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ABSTRACT
The finite obstacle effect on the aerodynamic performance of a normal hovering wing is studied using the immersed boundary method.
Phenomena of a two-dimensional wing hovering above, under, or on the side of a circular obstacle are presented. Parameters including
obstacle size, distance, location, and flapping angle are investigated to study how the aerodynamic force and flow field are affected. The
diameter of the obstacle ranges from 0.5c to 12c and the distance between the centroid of the wing and obstacle surface from 0.5c to 6c (c is
the wing chord length). Previous observations of ground effects including force enhancement, reduction, and recovery occur similarly when
the wing hovers above the obstacle of diameter greater than 2c. However, finite obstacles affect the aerodynamic performance differently
when the size shrinks to a critical value. Force drops when the wing moves close and rises when moving away, opposite to the ground effect.
As flapping angle amplitude increases, the force change tends to be consistent for different-sized obstacles. The top or side effect shows a
different influence on the force change. Force monotonically increases as the distance decreases when the wing hovers under the obstacle.
The side effect places a less important factor on the aerodynamic performance. All force changes under such circumstance are less than 13%
referring to nonobstacle result. The gap between the leading or trailing edge of the wing and obstacle surface plays a significant role in the
leading and trailing edge vortices generating, shedding, and pairing, which greatly affects the force change.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5119046., s

I. INTRODUCTION

Insect flight has been attracting scientists for decades because
it inspired the invention of the novel micro-aerial vehicle (MAV),
which has vast potential applications including environmental pro-
tection and rescuing.1,2 Different from fixed wings, insects generate
lift and thrust by a highly unsteady flapping motion.3–6 Extensive
studies have been conducted previously to discuss the mechanisms
of insect flapping flight as well as fish swimming.7 The main mecha-
nisms include delayed stall, fast pitching rotation, and wake-capture
effect. As the quasisteady theory8 is not suitable to explain the
unsteady, large angle of attack (AoA), and high-lift flapping flight,
Ellington et al.9 concluded that the stall delay due to the leading edge
vortex (LEV) remarkably enhances the lift. The LEV leads to a strong
and prolonged suction effect on the condition of a low Reynolds
number (Re), which is proved to play the most significant role in

the high lift generation. Besides the LEV, fast pitching rotation, and
wake capture also contribute to the force increase and peak value
during cyclic motion.10,11 Furthermore, researchers also investigated
the interaction among multiple wings and explored the wing-wing
effects and the optimum distance.12,13 Much numerical and experi-
mental work has been done to study the combined effect of the LEV,
pitching rotation, and wake capture and discuss the aforementioned
mechanisms.14–20

Considering the real nature other than ideal lab configuration,
insects often fly in the presence of boundaries, finite of infinite. One
typical scenario is that insects land on or take off from the ground.
Gao and Lu21 studied insect normal hovering above the infinite
ground by two-dimensional numerical simulation. They pointed
out that during normal hovering, three regimes of ground effect
are identified: force enhancement, reduction, and recovery, depend-
ing on the distance to the ground, which obviously differs from
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the force change of a fixed wing in the proximity of the ground.22

Such force change is closely associated with vortical structures and
the interaction between the leading/trailing edge vortex (TEV) and
the wing. Furthermore, Lu et al.23 conducted the digital particle
image velocimetry (DPIV) experiment to study the two-dimensional
ground effect, which matches the computational results. To consider
a more realistic situation, three dimensional numerical and experi-
mental studies have also been carried out.24–28 Lu et al.26 conducted
both 3D simulation and experiment on the ground effect. It shows
that the 3D results are similar to that of 2D; however, the ground
effect is relatively weak. However, other researchers like Su27 and
Kolomenskiy28 claimed that the ground effect on flapping wings is
negligible.

Aforementioned studies all consider the full ground effect
on the insect landing or taking off. However, in the real world,
there are more circumstances with finite boundaries than infinite
ground/wall, such as approaching or perching on fruit, flower, and
rock. Wang29 investigated the partial ground effect, which helps to
understand the aerodynamics when the MAV lands on the edge
of a platform. This study reveals lift-modifying mechanisms not
observed before under infinite ground effect. However, the research
on the finite boundary effect is still lacking. Meng30 discussed the
ceiling effects on the aerodynamics of a hovering wing and pointed
out that the reason for the force enhancement is the increase in
the relative velocity and the angle of attack of the wing. For the
future design and control of novel MAVs, it is of great importance
to understand the aerodynamics when the MAV flies closely to finite
boundaries under various circumstances. So in this paper, the finite
boundary effect is numerically simulated and discussed to reveal
what is the similarity and difference with the ground effect.

II. PROBLEM DESCRIPTION
A two-dimensional rigid plate with chord length c and negligi-

ble thickness is considered as the research model shown in Fig. 1. In
fact, according to the insect flight, a complete hovering cycle consists
of two translational directions: downstroke and upstroke and two
rotational motions: supination and pronation. To simplify the real
flight, a combined translational and rotational motion is specified
mathematically at the leading edge as follows:31

x(t) =
A
2

cos(2πft), (1)

α(t) = α0 + β sin(2πft + ϕ), (2)

where x(t) represents the horizontal position of the leading edge
(LE), α(t) means the angle from the horizontal axis to the leading
edge (in the counterclockwise direction)—flapping angle, y(t) of LE
is unchanged,A is the stroke distance of the LE—flapping amplitude,
α0 is the initial orientation, β is the flapping angle amplitude, f is the
flapping frequency, and ϕ is the phase difference between rotation
and translation. In the current work, we focus on the normal hov-
ering, so α0 is chosen as −π/2. According to the previous study,21

ground effect shows similarity among different phases, so we select
ϕ = 0, representing the symmetrical rotation.

To study the finite obstacle effect, a two-dimensional cylinder
of diameter d serves as the obstacle in the simulation. The center of

FIG. 1. Schematic of a two-dimensional wing hovering in proximity of different-
sized circular obstacles: (a) above, (b) under, and (c) on the right side.

the cylinder is set at the origin. The wing hovers in the proximity
of the obstacle subject to Eqs. (1) and (2). When hovering above
or under the obstacle, the distance between cylinder top or bottom
point and stroke midline is marked as D in Figs. 1(a) and 1(b). The
stroke midline is parallel to the LE motion trajectory, passes through
midchord point at the initial stage, and perpendicular to D. When
hovering on the side in Fig. 1(c), D means the distance between
the side point of the cylinder and the midchord point of the wing
at the closest position. To parameterize the system, we define the
nondimensional groups including the normalized stroke distance,
Reynolds number, normalized obstacle diameter, and gap distance,
which are given by

A
c

, Re =
πAfc
νf

, r =
d
c

,
D
c

. (3)

III. NUMERICAL METHOD
The flow is governed by the viscous incompressible Navier–

Stokes equation and the continuity equation, nondimensionalized
as follows:

∂ṽi

∂ t̃
+
∂ṽjṽi

∂x̃j
= −

∂p̃
∂x̃i

+
1
Re

∂2ṽi

∂x̃2
j

, (4)
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∂ṽi
∂x̃i
= 0, (5)

where all items in the above equations are dimensionless: ṽi is the
fluid velocity, p̃ is the field pressure, and Re is the Reynolds num-
ber defined in Eq. (3). No-slip and no-penetration conditions are
imposed at the flow–solid boundary. The initial flow field is quies-
cent, and the computational domain is large enough to keep the far
field undisturbed.

The governing equations (4) and (5) are numerically solved
in an implicit manner by an in-house solver. A sharp-interface
immersed-boundary method developed on the basis of previous
studies32,33 is employed to deal with the rigid stationary and mov-
ing boundaries. The concept of sharp-interface IBM is to define
ghost nodes near the fluid–solid interface, which generate assisting
body intercept and image point to satisfy the velocity and pressure
boundary conditions. The Navier–Stokes equation is discretized on
a single-block Cartesian grid and solved using standard central finite
difference scheme. A three-step projection method is employed: for
each time step, the advection-diffusion equation is first solved to
obtain the intermediate velocity field, and then RHS of the Pois-
son equation is assembled and solved according to the intermediate
velocity to get the pressure field, finally the velocity field is corrected
and time moves on. In the computation, the zero thickness wing is
treated with an artificial thickness of about three times of the grid
spacing and adapts to the local grid refinement. The solid wing is
represented by a set of Lagrangian points, evenly distributed along
the chord length. The circumference of the cylinder also has the
same representation and distribution of Lagrangian points as the
solid wing does.

IV. SIMULATION SETUP AND VALIDATION
In this paper, the Reynolds number is chosen as 200 and the

stroke distance A/c = 2.5. These parameters are chosen from the
published literature4,29,34 on insect flight. To investigate the aero-
dynamic performance under various circumstances, the obstacle
size, position, and the flapping angle amplitude are discussed in the
paper. The normalized obstacle size r is selected as 0.5, 1, 2, 4, 8,
and 12 to cover a wide range of finite obstacle and study the dif-
ference and similarity among these sizes and ground effect. The
wing hovers above, under, and on the side of the obstacle, repre-
senting the possible situation in the real environment. The flap-
ping angle amplitude β (=π/8, π/4 and π/3) is also investigated,

considering the insect could adjust the flapping angle to remain
stable flight.

The whole computational domain is 20c × 35c of Cartesian
grids and large enough to eliminate the potential numerical per-
turbation from domain boundaries. Uniform (both in x- and y-
directions) and dense mesh spread in the core area of 3c × 10c with
spacing Δx = Δy = 0.02c. The surrounding region is nonuniformly
meshed to reduce the grid number and limit computational cost.
The entire domain consists of a Cartesian grid of 320 × 528. The
time step is set as Δt = 0.002T, where T = 1/f is the period of one
flapping cycle.

The lift and drag coefficients are calculated and compared to
evaluate the aerodynamic performance, defined as in Eq. (6),

CL =
FL

(0.5ρfU2c)
, CD =

FD
(0.5ρfU2c)

, (6)

where FL and FD denote the forces in vertical and horizontal direc-
tions by integrating the shear stress and pressure acting on the wing
body. FL is always positive upward and negative downward. FD is
positive against the flapping direction and negative following the
direction. ρf stands for the air density, the reference velocity U
(=πAf ) is the maximum flapping velocity of leading edge, and c is the
wing chord length. Other than the forces, power consumption and
efficiency are important factors. The power consumption is defined
as

P = F ⋅ ẋ + M ⋅ α̇, (7)

where F and M are the driven force and torque acting on the leading
edge to keep the wing kinematics, respectively. Following the conser-
vative assumption that negative input power in either translation or
rotation is no longer usable, we define the positive power consump-
tion P+, which is the summation of the positive value of each term
in Eq. (7). The positive power coefficient and lift-to-power ratio are
defined, respectively, as follows:

CP+ =
P+

(0.5ρfU3c)
,

CL

CP+

. (8)

Based on the setups, the solver is validated by comparing results with
Refs. 31 and 34 in Fig. 2, where curves agree well with each other.
Note that all the results are rescaled using the definition in Eq. (6),
different from using the maximum quasisteady lift coefficient in Ref.
31. Readers are referred to papers35–39 for more validations of the
in-house solver and its applications in flapping wings.

FIG. 2. (a) Lift and (b) drag coefficients (CL and CD) from present simulation, Wang34 (dash line) and Eldredge31 (dash-circle line).
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V. RESULTS AND DISCUSSION
A. Effect of down obstacle

Simulation results are given and discussed by analyzing the
aerodynamic forces as well as the power consumption and effi-
ciency when the wing hovers in the proximity of the obstacle.
First, the effect of obstacle size is investigated when the wing hov-
ers vertically above the obstacle. Such circumstance represents the
ground effect when the insect takes off or lands on a finite solid
surface, which lacks discussion in previous studies. The nondimen-
sional obstacle size r ranges from 0.5 to 12, and it can be predicted
that when the size exceeds a certain value, the obstacle effect will
approach the infinite ground effect. Figure 3 summarizes the time-
averaged coefficients over 15 flapping cycles with respect to surface
clearance (D/c). A dashed line representing the coefficients with
no obstacle (CL = 0.78 and CD = 1.31) is drawn in each figure
as a comparison, denoted by NO, namely, nonobstacle. The most
significant observation in Figs. 3(a) and 3(b) is that the lift and
drag change for small obstacles differ from large ones. All the lift
and drag curves show a V-shape trend for r ≥ 2, which has three
stages: force enhancement, reduction, and recovery, similarly as

observed in previous studies on ground effect. For lift, larger r(≥2)
results in a more enhanced value at D/c = 1. As D/c enlarges, the
forces decrease and reach the minimum value at a certain clearance:
D/c = 2 for r = 2 and D/c = 3 for r ≥ 4. The minimum lift coefficients
are generally similar around 0.55. For drag, the V-shape curves for
r = 2 and 4 shift down to some extent such that the drag coeffi-
cients are below the NO value at D/c = 1. Then, the curves decrease
and reach the minimum CD around 0.9 at D/c = 2. For CD of
r = 8 and 12, the values remain above the NO value at D/c = 1
and decrease to the minimum value 0.9 at D/c = 3. Finally, when
the wing moves further away from the obstacle, all the acting forces
increase and recover to the value of free hovering for r ≥ 2. How-
ever, as the r shrinks to 0.5 and 1, the force changes show a reversed
trend: reduction, enhancement, and recovery, which is contrary to
the large obstacle or infinite ground effect. Both lift and drag are
reduced at D/c = 1, compared with CL ,NO and CD ,NO, so that flap-
ping close to small obstacles may cause potential danger because of
lift force decrease. Then, forces increase as D/c grows, exceed CL ,NO
and CD ,NO when D/c > 3, reach the maximum value at D/c = 4,
then fall back, and gradually approach the nonobstacle value as the
clearance continues enlarging to infinity. At D/c = 4, CL and

FIG. 3. Time-averaged coefficients when the wing hovers above the obstacle: (a) lift coefficient, (b) drag coefficient, (c) power coefficient, and (d) lift-to-power ratio.
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CD increase as the obstacle size diminishes. So CL and CD for
r = 0.5(0.87 and 1.37) are higher than that of r = 12(0.68 and 1.15).

The curves in Figs. 3(c) and 3(d) show the power and efficiency
change with respect to the distance: larger obstacle (r ≥ 2) leads to
more power consumption as well as higher efficiency (evaluated by
CP+ and CL/CP+) at D/c = 1 because of enhanced lift generation. As
the clearance increases, the curves of large obstacles decrease to a
minimum value at D/c = 3, which is similar to the force V-shape
change. On the contrary, flapping near small obstacle (r ≤ 1) gener-
ates less force but consumes more power at D/c = 1, which causes
low efficiency as shown in Fig. 3(d). Then, CP+ decreases to the min-
imum at D/c = 2, reaches a high peak at D/c = 4, and approaches the
NO dash line gradually. The CL/CP+ curves of r = 0.5 and 1 are quite
similar to curves of CL and CD. Generally, it may cause potential risk
close to smaller obstacles due to both the lift and power efficiency
decrease.

To analyze the mechanism accountable for such observation,
we examine the force histories and flow fields of three regions: close
(D/c < 3), medium (3 ≤ D/c < 5), and recovery distances (D/c ≥ 5).

1. Close distance region
Figure 4 displays the time-dependent lift, drag, and power coef-

ficients over one cycle in close distance of D/c = 1 for r = 0.5, 4, and

FIG. 4. Histories of (a) lift, (b) drag, and (c) power coefficients for r = 0.5, 4, 12,
and nonobstacle in one cycle when the wing hovers above the obstacle at D/c = 1.

12 with the NO coefficient as reference. The lift and drag coefficient
curves are quite periodic between upstroke and downstroke because
of the symmetric flapping motion. Generally, two high peaks show
up in the lift and drag curves during the downstroke. The first lift
peak of curve of r = 0.5 occurs at t/T = 0.05(0.55) due to the gener-
ation of the strong vortex from the start of wing stroke. Compared
with r = 0.5, larger r leads to higher lift and curve of r = 12 shows
the highest lift value at t/T = 0.05(0.55). The first peak of r = 0.5 is
lower than that of NO. As time goes toward t/T = 0.15(0.65), the
curve of r = 0.5 decreases to the low peak like nonobstacle situation,
while the other two curves still keep increasing owing to the obstacle
effect. After t/T = 0.15(0.65), the three curves reach the second high
lift peak around t/T = 0.3(0.8) because of the rotational circulation
and increased flapping angle during the translation. Just before fin-
ishing the upstroke at t/T = 0.48(0.98), the lift curves reach the low
peak as the wing pitches down and is about to reverse the stroke. The
high and low peaks of each CD history are generally in phase with
CL. During one half stroke, the first high CD peak of r = 12 is some-
how delayed (t/T = 0.1) and clearly above that of r = 0.5 and 4 (t/T
= 0.05). The second high CD peaks of three curves are quite close or
even overlapped (t/T = 0.3). The high and low peaks of power input
show up just after or before the stroke reversal (t/T = 0.15 and 0.45)
because of the maximum inertial acceleration of deceleration. The
peak value of CP rises as the obstacle size increases, and all greater
than the NO curve.

Figure 5 displays the vorticity contour associated with the force
histories. The vortex shedding direction becomes much more hori-
zontal no matter what the obstacle size is, which keeps the vortices

FIG. 5. Instantaneous vorticity contour for r = (a) 0.5 and (b) 12 at D/c = 1. The
contour level ranges from −25U/c to +25U/c.
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FIG. 6. Velocity magnitude contour and streamlines for r = (a) 0.5 and (b) 12 at
D/c = 1.

closer to the wing and results in stronger vortex-wing interaction.
Just after reversal at t/T = 0.05 for r = 12, the previous downstroke
LEV and TEV are strongly obstructed because of the limited gap
between TE and obstacle surface, as shown in Fig. 5(b). So the wake-
capture effect between the wing and pre-LEV is intensified and lift
generation enhanced. However, as the obstacle size shrinks from
12 to 0.5, the gap becomes wider and obstruction weaker, which
forms a downward passage to encourage the pre-LEV to slide down
along the wind side, pinch off the shedding pre-TEV, diminish the
pre-LEV and pre-TEV strength, and then weaken the new LEV
strength and the wake-capture effect. In Fig. 4(a), the first CL peak of
r = 0.5 is much lowered, smaller than NO. In Fig. 5, when the wing
advances upstroke to t/T = 0.15, one can notify that the pre-LEV
of r = 0.5 convects almost along the wind side through the gap and
fails to pass over the LE to strengthen the new LEV so that the wake-
capture effect has been greatly undermined and aerodynamic force
diminishes. For r = 12, the pre-LEV partially crosses over the LE,
merges with the new LEV which boosts the vortex strength, and par-
tially moves along the wind side to form a strong vortex pair with the
pre-TEV, which both contributes to higher lift and drag generation.
The new LEV and shedding TEV pair are strong for r = 12 around
t/T = 0.3 (second force peak). However, the LEV tends to detach
from the LE compared with smaller obstacle situation. Such reduces
the force generation and makes the second peak comparable with
r = 4. Figure 6 displays the velocity contour and streamline for
r = 0.5 and 12 at t/T = 0.15. The maximum velocity magnitude is
higher under the wing for r = 12, and a strong circulation around
LE and a downward jet are formed, which both contribute to the
force generation. As for r = 0.5, nearly no circulation appears at the
LE. The flow transfers more vertically through the wide gap, causing

FIG. 7. Histories of the lift coefficient for r = 0.5, 4, 12, and nonobstacle in one
cycle when the wing hovers above the obstacle at D/c = 3.

FIG. 8. Instantaneous vorticity contour for r = (a) 0.5 and (b) 12 at D/c = 3. The
contour level ranges from −25U/c to +25U/c.

low-velocity gradient and much weaker jet. Such passage effect
between the wing and small obstacle causes reversed force change,
which lacks discussion in the previous literature.

2. Medium and recovery distance region
Figure 7 displays the time-dependent lift coefficient over one

period in the medium distance region of D/c = 3 for r = 0.5, 4, and
12. At this distance, also four high peaks appear during one cycle.
The second peaks of each curve are very close, and the third peaks
almost vanish. At t/T = 0.1 in Fig. 7, the first peak is higher for r = 0.5
than the other three. Figure 8(a) shows that at t/T = 0.1, the inade-
quate blockage allows the pre-LEV and pre-TEV to be less stretched
and develop more vertically when wing hovers above the obstacle
of r = 0.5. Compared with r = 12 in Fig. 8(b), the positive pre-LEV
is greater, and interacting with LE, the pre-TEV remains conserved
and pairs with last cycle positive TEV, which helps enhance the force
generation. For r = 12, the strong obstruction forms a horizontal
shear effect to force the flow to two sides of the obstacle so that
the pre-LEV convects more along the wind side and is squeezed to
detach from the wing, instead of crossing over the LE and interact-
ing with the wing. The current shedding negative TEV is extensively

FIG. 9. Velocity magnitude contour and streamlines for r = (a) 0.5 and (b) 12 at
D/c = 3.
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FIG. 10. Time-averaged lift coefficients when the wing hovers above the obstacle with β = (a) π/8 and (b) π/3.

elongated, and positive pre-TEV has been separated into two parts
and pushed away from the wing. The fourth peaks at t/T = 0.85 show
the largest difference among four curves. The peak value diminishes
as r increases from 0.5 to 12. From vorticity contour, the strongest
and closest vortex pair appears for r = 0.5. The existing small obsta-
cle makes the space large enough to keep previous positive TEV least
stretched and move toward the wing during the upstroke. Mean-
while, the current negative TEV also remains unstretched and pairs
with the pre-TEV. The generation of such strong vortex pair gives
rise to high lift at t/T = 0.85 as shown in Fig. 7. For r = 12, the
previous positive TEV is pushed away from the wing in the hori-
zontal direction and dissipates fast because of the stretching. The
current negative TEV is also squeezed into two parts and separated
with the last TEV, which abates the strength of TEV pair as well as
force generation. From such circumstance, the TEV pair plays a sig-
nificant role during the upstroke. Figure 9 shows that the velocity
magnitude under the wing of r = 0.5 is much stronger than that of
r = 12. Strong upward jet and downward stream around the wing in
Fig. 9(a) bring higher lift generation compared with weak downward
jet and no upward jet for r = 12. When D/c increases to 4, space is
adequate for all obstacle to form strong wing vortex interaction so
that all forces increase from D/c = 3 to 4 in Figs. 3(a) and 3(b).

Finally, as the D/c continues increasing above 5, force recovery
occurs for all situations as the obstacle becomes far away and affects
the aerodynamics little.

3. Effect of flapping angle
Figure 10 shows the time-averaged lift coefficients over 15

cycles with respect to D/c for two flapping angle amplitudes: β
= π/8 and π/3. For β = π/8, all the lift coefficients are less than the
NO value. The curve of r = 12 shows a V-shape trend while r = 0.5
a reverse V-shape. When flapping close to the obstacle (D/c = 1),
CL of r = 12 is at the highest point, slightly below NO, then decreases
to the low peak at D/c = 2, and gradually recovers to the NO
value. CL of r = 0.5 shows a reversed change: force reduction in
close distance of D/c = 1, enhancement in a medium distance of
D/c = 3, and finally recovery. Such force change discrepancy between

small and large obstacles is consistent with that of β = π/4. However,
as the β increases to π/3, curves of r = 0.5 and 12 in Fig. 10(b) show
the same trend analogous to each other: force becomes enhanced at
D/c = 1, then decreases to the minimum, and finally approaches the
NO value. The minimum lift occurs at the same distance of D/c = 4
for both r = 0.5 and 12.

The force histories and flow fields are given in Figs. 11–14. For
β = π/8 in Fig. 11, two black curves (r = 0.5 and 12 at D/c = 1) are
quite periodic during downstroke and upstroke. Only one high peak
occurs during each half stroke for both curves: at t/T = 0.26(0.76)
for r = 0.5 and t/T = 0.16(0.66) for r = 12. When β = π/8, the wing
pitches up less so that the gap becomes narrower. Figures 12(a) and
12(b) display the vorticity contours, and it can be seen at the first lift
peak (t/T = 0.16) for r = 12, the entire pre-LEV crosses over the LE
and merge to generate a stronger new LEV. Also, a strong vortex pair
consisting of the TEV and pre-TEV is formed, also helping generate
higher lift. For r = 0.5, the LEV is weaker and the TEV pair is pushed
away from such that the first peak is lower. As D/c increases to 2,
the red curve of r = 0.5 in Fig. 11 shows higher lift peaks than the
curve of r = 12. At t/T = 0.78 in Fig. 12(d), the enlarged gap under
TE makes the LEV and TEV convect along the wing and slip through
the gap, which leads to weakened wake-capture effect and dissipated
TEV pair compared with that of r = 0.5 in Fig. 12(c).

FIG. 11. Histories of the lift coefficient for β = π/8, r = 0.5, 12, and nonobstacle in
one cycle when the wing hovers above the obstacle.
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FIG. 12. Instantaneous vorticity contour when flapping
above an obstacle with β = π/8 for (a) r = 0.5, D/c = 1;
(b) r = 12, D/c = 1; (c) r = 0.5, D/c = 2; and (d) r = 12,
D/c = 2. The contour level ranges from −25U/c to +25U/c.

FIG. 13. Histories of the lift coefficient for β = π/3, r = 0.5, 12, and nonobstacle in
one cycle when the wing hovers above the obstacle.

For β = π/3 in Fig. 13, black curves for the force enhance-
ment region at D/c = 1 are generally higher than red curves for
the force reduction region at D/c = 4. Each curve experiences a low
negative peak around t/T = 0.15(0.65) and a high peak around t/T
= 0.35(0.85) during each half stroke. At t/T = 0.15 in Fig. 14, all LEVs
are not effectively formed and barely seen only at r = 12, D/c = 1 due
to small flapping angle, so the lee side suction effect fails. All wake-
capture effect is weakened due to the wider gap as well. The pre-LEV
tends to detach from the wind side, especially for r = 12 at D/c = 4
and pair with the pre-TEV, which results in negative lift force. At
t/T = 0.35, LEVs are similar for all situations. The narrower gap
of D/c = 1 forms a stronger TEV pair, which leads to a higher lift.
So when flapping angle amplitude is large, the finite obstacle effect
becomes more uniform/comparable.

B. Effect of top obstacle
Figure 15 shows lift coefficients averaged over 15 cycles when

the wing hovers under an obstacle. The most evident observation is
that almost all lift forces are increased compared with nonobstacle
hovering no matter what the obstacle size and distance are. For all
cases, the forces reach the maximum at D/c = 1 and larger obstacle
leads to greater force enhancement. The highest CL = 1.29 shows
up at D/c = 1 for r = 12, higher than the wing hovers above an
obstacle at the same D/c. Then, the forces decrease monotonically
as the clearance D/c enlarges. Finally, they approach the nonobstacle
value when D/c ≥ 6. The forces descend fast from D/c = 1 to 2. The
effect becomes relatively weak as D/c ≥ 2, and after that forces do
not change much. For r ≤ 1, the lift force change is not obvious,
only 10.2% when D/c varies from 1 to 6. Force change tendency
shows that only large and close obstacle influences the aerodynamic
performance of the wing effectively when hovering under it.

The time-dependent force change in one cycle for D/c = 1 is
shown in Fig. 16 associated with vorticity contour in Fig. 17. The
curves of NO and r = 0.5 are quite similar to each other, meaning
small obstacle above the wing affects aerodynamics very little. We
can notify that the shedding vortices of r = 12 transfer more upward
along with the obstacle than downward and stay around the wing,
which is not observed for cases of the smaller obstacle. At t/T = 0.15,
the location of pre-TEV from the last stroke is vertically higher than
the other two. From t/T = 0.15 to 0.77, this pre-TEV keeps staying
on the left side of the wing with low mobility other than transfer-
ring downward, which results in very complicated vortex merging
and interacting. Also, a new LEV of r = 12 is strongly formed; the
pre-LEV is partially squeezed to pass through the clearance and

FIG. 14. Instantaneous vorticity contour when flapping
above an obstacle with β = π/3 for (a) r = 0.5, D/c = 1;
(b) r = 12, D/c = 1; (c) r = 0.5, D/c = 4; and (d) r = 12,
D/c = 4. The contour level ranges from −25U/c to +25U/c.
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FIG. 15. Time-averaged lift coefficients when the wing hovers (a) under and (b) on the right of the obstacle.

merge with the new LEV and partially interacts with the wing. Both
enhance the lift generation by increasing the wake-capture effect
during the downstroke. Figure 18 illustrates the velocity field and
streamlines for r = 4 and 12 at t/T = 0.15. It can be seen that a strong
circulation occurs around the LE of r = 12 with high-velocity mag-
nitude, which forms a strong LEV and high lift force. However, for
the case of r = 4, the streamlines are almost perpendicular to the LE
and pass through the relatively wide gap such that the LEV is barely
generated and low lift force is created.

At t/T = 0.35, the LEV is pinched off and detaches from the
LE for r = 12, which lowers the second lift peak. For r = 4, the LEV
attaches to the lee side of the wing and a strong TEV pair has been
formed under the wing, assisting aerodynamic force enhancement.
From t/T = 0.65 to 0.77 in Fig. 16, all curves are ascending. During
this period, the LEV is being generated and a TEV pair has been
formed, which are beneficial to the force generation. Figure 17 shows
that at t/T = 0.77, the LEV development is faster and stronger for
r = 12 than that of r = 4. Also, the current TEV closely pairs up with
the TEV from downstroke and merges with the TEV from the last
cycle, which doubles the lift enhancement effect so that the peak of
r = 12 appears earlier and higher. Gradually as time advances, the
LEV grows and the TEV pairs move toward the wing, both curves of
r = 0.5 and 4 reach the peak round at t/T = 0.85 with a lower value
compared with the peak of r = 12.

FIG. 16. Histories of the lift coefficient for r = 0.5, 4, 12, and non-obstacle in one
cycle when the wing hovers under the obstacle at D/c = 1.

C. Effect of side obstacle
The horizontal effect is studied when the wing hovers on the

left/right of the obstacle. Considering the symmetry, only wing flap-
ping on the right is simulated with results shown in Fig. 15. It shows
that the horizontal obstacle effect is comparably weak compared to

FIG. 17. Instantaneous vorticity contour for r = (a) 4 and (b) 12 at D/c = 1 when
obstacle on top. The contour level ranges from −25U/c to +25U/c.
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FIG. 18. Velocity magnitude contour and streamlines for r = (a) 4 and (b) 12 at D/c
= 1 with obstacle on top.

the vertical effect, yet consistent. At D/c = 0.5, the lift forces for
r = 0.5, 1, 8, and 12 are reduced, and the values are slightly below
the nonobstacle dashed-line. Then as the distance enlarges, forces
increase to a small peak, the highest of which occurs at D/c = 1 for
r = 12, obtaining 8.1% force improvement. Finally, all the curves
fall back to the nonobstacle value. For r = 2 and 4, the forces are
enhanced at D/c = 0.5, however only 8.4% and 12.3% improvement,
respectively. Then, the force change shows reduction and recovery
stages, however, values relatively small.

Figures 19 and 20 display the force history and vorticity field
for r = 0.5, 4, and 12 at D/c = 0.5. The force history shows four high
peaks for each curve. The first, second, and fourth peaks of NO are
all above those of r = 0.5 and 12. At t/T = 0.07 and 0.81 when the
stroke reversal and fast translational rotation happen, the peaks of
r = 4 are the highest among all curves. Since the obstacle stays on the
side, the LEV is affected least compared with the obstacle in vertical
locations. In Fig. 20, all LEVs keep attached to the LE with simi-
lar strength and motion. On the other hand, shedding TEVs are the
main influence on force change. At t/T = 0.07, previous shedding
TEVs pair up close to the wing for r = 4 and contributes to the lift
increase. As for r = 12, positive pre-TEV is pushed away and low-
ers the lift. At t/T = 0.81 when moving away from the obstacle, the
pre-TEV from downstroke is pushed away due to the obstruction,
not able to pair with the current negative shedding TEV and interact
with the wing for r = 12, similar as in Fig. 8(c) at t/T = 0.85. As for
the case of r = 4, stronger and closer TEV pair obviously increases
the lift to be greater than others.

Since the wing hovers on the right of the obstacle, the side force
is investigated as well by averaging the horizontal force FH over 15

FIG. 19. Histories of the lift coefficient for r = 0.5, 4, 12, and nonobstacle in one
cycle when the wing hovers on the right the obstacle at D/c = 0.5.

FIG. 20. Instantaneous vorticity contour for r = (a) 4 and (b) 12 at D/c = 0.5 when
obstacle on the left. The contour level ranges from −25U/c to +25U/c.

cycles and nondimensionalized as follows:

CH =
FH

(0.5ρfU2c)
. (9)

Figure 21 displays CH for nonobstacle hovering and cases of
r = 0.5, 4, and 12. Positive CH means force pushing the wing away
from the obstacle, negative attracting the wing toward the obsta-
cle. Comparing CH with CL and CD, the magnitude is much smaller
because the horizontal force counterbalances between downstroke
and upstroke. The dashed line ofNO is plotted as a reference. For the
case of r = 4 and 12, side forces are all negative and non-negligible at
D/c ≤ 3, which means that the wing is attracted to the obstacle and
may cause potential risk.

FIG. 21. Time-averaged horizontal force coefficients when the wing hovers on the
right of the obstacle.
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VI. CONCLUSIONS
The finite obstacle effect on the aerodynamic performance of a

hovering wing has been investigated using the immersed boundary
method. The wing of chord length c normal hovers above, under,
and on the side of a finite circular obstacle with diameter rang-
ing from 0.5c to 12c. Results reveal that when the obstacle size
equals or exceeds 2c, the finite obstacle effect shows similarity to
the ground effect with force enhancement, reduction, and recovery.
As the obstacle size shrinks less than 2c, lift and drag change shows
the opposite trend: decrease as hovering in close distance (D/c < 3),
increase in medium distance (3 ≤ D/c < 5), and then recover to free
normal hover. When flapping angle amplitude increases to π/3, all
the force change tends to be consistent with ground effect. When
hovering close to a smaller obstacle, the gap passage between the
TE and obstacle surface impedes the LEV forming, wake-capture,
and TEV pairing, which undermine the force generating and aero-
dynamic efficiency. When hovering in the medium distance to the
smaller obstacle, favorable weak obstruction keeps the TEVs more
conserved, thereby strengthening the pairing and enhancing the
force.

The top finite boundary effect is consistent for different-
sized obstacles: the force increases monotonically as the distance
decreases. A large obstacle induces more increase. However, such
force enhancement decays fast as long as D/c ≥ 2; all the lift increase
is less than 10% no matter what size of the obstacle is. The side
effect is weaker compared with the down or top obstacle. All force
changes under such circumstance are less than 13% compared to the
nonobstacle results.

Such study provides more knowledge in understanding the
mechanisms of the finite obstacle effect when the insect flies close
to it. Since the real working condition of future bio-inspired MAV
is challenging, it is necessary to consider more complicated bound-
aries and study how the active control would adjust the flight
accommodating to the real-time situation.
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