundary layer at x = −60 mm: (a) mean velocity profile in inner scaling; (b) RMS of velocity fluctuations in outer scaling. 

Black solid lines: present data; solid diamonds: Priebe et al. [10] ; open squares: Wu & Moin [18] ; open deltas: Erm & Joubert [19] ; open circles: Pirozzoli & Bernardini [20] . 

i = 1, 2, 3 correspond to streamwise, wall-normal and spanwise components, respectively. 

Fig. 6. Wall pressure frequency spectrum in (a) inner and (b) outer scaling at x = −60 mm. Red solid lines: present data; open deltas: Duan et al. [21] ; solid squares: 

Bernardini et al. [22] ; open squares: Beresh et al. [23] ; open diamonds: Farabee & Casrella [24] . (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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ood agreement with previous experimental and numerical data of

urbulent boundary layers [18–20] . In addition, Fig. 6 shows the

all pressure frequency spectrum with respect to the inner and

uter scaling. For a better comparison, the experimental data of

arabee & Casarell [24] and Beresh et al. [23] and the compress-

ble DNS data of Duan et al. [21] and Bernardini et al. [22] are

lso plotted together. A remarkable agreement is observed. Con-

istent with the analysis of Bull [25] , the spectrum is reasonably

lose to ω 

−5 in the high frequency range, associated with the sub-

ayer dominance. Further, in the middle frequency range, the ω 

−1 

nd ω 

−7/3 dependence of the pressure spectrum is observed, re-

ating to pressure-inducing eddies in the logarithmic and overlap

egions, respectively. The above analysis confirms that a fully de-

eloped supersonic turbulent boundary layer has already achieved

t the reference location. 

. Flow structures and length scales 

.1. Instantaneous and mean flow fields 

Fig. 7 shows instantaneous fields of the density gradient in the

-y plane at z = 7 mm (middle plane in the spanwise direction),

here the sonic line and iso-line ( u = 0) are also included for bet-

er comparison. Consistent with numerical findings by Priebe et al.

10] for the interactions between a fully developed supersonic tur-

ulent boundary layer and an incident shock, the complex shock

ystem contains an incident shock, a reflected shock, as well as a

eries of compression waves in the downstream region. It is seen

hat the strength of compression waves is dramatically reduced,
ue to the favorable pressure gradient induced by the expansion

orner. The flow field also highlights a significant reduction of the

eparation bubble’s size, such that the reflected shock moves closer

o the expansion corner, indicating a decrease of the interaction

ength as the expansion effect get stronger. A more complete quan-

itative analysis about this will be discussed later. In addition, we

an observe that the sonic line moves closer to the wall with the

ncreasing expansion angle, especially for IN-10, suggesting that

he inner region of the turbulent boundary layer on the expansion

orner is mainly featured by supersonic flows. 

The expansion effect on coherent vortex structures in the

nteraction region is visualized in terms of iso-surfaces of the Q

riterion [26] . The coherent vortex structures for IN-0 and IN-10

re shown in Fig. 8 (a) and (b), respectively. Here, the iso-surfaces

re shown with Q / Q max = 0.01 and colored by the wall-normal dis-

ance y n . In the undisturbed boundary layer, numerous streamwise

longated hairpin-like vortices are clearly seen in the outer layer,

hile the near-wall region is characterized by small-scale vortices

losely resembling those in previous DNS studies of compressible

urbulent boundary layers [27] . It is noticed that coherent vortex

tructures are remarkably strengthened after passing through

he separation shock for both cases, especially in the separated

hear layer above the separation bubble, as also observed in

he compression ramp interaction studied by Wu & Martin [17] .

owever, utterly different response of vortex structures in the

eattachment region can be clearly observed. Vortex structures for

N-10 are significantly weakened and dominated by large-scale

ortices much closer to the wall. With increasing angle of the

xpansion corner, the bubble size induced by the shock interaction
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Fig. 7. Instantaneous density gradient fields in the x-y plane at z = 7 mm for: (a) IN-0; (b) IN-2; (c) IN-5; (d) IN-10. Black and pink lines correspond to the iso-line ( u = 0) 

and sonic line, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Iso-surface of the Q criterion ( Q / Q max = 0.01) in the interaction regions, colored with the wall-normal distance y n for: (a) IN-0; (b) IN-10. 
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Fig. 9. Distributions of (a) wall pressure and (b) skin-friction coefficient for IN-0. 

Black solid lines: present data; open circles: DNS data of Priebe et al. [10] ; black 

solid squares: experimental data of Bookey et al. [11] . 
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educes dramatically and the associated shear layer is also strongly

eakened (see Fig. 7 ). There is a rapid quenching of small-scale

ortices in the near-wall region around the expansion corner,

hich is in excellent agreement with the experimental findings

f the structural response to convex curvature in a hypersonic

urbulent boundary layer [28] . 

The distributions of the mean wall pressure and the skin-

riction coefficient for IN-0 are compared with the DNS data

f Priebe et al. [10] and experimental measurements of Bookey

t al. [11] , in Fig. 9 . Without specification, the mean statistics

re obtained by time and spanwise average. Note that the ex-

erimental data are extracted along the interaction center within

he largest separation bubble, but the exact reference location is

nknown. Therefore, similar to Priebe et al. [10] , the streamwise

oordinate x ∗, as shown in Fig. 9 (a), is shifted to match the initial

ressure rise in the experiment. In Fig. 9 (b), the skin-friction

rofiles obtained by DNS are shifted to the separation point and
Fig. 10. Expansion effect on the distribution of (a) mean 
ormalized by the boundary layer thickness. A satisfactory agree-

ent between the numerical and experimental results appears

n the region x ∗/ δ < 12 , where the initial pressure rises. Some

oticeable discrepancies appear in the second pressure rise and

he separation length L sep . Here, the separation length is defined

s L sep = x sep - x ret , with x sep and x ret being the separation and reat-

achment points, where the mean skin-friction is zero. Based on

he skin-friction profiles in Fig. 9 (b), the present separation length

s L sep ≈8.3 δ, slightly larger than L sep ≈7.6 δ in Priebe’s DNS data.

ue to different turbulence generation methods, global properties

f the incoming turbulent boundary layer in the present studies

see Table 2 ), cannot be exactly the same as those of Priebe et al.

10] . This results in a thinner velocity profile at the reference

ocation, which might be responsible for the discrepancy in the

btained separation region length. In the meantime, we notice

hat both values from numerical simulations are much smaller

han the experimental measurement by Bookey et al. [11] , i.e.

 sep ≈10.5 δ. The main reason for this discrepancy is likely due to

he spanwise periodic boundary conditions used in simulations,

here the wind-tunnel side-wall and spanwise length of the shock

enerator can have serious effects on the experimental data. 

Fig. 10 (a) exhibits the influence of the expansion corner on

he distribution of the mean wall pressure. Clearly, the expan-

ion corner shifts the initial pressure rise downstream, while

he streamwise pressure gradient remains almost unchanged.

his suggests that although the location of the separated shock

s significantly changed due to the expansion, the effect on the

hock strength is negligible. Moreover, in the reattachment region,

he expansion corner produces a rapid decrease of wall pressure,

ttaining a minimum value of 2.6 at x = 60 mm for IN-10 (60%

f the value for IN-0). The skin-friction coefficient distributions

or all four cases are compared in Fig. 10 (b). With increased

xpansion effect, an overall rise of the skin-friction occurs at the

xpansion corner. The separation points move downstream, while

he reattachment points exhibit an opposite trend. For all three

ases with the expansion corner, flow separations are found in

he mean flow. As shown in Fig. 11 , the separation length ( L sep )

ignificantly decreases as the expansion angle is increased, i.e.

rom L sep ≈ 8.3 δ for IN-0 to L sep ≈2.2 δ for IN-10 . Apparently, the

eparation point is more responsible for the separation length

eduction than the reattachment point. Another interesting feature

s the existence of double minima on the skin-friction curves

nside the separation bubble. Moreover, the first minima is shifted

ownstream, consistent with the downstream movement of the

nitial pressure rise as shown in Fig. 10 (a). As the expansion

ngle increases, the magnitude of the second minima dramatically

ecreases, while its location is almost unchanged. It is likely that
wall pressure and (b) mean skin-friction cofficient. 
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Fig. 11. Distribution of separation length as a function of expansion angle. Open green deltas: separation point; open red diamonds: reattachment point; solid blue squares: 

mean separation length. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. Contours of instantaneous skin-friction coefficient distribution: (a) IN-0; (b) IN-2; (c) IN-5; (d) IN-10. Pink lines denote the iso-lines of time-averaged C f = 0. 
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the fixed nominal shock-impingement point at x = 0 contributes

to the insensitivity of the location change of the reattachment

point. Overall, the expansion leads to a smaller separation region. 

Further insight into the separation region is shown in Fig. 12 for

the contours of skin-friction coefficient, as well as time-averaged

separation and reattachment lines (defined by C f = 0). Upstream

the separation line, structures are characterized by typical streaky

patterns, consistent with previous results for the zero-pressure gra-

dient flat-plate. These streaky structures are completely destroyed

in the separation region, but reappear in the recovery region

downstream the reattachment line. Compared to the case without

expansion, it can be seen that a quicker recovery of streaks is

present in the case of larger expansion angles. Moreover, negative

flow patches frequently appear between the separation and reat-

tachment lines, indicating strong intermittency of the separation

bubble. The separation region is quasi-two-dimensional, and the

streamwise size varies significantly with the expansion angle. The

expansion effect is better revealed in the spanwise distribution

of the reattachment line. For IN-0, there is a significant spanwise

variation of the reattachment line, while it is shifted upstream and

becomes more regularized with the strengthening of the expansion
ffect. This indicates that the spanwise modulation in the interac-

ion region is largely suppressed in the presence of the expansion

orner, as the flow acceleration damps turbulence activities. 

To better characterize the response of the flow intermittency

o the expansion corner in the separation region, the statistical

robabilities for backflow, i.e. negative ∂ u / ∂ y n , are quantitatively

ompared in Fig. 13 . Simpson [29] firstly proposed such a clas-

ification of separated flow: the instantaneous backflow with a

robability of 1%, 20% and 50% is termed as incipient detach-

ent (ID), intermittent transitory detachment (ITD) and transitory

etachment (TD), respectively. We can see a doubled-humped

istribution for the probability profiles, with one peak located just

fter the separation point and the other one before the reattach-

ent point, in good agreement with the skin-friction distribution

n the interaction region shown in Fig. 10 (b). These two peaks on

ach probability profile are both higher than 20% for all four cases,

uggesting that the separation is characterized by transitory de-

achment. It is also instructive to see that the probability variation

xhibits a similar trend to that of the skin-friction distribution as

he expansion angle is increased, as indicated by pink arrows in

ig. 13 . Another important feature present in the recovery region is
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Fig. 13. Statistical probability for reversal flow on the wall (negative ∂ u / ∂ y n ). TD: 

transitory detachment; ITD: intermittent transitory detachment. Symbols ‘S’ and ‘R’ 

denote the mean separation and reattachment points, respectively. Numbers repre- 

sent the corresponding expansion angle. 
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Fig. 14. Distribution of the interaction length L ∗ as a function of separation crite- 

rion S e 
∗ . Open red squares: present DNS data; squares: Ringuette et al. [33] ; left 

triangles: Gannapthisubramani et al. [34] ; plus: Touber & Sandham [35] ; circles: 

Polivanov et al. [36] ; deltas: Laurent [37] . The colors denote the separation state: 

black, attached; grey, incipient; white, separated. Dash-dotted line denotes the best 

fit line (1.3 x 3 ). (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

c  

p  

c  

d  

c  

i

d  

s  

o  

f  

i  

i  

l  

a  

s  

t

 

t  

t  

s  

c  

a  

i  

e  

t  

a  

f

L

N  

b  

s  

d  

s  

F  

v

hat the transitory detachment is still significant for IN-0 and IN-2,

hile the intermittent transitory detachment plays the dominant

ole for IN-5 and IN-10 within a relatively short region. 

.2. Length-scale analysis of the interaction region 

To collapse the length scales of interaction regions under dif-

erent geometries and various flow conditions, Souverein et al .

30] firstly proposed a scaling law for the characteristic length of

WTBLIs based on the law of mass conservation. The combined ef-

ect of Mach number, Reynolds number and different geometric

onfigurations (incident shock reflection and compression ramp)

re all taken into account in a non-dimensional form, which is de-

ned as 

 

∗ = 

L 

δ∗
sin ( β) sin ( φ) 

sin ( β − φ) 
= 

˙ m 

∗
out 

˙ m 

∗
in 

− 1 (3) 

here L is the characteristic length of the interaction region de-

ned as the distance between the foot of the reflected shock and

he nominal impingement point of the incident shock, β and Ф the

hock angle and the flow deflection angle, respectively. Here, the

ass-flow deficit ˙ m 

∗ is defined as ρU δ∗ with the subscript out and

n for the outflow and inflow conditions, respectively. Souverein

t al. [30] suggested that the interaction length was a direct result

f the mass-flow deficit ratio between the incoming and outgo-

ng boundary layer. Another important parameter in such a scaling

nalysis is the separation state criteria 

S ∗e = 

2 ̄k 

γ

(
P 3 
P 1 

)
− 1 

M 

2 ∞ 

, (4) 

here P 3 / P 1 denotes the ratio of pressure across the shock sys-

em, γ the specific heat ratio. The chosen constant k̄ is 3.0 for

e θ ≤ 1 × 10 4 and 2.5 for Re θ > 1 × 10 4 , where Re θ , is the

eynolds number based on the momentum thickness of the incom-

ng turbulent boundary layer. Subsequently, Jaunet et al. [31] ex-

erimentally investigated the wall temperature effect on the length

cales of the heated SWTBLIs, thus the heating effects on the skin-

riction coefficient are correctly considered to improve the accu-

acy. 

Recently, Quadros and Bernardini [32] found that the above

caling analysis of turbulent interactions is still applicable to

ransitional interactions. In this section, we validate whether such

 scaling analysis can also be applied for the present cases with

xpansion effect. To do so, we first test the applicability of Eqs.

3 ) and (4) in the interaction region near an expansion corner,

s shown in Fig. 14 . For reference purpose, previous numerous

xperimental and numerical results with a wider range of flow
onditions are also plotted together. Moreover, the associated

arameters for all four cases are summarized in Table 3 for

omparison. According to the classification based on the non-

imensional scaling proposed by Souverein et al. [30] , L ∗ < 1

orresponds to interactions with attached flow, L ∗ > 2 separation

nteractions and 1 < L ∗< 2 incipient separation. As expected, L ∗

ecreases rapidly with increasing the expansion angle. It can be

een from Table 3 that the value of L ∗ = 4.32 for IN-10, about 49%

f that for IN-0, confirming that the interaction states of all the

our cases in the present study are completely separated. There

s an evident deviation in the presence of the expansion corner,

ndicating that the imposed expansion effect on the interaction

ength cannot be neglected. For example, a strong deviation of

pproximately 520% from the best-fit line appears for IN-10,

uggesting that Souverein’ scaling law is not equally applicable to

he interaction near an expansion corner in the present study. 

After a careful examination of the mass conservation and a de-

ailed comparison with previous numerical results, we notice that

here exists a noticeable difference between the original incident

hock reflection and the present interactions near an expansion

orner. Following Souverein’s mass-flow balance analysis, we

ssume that the non-dimensional interaction length can also be

nterpreted in terms of the mass-flow deficit ratio. However, as an

xpansion corner is present, an additional term ρ3 U 3 sin α/ ρ1 U 1 in

he trigonometrical correction factor is also taken into account to

pproximate the expansion effect, thus a modified dimensionless

orm of the interaction length is proposed as below, 

 

∗
m 

= 

L 

δ∗
0 

(
sin β sin φ

sin ( β − φ) 
− ρ3 U 3 

ρ1 U 1 

sin α

)
≈ ˙ m 

∗
out 

˙ m 

∗
in 

− 1 . (5) 

ote that mass-flux ratio ρ3 U 3 / ρ1 U 1 cannot be determined alge-

raically, thus it is numerically evaluated from the simulation, as

hown in Fig. 15 (a). As expected, the profiles exhibit a considerable

ecrease of mass-flux ratio. Using this newly modified scaling, a

atisfactory agreement with the best-fit line is thus achieved in

ig. 15 (b). However, more DNS cases are still needed to further

alidate the applicability of the new scaling. 
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Table 3 

Parameters for the scaling analysis of the interaction length. 

Case α(deg) Ф (deg) β(deg) L/ δ∗ L ∗ L ∗m S ∗e ρ3 U 3 / ρ1 U 1 P 3 /P 1 

IN-0 0 12 28 24.76 8.77 8.77 1.73 2.27 4.43 

IN-2 2 12 28 19.80 7.01 5.50 1.60 2.18 4.15 

IN-5 5 12 28 14.61 5.17 2.59 1.24 2.02 3.43 

IN-10 10 12 28 12.21 4.32 0.68 0.81 1.72 2.59 

Fig. 15. (a) Distribution of mass-flux ratios ( ρU / ρ∞ U ∞ ) across the interaction; (b) modified scaling for the interaction length under expansion. Symbols and line are the 

same as in Fig. 14 . 

Fig. 16. The van-Driest transformed mean velocity as a function of wall-normal dis- 

tance normalized by local inner units. The data is taken at x = 30 mm. 

 

 

 

 

 

 

 

 

 

 

Fig. 17. Reynolds shear stress as a function of wall-normal distance normalized by 

outer units at x = 30 mm. Black solid squares are data taken at the reference loca- 

tion. 
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4. Statistics of the post-shock turbulent boundary layer 

In this section, effects of the expansion corner and the shock

wave interaction on the statistical characteristics of the post-shock

turbulent boundary layer are analyzed. For a better comparison,

turbulence statistics on the expansion corner are all extracted at

x = 30 mm. A total of 400 instantaneous flow fields spanning three

flow-through times are used to ensure the statistical convergence. 

4.1. Mean velocity and Reynolds shear stress 

Fig. 16 plots the van-Driest transformed mean velocity pro-

files as a function of wall-normal distance in inner scaling. No

significant difference is observed in the viscous sub-layer, i.e.

y n 
+ < 10, where a linear scaling is approximately preserved for

all cases. However, statistical behaviors in the logarithmic region
re dramatically changed by combined effects of the shock wave

nteraction and the expansion corner. A characteristic dip, closely

esembling the finding in cases of reflected shock interactions

10] and compression ramps [17] , is evidently highlighted on the

xpansion corner, suggesting that the disturbed turbulent bound-

ry layer is still out of the equilibrium state. Theexpansion effect

n the mean velocity profile is to make it gradually approach the

og-law for 10 < y n 
+ < 100. 

Reynolds shear stresses on the expansion corner are shown

n Fig. 17 as a function of wall-normal distance in outer units.

ere, the density-weighted decomposition of the flow quantity f is

sed, i.e. f = 

˜ f + f ′′ = ρ f / ̄f + f ′′ , with overbar indicating average

n time and the spanwise direction, and tilde for density-weighted

verage. The profile at x = -60 mm, corresponding to the incoming
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Fig. 18. Profiles of (a) turbulent kinetic energy and (b) turbulent Mach number as a function of wall-normal distance. Dash-line: x = −60 mm; Solid lines with symbols: 

x = 30 mm. 
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ully developed flat-plate turbulent boundary layer, is also included

or reference. At a first glance, compared to the incoming boundary

ayer, the post-shock turbulent boundary layer exhibits a signifi-

antly enhanced peak, owing to the shock interactions before the

xpansion corner. This peak is located in the outer region of the

isturbed turbulent boundary layer for all four cases, whereas the

ncoming boundary layer is apparently dominated by a peak in the

ear wall region. This might be related to large structures originat-

ng from the separated shear layer which present away from the

all. Secondly, as the expansion angle increases, the peak values

f the Reynolds shear stress reveal a remarkable decrease. Specifi-

ally, the peak value for IN-10 is about 42% of that for IN-0 and just

lightly higher than the upstream reference value. From this, we

an see that the expansion corner plays an opposite role compared

o the shock interaction, especially in the case of large expansion

ngles, which might mainly relate to the strong favorable pressure

radient imposed by the expansion corner. As a result, the total

dverse pressure gradient through the shock wave interaction re-

ion is greatly reduced (see Fig. 10 a); thus the disturbance energy

f the post-shock turbulent boundary layer is much lower and the

ecovery to the equilibrium state is much faster. 

.2. Turbulent kinetic energy 

Fig. 18 shows the turbulent kinetic energy ( T KE, K = 1 / 2 ˜ u ′′ 
i 

u ′′ 
j 
) )

nd turbulent Mach number ( M t = 

√ 

u ′ 
j 
u ′ 

j 
/ ̄c ) profiles at

 = 30 mm, respectively. For reference purpose, we also re-

ort the incoming boundary layer profiles at x = −60 mm. For

he zero pressure-gradient boundary layer, it is seen that the

eaks of TKE and M t occur in the near-wall region, at y n / δ≈0.07

nd 0.04, respectively. For IN-0 , the post-shock boundary layer

ndergoes a strong amplification due to shock interactions, and

hose peak values in the downstream region are amplified by a

actor of about 1.5 and 1.3 for TKE and M t , respectively. Clearly,

heir locations are both moved away from the wall into the outer

egion of the boundary layer, which might mainly relate to the

ift-up of vortex structures, as seen from Fig. 8 . In the presence

f the expansion corner, both profiles exhibit a similar reduction

ehavior. Specifically, the TKE and M t decrease monotonically with

ncreasing the expansion angle, whereas the peak locations are

aintained in the outer layer and slightly shifted towards the wall.

or IN-10, the peaks are much lower than that of the reference,

ndicating that the enhancement of turbulence due to shock wave

nteractions has been completely cancelled out by the downstream

xpansion effect after the corner. This reduction mechanism

ight be associated with the significant weakening of large-scale
urbulent structures over the expansion corner, as also observed

y Sun et al. [38] in supersonic turbulent flow over an expansion

orner. Another important mechanism for this phenomenon might

e that shedding of vertical structures originating from the weak-

ned shear layer is dramatically attenuated due to the strongly

educed separation bubble size. 

To better characterize the expansion effect on the turbulent ki-

etic energy, various terms in the transport equation of the tur-

ulent kinetic energy, as given by Pirozzoli et al. [20] , are sys-

ematically analyzed. Fig. 19 shows the budget of the turbulent

inetic energy as a function of wall distance at x = −60 mm,

ompared with the compressible numerical data of Pirozzoli et al.

20] at Re θ = 3530. All terms in the budget are normalized by

he wall quantity ρw 

u 4 τ / νw 

and only significant terms in the bal-

nce are shown for clarity. The agreement is satisfactory, con-

istent with typical TKE budget profiles of the flat-plate tur-

ulent boundary layer. In the near-wall region, the production

erm P = −ρ̄ ˜ u ′′ 
i 

u ′′ 
j 
∂ ̃  u i /∂ x j and the turbulent transport term T =

∂ [ 1 / 2 ̄ρ ˜ u ′′ 
i 

u ′′ 
i 

u ′′ 
j 
+ p′ u ′′ 

j 
] /∂ x j are relatively small and can be ne-

lected, thus the viscous diffusion V = ∂ ( σ ′′ 
i j 

u ′′ 
i 
) /∂ x j and the vis-

ous dissipation ε = −σ ′′ 
i j 
∂ u ′′ 

i 
/∂ x j dominate the budget. Away from

he wall, the budget is characterized by the balance between the

urbulent production and viscous dissipation in a large portion of

he boundary layer, and the turbulent transport term also becomes

nsignificant. 

Fig. 20 (a) shows the wall-normal distribution of the turbulent

inetic energy production on the expansion corner. This figure

ighlights a typical bimodal structure, whereby the lift-up of vor-

ex structures originating from the separated shear layer causes the

rst peak in the outer region, while the inner peak is an indicator

f flow recovery, as also been observed by Pirozzoli et al. [20] in

he case of impinging shock wave/turbulent boundary layer inter-

ctions. It is noticed that the production undergoes a different evo-

ution mechanism in the post-shock boundary layer downstream.

or IN-0, the turbulent production is mainly attributed to flow

tructures in the outer part and the maximum value is observed at

 n / δ ≈ 0.6, corresponding to the highest turbulent kinetic energy in

ig. 18 (a). The second peak with a value of 0.65, about 60% of the

aximum production, is attained very close to the wall. Increasing

he expansion angle results in a monotonic decay of the turbulent

roduction in the outer region, whereas the production in the in-

er part exhibits an utter opposite trend. For IN-10, the production

rofile is characterized by an inner peak and exhibits similarity to

he profile at the reference location. The expansion effect on the

istribution of the viscous dissipation is shown in Fig. 20 (b), and it

s mainly reflected in the significant decrease of the leading peak
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Fig. 19. Budget of turbulent kinetic energy as a function of wall-normal distance at the reference location. Black lines: present DNS data; black circles: DNS data of Pirozzoli 

& Bernardini [20] at Re θ = 3530. All terms are normalized by ρw u 
4 
τ/ νw . 

Fig. 20. Turbulent kinetic energy budget terms as a function of wall-normal distance at x = 30 mm: (a) turbulent production; (b) viscous dissipation; (c) viscous diffusion; 

(d) turbulent transport. Black solid squares are data taken at the reference location. All terms are multiplied by 10 3 . 
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in the vicinity of the wall, where strong viscous dissipation is pre-

dominant. Overall, the viscous dissipation term is strengthened in

the near-wall region and attenuated in the outer region, respec-

tively. As shown in Fig. 20 (c), the viscous diffusion plays an impor-

tant role in the near-wall region, i.e. y n / δ < 0.03, and the expansion

effect on the viscous diffusion is negligible, except a slight decrease

in the proximity of the wall. Fig. 20 (d) shows the distribution of

the turbulent transport in the presence of the expansion corner.
t is apparent that the turbulent transport is most significant in

he inner region. At larger expansion angle, the flow recovers more

uickly to its equilibrium state. Based on the above item-by-term

nalysis, we can see that the expansion corner has no essential ef-

ect on the turbulent kinetic budget of the post-shock turbulent

oundary layer, which still remains similar to the incoming turbu-

ent boundary layer, but it plays the role of accelerating the flow,

esulting in a much quicker recovery to the equilibrium state. 
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Fig. 21. Weighted PSD of wall pressure fluctuations as a function of streamwise location for: (a) IN-0; (b) IN-2; (c) IN-5; (d) IN-10. The vertical dashed lines denote stream- 

wise locations of the mean separation point (‘S ’) and reattachment point (‘R’), respectively. Red boxes indicate regions of interaction. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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. Unsteadiness in the interaction region 

In order to quantitatively investigate the influence of the expan-

ion corner and assess possible sources for low frequency shock

scillations, spectral analysis is performed for wall pressure fluc-

uations. We first study the weighted power spectral density W p ,

efined as below, 

 p = f ∗ P SD ( f ) / 

∫ 
P SD ( f ) df (7)

ere, PSD represents the power spectral density, and is estimated

sing Welch’s method with the Hamming window and 50% over-

ap. Contour maps of the weighted PSD are shown as a function

f streamwise location ( x ) and frequency ( f δ/ U ∞ 

) in Fig. 21 . For

he four DNS cases considered, wall pressure signals along the

panwise centerline are sampled, where a total of 200 wall probes

re evenly distributed along the streamwise direction ranging from

 = −80 mm to x = 40 mm. A constant time interval of about

.062 δ/U ∞ 

is used for sampling, corresponding to a maximum

esolvable frequency of nearly 8.0 U ∞ 

/ δ. The sampling data is
btained over a time period of about 700 δ/ U ∞ 

and divided into 8

egments. The length of each segment is about 4096, leading to a

inimum resolvable frequency of about 0.004 U ∞ 

/ δ. 

Fig. 21 (a) shows the weighted PSD contour for the case with-

ut expansion, and the result is consistent with previous numerical

nd experimental observations in shock-induced separated flow.

pstream the interaction region, no significant energy is observed

t low frequency and the spectra are mainly concentrated around

 δ/ U ∞ 

= 1.0, corresponding to the most energetic structures in

anonical wall-bounded flows. A different behavior appears in the

nteraction region, especially close to the mean separation point,

here high frequency energy levels are dramatically decreased and

he spectrum exhibits a dominant peak at a very low frequency

f about f δ/ U ∞ 

≈ 0.007. This is known to be associated with the

ow frequency oscillation of the separated shock wave [39–42] . Ac-

ording to Eengil & Dolling [43] and Dussauge et al. [44] , a dimen-

ionless frequency is defined by S L = f s L sep / U ∞ 

, with the frequency

f shock motion f s and the length of the separation bubble L sep .

he dimensionless frequency, or Strouhal number, is found to be

ndependent of flow geometry covering a range of Mach number
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Fig. 22. Band-limited contributions to wall pressure fluctuation as a function of streamwise location: (a) IN-0; (b) IN-10. Black solid lines: f δ/ U ∞ < 0.1; blue dash-dot lines: 

0.1 < f δ/ U ∞ < 1.0; red dashed lines: f δ/ U ∞ > 1.0. Symbols x S and x R denote the mean separation and reattachment points, respectively. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 
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and Reynolds number. Dussauge et al. [44] found that a nearly

constant value between 0.02 and 0.05 is obtained for supersonic

flow at Mach number larger than 2. Based on the weighted PSD

of wall pressure signal at the separation point, the dimensionless

frequency in the present study is inferred to a Strouhal number of

S L = 0.058. Downstream the interaction region, the spectrum is re-

covered and characterized by broadband peaks of high frequencies,

but slightly lower than that of the incoming flow. Such a behav-

ior is mainly related to the significant strengthening of large-scale

vortex structures and the thickening of the boundary layer in the

downstream region, which can be seen from Fig. 8 (a). As the ex-

pansion angle is increased, it is noticed in Fig. 21 (b–d) that the low

frequency peak at the separation point gradually becomes weak,

closely resembling the results by Morgan et al. [45] in the study

of shock interactions with a range of shock strengths. As shown

in Fig. 21 (b and c), the low frequency oscillation of the separated

shock wave is still predominant for IN-2 and IN-5. Specifically, the

characteristic frequency of shock motion in both cases is approx-

imately estimated to be 0.008 U ∞ 

/ δ, relatively higher than that of

IN-0. Considering the separation length is L sep = 5.73 δ for IN-2 and

L sep = 3.65 δ for IN-5, the corresponding Strouhal number is about

0.046 and 0.03, respectively, showing an obvious decrease of S L as

the expansion angle is increased. In addition, the spectrum shown

in Fig. 21 (d) illustrates a significant reduction of low-frequency en-

ergy and a remarkable amplification at medium frequencies near

the mean separation point, implying that there exists essential en-

ergy transfer across scales. This also suggests that the unsteadiness

in IN-10 is characterized by medium frequencies, as the low fre-

quency unsteady oscillation of the separated shock wave has been

completely suppressed. Recalling that all four DNS cases are per-

formed under the same conditions except different angles of the

expansion corner, the observed spectra behavior is likely linked

with the separation bubble downstream, where the mean flow is

moderately separated for IN-10 but strongly separated for IN-2 and

IN-5 ( Fig. 11 ). This is similar to the dominant role played by sepa-

ration bubble pulsations as proposed by Priebe and Martin [40] . 

The contribution to PSD from different frequency ranges is de-

fined to further quantify the expansion effect, such that 

F r = 

∫ f 2 

f 1 

P SD ( f ) df /σ 2 
pw 

, (8)

where f 1 and f 2 denote the lower and upper limits of the selected

frequency range respectively, and σ pw 

is the standard deviation of

the wall pressure fluctuations, representing the total energy. Here,

the resolvable frequency band is divided into three frequency bins,
orresponding to low frequencies 0.004 < f δ/ U ∞ 

< 0.1, medium

requencies 0.1 < f δ/ U ∞ 

< 1.0 and high frequencies f δ/ U ∞ 

> 1.0,

espectively. The band-limited contribution as a function of the

ormalized streamwise coordinate x ∗= ( x - x r )/ L sep for IN-0 is plot-

ed in Fig. 22 (a). In this coordinate, x ∗ = −1 and 0 refer to the

ean separation and reattachment points, respectively. Note that

he contribution from the low frequency range is consistent with

he observations in Pasquariello’s large eddy simulation of imping-

ng shock interactions [46] . Given the lower Reynolds number and

eaker shock strengths in the present study, it is not surprising

hat the maximum faction at x ∗ = −1 is just about 40%, signif-

cantly lower than the ratio of 95% in Pasquariello’s simulations.

owever, compared to the contributions from medium and high

requency ranges, it is noticed that the low frequency contribution

s still more prominent and plays the leading role. Fig. 22 (b) shows

he three band-limited contributions for IN-10 in the same man-

er. Clearly, at the separation point, the contribution from low fre-

uency range significantly decreases and the other two contribu-

ions exhibit an opposite behavior. For example, the low frequency

ontribution attains to a value of approximate 25%, whereas the

edium frequency contribution increases to nearly 50% and be-

omes the driving factor. At x ∗ = 0, it is noticed that the expan-

ion corner has no essential influence on the energy levels and the

edium frequency range contributes to most of the energy. Addi-

ionally, the contribution from the high frequency range is slightly

ncreased and overtakes the low frequency contribution all the

ay. 

To further assess possible influence of the expansion corner on

he unsteadiness in the interaction region, flow fields are quanti-

atively analyzed using the dynamic mode decomposition (DMD).

 brief overview of DMD algorithm is given first. For a given se-

uence of instantaneous flow fields { ψ 0 , ψ 1 , ���ψ N }, , the DMD

nalysis extracts the dynamically relevant modes Ф i of a single fre-

uency in a r -dimensional subspace as follow [47] 

[ ψ 0 ψ 1 · · ·ψ N−1 ] ︸ ︷︷ ︸ 
�

≈ [ φ1 φ2 · · · φr ] ︸ ︷︷ ︸ 
�⎡ 

⎢ ⎢ ⎣ 

α1 

α2 

. . . 

αr 

⎤ 

⎥ ⎥ ⎦ 

︸ ︷︷ ︸ 
D α

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 μ1 · · · μN−1 
1 

1 μ2 · · · μN−1 
2 

. . . 
. . . 

. . . 
. . . 

1 μr · · · μN−1 
r 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

︸ ︷︷ ︸ 
V and 

, (11)
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Fig. 23. Standard DMD and DMDSP of streamwise velocity fluctuations for (a, c, e) IN-0 and (b, d, f) IN-10: (a, b) eigenvalues; (c, d) mode amplitude as a function of 

temporal grow rate; (e, f) mode amplitude as a function of frequency. Greed circles: standard DMD; solid red deltas: DMDSP ( N sub = 14). (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 
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here αi and μi represent the amplitude and eigenvalue of the

MD mode Ф i , respectively. Using the logarithmic mapping, the

emporal growth rate β i and frequency ω i of Ф i are defined as

i = Re ( log μi / �t s ) and ω i = Im ( log μi / (2 π�t s ) , where �t s is the

ime interval between two adjacent flow fields. In the the present

tudy, a sparsity-promoting DMD method (DMDSP) proposed by

ovanovic et al. [48] is used to identify the most important dy-

amic modes in the underlying DNS data. According to Jovanovic’s

lgorithm, the automated selection is performed through solving a
onvex optimization problem written as 

minimize 
α

|| ∑ 

V 

∗ − Y D αV and || 2 F + γ
r ∑ 

i =1 

| αi | . (12) 

ere, the singular value decomposition (SVD) of the snapshot

atrix ψ is performed to obtained matrices � and V , where

 · ‖ 2 F and asterisk ∗ denote the Frobenius norm and the complex-

onjugate transpose of a matrix, respectively. Note that the
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Fig. 24. Real part of the DMDSP modes for IN-0: (a) f I = 0.002 U ∞ / δ; (b) f II = 0.2 U ∞ / δ. Pink dash-dot lines indicate the mean sonic line. The mean separation bubble is shown 

by the solid black lines. 

Fig. 25. Same as Fig. 24 , but for IN-10: (a) f II = 0.1 U ∞ / δ; (b) f II = 0.2 U ∞ / δ. 
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user-defined positive value γ is case dependent and reflects the

sparsity of the amplitude vector. When γ = 0, the DMDSP method

is identical to the standard DMD method. More detailed descrip-

tion of the DMD and DMDSP analysis can be found in Schmid

[47] and Jovanovic et al. [48] . 

The modal analysis is applied to instantaneous flow fields of

spanwise-averaged streamwise velocity fluctuations, as in the stud-

ies of Pasquariello et al. [46] and Priebe et al. [49] . To clearly

present the expansion effect on the interaction region, a subdo-

main covering −60 mm < x < 60 mm and 0 < y < 27 mm

has been stored at a constant time step �t s = 1.33 δ/ U ∞ 

with

400 snapshots in total. This gives a resolvable frequency bin of
.002 < f δ/ U ∞ 

< 0.4. Compared to the above spectral analysis

f the wall pressure, a much lower sampling frequency is chosen

ere, as the focus is on the low frequency motions. 

The expansion effect can be clearly identified by the DMD and

MDSP spectra, displayed in Fig. 23 for IN-0 and IN-10. Based on

he sparsity-promoting framework, a subset of N sub = 14 modes,

hich has strongest influence on the entire evolution process, is

xtracted by the DMDSP algorithm for both cases. As shown in

ig. 23 (a) and (b), most of the DMD modes are distributed along

he unit circle for both cases, except that those strongly damped

odes appear inside the circle, suggesting that the interaction

egion is statistically stationary. It is clear that all the selected
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ynamically relevant modes only reside on the unit circle. How-

ver, the retained modes for IN-0 are apparently concentrated

round the point (1, 0), while the distribution for IN-10 has a

roadband character. The dependence of the modal amplitude | αi |

n the temporal grow rate β i is reported in Fig. 23 (c) and (d)

or IN-0 and IN-10, respectively. As expected, these modes with

ighest amplitudes are not selected by the DMDSP method due to

heir strong temporal decay rates and only contributing mostly in

he early stage of the entire process. On the contrary, the decay

ates of those selected dynamically important modes are nearly

ero, responsible for a statistically stationary dynamical system.

he dependence of the modal amplitude | αi | on the frequency

 i is shown in Fig. 23 (e) and (f) for IN-0 and IN-10, respectively.

s expected, both DMD and DMDSP modes are symmetrically dis-

ributed. Moreover, it can be seen from Fig. 23 (e) that the DMDSP

odes for IN-0 can be classified into two different types, i.e. type

: a narrow low frequency bin, and type II: a broadband medium

requency bin, indicating a multiple-frequency behavior related to

he unsteadiness in the interaction region. This behavior has also

een found by Pasquariello et al. [46] for strong shock/turbulent

oundary layer interaction at high Reynolds numbers. However, for

N-10 shown in Fig. 23 (f), only type II modes are identified and

o evidence of dynamically important low frequency modes (type

) can be observed, consistent with the above spectral analysis of

all pressure fluctuations. This confirms that the expansion effect

as significant influence on the low frequency unsteady motion in

he interaction region. 

To deeply investigate the relationship between flow struc-

ures and the characteristic frequencies, those dynamical relevant

MDSP modes are examined. Two modes for IN-0 are shown

n Fig. 24 , i.e. f I = 0.002 U ∞ 

/ δ for type I modes and f II = 0.2 U ∞ 

/ δ
or type II modes. As a reference, the mean streamlines and the

ean sonic line are drawn in the plot to roughly indicate the

eparation region and the shear layer, respectively. Firstly, there

re no significant fluctuations observed in the incoming turbu-

ent boundary, supporting previous downstream mechanism ac-

ount for the low frequency oscillation. Similar to the observa-

ions of Priebe et al. [49] and Pasquariello et al. [46] , the low

requency mode exhibits large velocity fluctuations along the sep-

rated shock, whereas contributions from the incident shock re-

ion are negligible. Secondly, significant perturbations concentrate

round the separated shear layer above the separation bubble, es-

ecially close to the wall at x = -40 mm. Fluctuations are also

bserved inside the bubble and in the downstream region. How-

ver, the spatial structures for the type II modes are dominated

y alternatively positive and negative fluctuations along the sep-

rated shear layer and induced Mach waves originating from the

oundary layer edge. Compared to the type I mode, the sepa-

ated shock is significantly wrinkled by the incoming fluctuations

nd the shear layer vortices, in agreement with the finding of

asquariello et al. [46] . Fig. 25 shows two medium frequency (type

I) modes, i.e. f II = 0.1 U ∞ 

/ δ and f II = 0.2 U ∞ 

/ δ for IN-10 . As can be

een, these two modes exhibit qualitatively similar behavior to

he type II modes of IN-0, suggesting that the expansion cor-

er has little influence on the spatial character of the medium

requency unsteadiness in the interaction region. Such a similar-

ty can be explained as follows: the medium frequency fluctua-

ions are strongly associated with the passage of turbulent struc-

ures, whereas the low frequency unsteadiness is mainly driven by

he instability of the downstream system including the separated

hock, the separated shear layer and the separation bubble. As a

esult, the low frequency modes do not play a dynamically rele-

ant role in the entire time history. Overall, the expansion effect

n the incoming turbulent boundary layer is negligible, and the

edium frequency modes play the leading role in the interaction

egion. 
. Conclusions 

In the present study, direct numerical simulations are con-

ucted for incident shock wave and supersonic turbulent bound-

ry layer interactions near an expansion corner at M ∞ 

= 2.9 and

e ∞ 

= 5581, and the flow characteristics are thoroughly investi-

ated for four different expansion angles, i.e. 0 0 , 2 0 , 5 0 and 10 0 .

he main objective is to analyze the expansion effect on the sepa-

ation region, statistics of the post-shock turbulent boundary layer

nd the unsteadiness associated with the interaction region. The

ean wall pressure and skin-friction coefficient distribution are

ompared against previous experimental and numerical results and

 satisfactory agreement is achieved. 

The coherent vortex structures in the interaction region are an-

lyzed using the Q criterion. It is found that the vortex structures

re significantly strengthened by the shock wave interaction, and a

emarkable weakening of large-scale vortexes occurs in the outer

ayer of the reattachment boundary layer along the expansion cor-

er. The results suggest that the expansion corner reduces the ex-

ent of the separation bubble, while preferentially suppresses the

hree-dimensionality at the reattachment point. It is found that

he scaling analysis of the interaction length given by Souverein

t al. [30] is not equally applicable for flow with expansion, thus

 new scaling formula is proposed to quantify the expansion effect

y adding an additional term into the trigonometrical correction

actor. 

As the expansion angle is increased, the mean velocity and

eynolds shear stress in the reattached turbulent boundary layer

ndergo a faster recovery to the equilibrium state. The turbulent

inetic energy is significantly decreased with a corresponding re-

uction of the production peak in the outer region, whereas an

ncrease of the turbulence production is more pronounced in the

ear-wall region. The budget analysis demonstrates that the expan-

ion has no essential influence on the budget balance, similar to

he incoming turbulent boundary layer. 

Spectral analysis of wall pressure fluctuations suggests that no

vident low frequency unsteadiness is observed when the an-

le of the expansion corner is increased to 10 0 , and the remain-

ng unsteady motions are characterized by medium frequencies.

ased on the dynamic mode decomposition, it is found that the

ow frequency modes are strongly associated with the separated

hear layer and the separation bubble in the downstream region,

hereas the medium frequency modes are related with flow struc-

ures originating from the incoming turbulent boundary layer. 
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