
 

REVIEW 

Subject category: ENGINEERING 

Nanomechanics of graphene 

Yujie Wei
1,3*

, Ronggui Yang
2
* 

1
The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese 

Academy of Sciences, Beijing, China, 100190 

2
Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA, 80309 

3
School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 

China,100049 

 

*Emails: yujie_wei@lnm.imech.ac.cn; ronggui.yang@colorado.edu 

 

Abstract 

The super-high strength of single layer graphene has attracted great interests. In practice, 

defects resulted from thermodynamics or introduced by fabrication, naturally or artificially, 

play the pivotal role in the mechanical behaviors of graphene. More importantly, high strength 

is just one aspect of graphene‘s magnificent mechanical properties: Its atomic-thin geometry 

not only leads to ultra-low bending rigidity, but also brings in many other uniqueness of 

graphene in terms of mechanics in contrast to other carbon allotropes, including fullerenes 

and carbon nanotubes. The out-of-plane deformation is of ‗soft‘ nature, which gives rise to 

rich morphology and is crucial for morphology control. In this review article, we aim to 

summarize current theoretical advances on describing the mechanics of defects in graphene, 

and the theory to capture the out-of-plane deformation. The structure-mechanical property 
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relationship in graphene, in terms of its elasticity, strength, bending, and wrinkling, with or 

without the influence of imperfections, are presented. 
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1. Introduction 

There exist many reviews on the synthesis, properties and applications of graphene, and it 

has not been our purpose merely to add one to the many. Our aim is to demonstrate the 

mechanics of graphene as an integral part of materials and structures other than the isolated 

domain of remarkable individuals. This purpose demands more account of general mechanical 

analysis. We have found that this is particularly necessary as a general reader cannot be 

assumed to be comfortable with the applicability of classical mechanics theories to the 

mechanics of graphene. 

Until the success of Geim and co-workers in producing monolayer graphene by 

mechanical exfoliation of graphite [1, 2], atomically thin materials were believed to be 

thermodynamically unstable under the ambient conditions [3, 4]. The emergence of graphene 

leads to great attention to examine its specialty in contrast to other carbon allotropes including 

fullerene, carbon nanotube, and graphite [5]. Among nearly 356 carbon allotropes from 500 

scientific reports [6], the aforementioned carbon structures including fullerene, carbon 

nanotube, and graphene, are composed of single layer of carbon atoms. As both carbon 

nanotubes and graphene are composed of sp
2
-bonded carbon atoms packed in a honeycomb 

crystal lattice, it is not surprise that graphene also has extremely high modulus and high 

strength as the well-studied carbon nanotubes [7-9]. What makes graphene distinct from 

carbon nanotubes is the two-dimensional structure and can be synthesized as large-area flat 

sheets, which opens up many applications that carbon nanotubes cannot be conveniently 

utilized. 
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The atomic-thin nature of graphene leads to its ultra-low bending rigidity, making it ‗soft‘ 

for out-of-plane deformation. Graphene can be easily bent to form rich three-dimensional 

morphology [10-12] under either mechanical or thermal undulation. The bending properties 

accounting for rippling of graphene has been investigated. Also due to the increased surface 

area, the interaction between graphene and other materials has been studied. Typical 

mechanical behaviors involving surface interaction including adhesion [13, 14], peeling while 

transfer [15-17], as well as the frictional behavior [18-21] had drawn the attention of broad 

engineering communities. Small-size two-dimensional structures have edges, and those edges 

introduce mechanical complications and excitements [22]. Large area graphene usually 

consists of patches of small area graphene with different size and orientation, coupling with 

grain boundaries (GBs) and other defects [23-27]. The mechanics of those typical defects in 

graphene and their influence on the strength are also covered in this review. In short, the aim 

of this review article is to provide a comprehensive summary on the up-to-date progress on 

the mechanics of graphene, and more importantly, how to understand the relationship between 

structures and mechanical properties, with and without defects. 

There are already several review papers in literature covering different aspects of the 

mechanics of two-dimensional (2D) materials. For example, the fracture of graphene has been 

reviewed by Teng et al. [28] where the authors summarized the recent progresses in 

experimental and theoretical studies on the fracture behaviors of graphene, and also presented 

significant yet unresolved issues related to the fracture of graphene. In the review by Cao et 

al. [29], the authors showed recent advance on the characterization of the mechanical behavior 

of atomically thin films. The review by Ivanovskii [30] generalized the information on the 

modification of graphene-based carbon materials through creation of structural defects, 

introduction of substitutive impurities, adsorption of impurity atoms and mechanical 

deformations. Several mechanical properties including elastic constants, strength, friction, and 

fracture of graphene have been included. A particular review on the tribology of graphene was 

given by Penkov et al. [31]. Recently Akinwande et al. [32] reviewed the mechanical 

properties of graphene and 2D materials. Penev et al. [33] reviewed the development of 

theoretical and computational model on the role of certain transcending concepts like elastic 
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instabilities, dislocations, and edges. CastroNeto et al. published a review paper [34] on the 

unusual two-dimensional Dirac-like electronic behavior of graphene, where the effects of 

electron-electron and electron-phonon interactions in single layer and multilayer graphene are 

presented. Ando [35] gave a review on the characteristic features of electronic states and 

electrical transport in both graphene and carbon nanotubes. A series of review papers on the 

chemical properties of typical 2D materials could be found in [36-39] and references therein. 

Wu et al. [40] reviewed up-to-date advances in graphene-based micro-electrochemical 

energy-storage devices which utilized the unique features of graphene and foresaw the future 

development of graphene based micro-supercapacitors. The thermal conductivity of 2D 

materials was reviewed by Gu et al. [41], where the effects of different physical factors, such 

as sample size, strain, and defects, on thermal transport in 2D materials are summarized. 

2. Elasticity of pristine graphene 

Because of the rich bonding types, different carbon allotropes show a large variety of 

elastic properties. Even being the same type of honeycomb lattice of carbon atoms, graphene 

and carbon nanotubes can exhibit quite different mechanical behaviors as they are categorized 

as typical examples of 2D and one-dimensional (1D) materials, respectively. In particular, the 

difference in the dimensionality of those allotropes gives rise to different degrees of freedom 

in response to external stimuli. For instance, while the in-plane elastic properties of pristine 

graphene could be largely inferred from that of the well-studied CNTs, the out-of-plane 

deformation mode in graphene requires a different theoretical tool. Here we introduce the 

available theoretical approaches to analyze the elastic response in graphene. 

2.1 Two-Dimensional long-range crystalline order 

For a long time, two-dimensional crystals have been conceived as structurally unstable 

because of long wavelength fluctuations according to the Mermin-Wagner theorem [42].  

Two-dimensional crystals are extremely flexible and are prone to structural instability, which 

gives rise to microscopic corrugations of a graphene sheet [3, 4]. Nearly one century ago, 

Peierls [43] and Landau concluded that there can be no one- or two-dimensional long-range 

crystalline order. The argument given by Peierls is qualitative based on the harmonic 
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interaction of atoms in the one-dimensional chain. Landau‘s conclusion on the no existence of 

two-dimensional long-range crystalline order is based on his general theory of second-order 

phase transition [44], which is known to be misleading near the critical point. Alder and 

Wainright investigated a two-dimensional system consisting of 870 particles placed in a 

periodically rectangular array. Their computer experiments, however, have indicated a 

transition to a two-dimensional crystalline ordered state [45]. The theoretical analysis by 

Mermin a few years later [3] excluded long-range crystalline order in two dimensions for 

power-law potentials of the Lennard-Jones type, but it is inconclusive for other types of 

potentials. The conclusion was made by deriving the Fourier component of the density for 

each vector of the reciprocal lattice. Considering a two-dimensional crystalline flake with the 

Bravais lattice ascribed by  ⃗⃗  and  ⃗⃗  where the flake sides are defined by    ⃗⃗ ,    ⃗⃗ . An 

arbitrary lattice point is defined by  ⃗    ⃗⃗    ⃗⃗ ,             . The total number of 

atoms in the flake is then        , where   is the number of atoms in the unit cell 

defined by  ⃗⃗  and  ⃗⃗ . The real space density distribution is simply given by 

 ̂  ⃗   ∑    ⃗   ⃗   
 
   .                             (1) 

In the reciprocal space, the k-th component of the Fourier‘s transform of the real space is 

obtained as 

 ̂( ⃗⃗ )  ∫  ̂  ⃗      ⃗⃗   ⃗   ⃗  ∑     ⃗⃗   ⃗   
   .                  (2) 

The integration is over all the atoms in the flake. By defining the k-th Fourier‘s component of 

the density 

  ⃗⃗  
 

 
〈 ̂( ⃗⃗ )〉,                         (3) 

with 〈 〉 an averaging of density in the reciprocal space 

〈 ̂( ⃗⃗ )〉  ∫
 ̂( ⃗⃗ )     ⃗    ⃗      ⃗        ⃗     ⃗  

∫      ⃗    ⃗      ⃗        ⃗     ⃗  
,                   (4) 
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where    is the product of the Boltzmann constant and the absolute temperature with the 

unit Kelvin (K). Atoms in the flake interact through the pair potential    ⃗  , and we hence 

have the expression of internal energy    ⃗    ⃗      ⃗    
 

 
∑    ⃗    ⃗      . For an entirely 

crystalline object, it stands to reason that there is an array of sharp peaks in reciprocal space 

and   ⃗⃗  will be non-zero. Mermin [3] adopted as criterion for the existence of 

thermodynamically periodic arrangement of atoms in the flake the following: 

            ⃗⃗    if  ⃗⃗  is a reciprocal-lattice vector, and             ⃗⃗    for other case 

of  ⃗⃗ . He gave a proof that the first case cannot be satisfied in two dimensions for    ⃗   

being power-law potentials of the Lennard-Jones type, but it is inconclusive for other types of 

potentials [3]. In 2002, Ab initio calculations showed that a graphene sheet is 

thermodynamically unstable if its size is less than about 20 nm and becomes the most stable 

fullerene only for molecules larger than 24,000 atoms [46]. 

The success of Geim and co-workers to produce the monolayer graphene by mechanical 

exfoliation of graphite [1, 2] ended the theoretical controversy on thermodynamically stable 

two-dimensional crystals under the ambient conditions. Now many one-atom thin and 

multi-atom thin 2D materials were discovered with exploded literature studying their 

synthesis, physical properties, and applications. While large-area pristine graphene may not 

be flat under thermal undulation [11], it can resist bending and remains two-dimensional, in 

particular when the size of a graphene flake is small. It should be pointed out that the sp
2
 

bonding among carbon atoms in graphene certainly deviates from the power-law inter-atomic 

potential assumed in the theoretical analysis by Mermin [3]. In that sense, Mermin‘s analysis 

does not exclude the existence of stable two-dimensional crystals with interactions 

significantly different from the Lennard-Jones type of potentials. 

Very recently, Kumar and Parks [47] further analyzed the lattice dynamic stability of 

graphene under straining, and deduced a general continuum criterion for the onset of various 

kinds of lattice instabilities in graphene: an instability appears when the magnitude of the 

deviatoric strain   reaches a critical value   , which depends on the mean normal strain and 

the directionality   of the principal deviatoric stretch with respect to the reference lattice 
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orientation. The criterion could be employed to distinguish fundamentally different 

mechanisms of lattice instabilities in graphene, such as structural versus material instabilities, 

and long-wave (elastic) versus short-wave instabilities. 

2.2 In-plane elasticity 

Given the atomic-thin nature, how two-dimensional crystals resist deformation is of 

paramount interest. In this subsection, we first examine the in-plane elastic properties of 

single layer graphene. As imagined, graphene is the mother element of some carbon allotropes 

including CNTs [48, 49]. Naturally, the same lattice in graphene and CNT may be expected to 

have similar elasticity. The distinction originates from the structures. The elastic modulus of 

CNT is normally an effective one from the structure level: the stress is typically averaged over 

the circular cross-section of the tube. It is an effective modulus which may depend on the 

chirality of the CNT. For graphene, we consider the most general case regarding the 

mechanical response of graphene with the honeycomb lattice. 

It is known that the change in the free energy   in an anisotropic crystal under small 

deformation can be described by a quadratic function of the strain (in the Cartesian 

coordinate) [5]: 

  
 

 
           ,                             (5) 

where         are integers ranging from 1 to 3, and     are strain components. The 

coefficient       is the rank-four elastic modulus tensor, including a maximum of 21 

independent components for the triclinic system, but fewer in the crystals possessing 

symmetry. For hexagonal systems like graphene, their normal plane is the sixth-order axis: 

rotating through an angle of     about the plane normal results in the exact same lattice. The 

free energy is hence simplified as 

  
 

 
        

                 
       [         

      
 ]                     

          
     

  .            (6) 
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From eqn. (6), we can see that five-independent elastic moduli are needed to describe the 

elastic deformation of a hexagonal crystal. When only the in-plane deformation is considered, 

i.e.,       for      , the free energy is determined by the two elastic constants       

and       in eqn. (6). It hence suggests that the elastic behavior of two-dimensional 

hexagonal crystals like graphene is isotropic in nature, consistent with other explorations [50]. 

The isotropic elastic property of a hexagonal lattice can be alternatively understood at a 

macroscopic level if we take an analogy between the lattice and the honeycomb structure [51]. 

In the most general case, deformation in the       plane in a honeycomb composed of 

unit cells shown in Figs. 1a and b is described by five moduli: two Young‘s moduli    and 

  , the shear modulus of    , and two Poisson‘s ratios     and    . But there are only four 

independent ones as the reciprocal relation requires            . The two moduli are thus 

given, respectively, as 

  

  
  

 

 
  

    

               
                      (7a) 

and 

  

  
  

 

 
  

        

     
,                         (7b) 

where    is the Young‘s modulus of the wall material. It is convenient to see that for a 

hexagonal lattice, we have      . The Poisson‘s ratio, for loading along   -direction, is 

given as 

    
     

              
,                        (7c) 

and that is 

    
              

     
                        (7d). 

when loading along   -direction. 

Again in a hexagonal lattice, we see             for       and      . The 

shear modulus of the honeycomb is thus, 
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.                    (7e) 

In the case of an ideal hexagon lattice, we also have the relation of             , which 

generally applies for isotropic solids. While there are apparent discrepancies between the 

hexagonal lattice like graphene and the hexagonal honeycomb as bending is considered to be 

the primary mechanism for elastic deformation for honeycombs, the comparison of the two 

systems can help us understand the isotropic nature of the in-plane mechanical properties in 

graphene under small deformation. When the deformation becomes large and the unit cell is 

severely distorted, changes in   and     would consequentially render the system to be 

anisotropic. This observation may explain the nonlinear behavior of graphene during the 

elastic stage [52] and the slight anisotropic mechanical properties reported in the literature. 

Aside from the topological difference, single wall carbon nanotubes have the same lattice 

structure as that of graphene. Hence, the tensile behavior of graphene can essentially be 

deduced from those of carbon nanotubes, as long as the tube radius is not too small. For 

example, VanLier et al. reported the Young's modulus and the Poisson ratio for a number of 

closed single-wall carbon nanotubes using the first all-electron ab-initio calculation [53]. The 

results agree well with those of graphene. Typical theoretical analysis predicts a Young's 

modulus of graphene to be higher than 1 TPa. The Poisson ratio in graphene is found to be 

small, close to 0.1 in a broad range of temperatures [54]. Liu et al. [52] calculated the phonon 

spectra of graphene as a function of the uniaxial tension by the density functional perturbation 

theory (DFPT) to assess the first occurrence of phonon instability on the strain path, which 

controls the strength of a defect-free crystal at 0 K. They obtained a Young's modulus E=1050 

GPa and Poisson's ratio  =0.186 from small-strain calculations. 

2.3 In-plane nonlinearity 

In the first effort to measure the break strength of graphene (Fig. 1c), Lee et al. [7] 

employed the indentation tests and found that the maximum stress attained in the film agreed 

well with an analytical solution [55] when a linear stress-strain curve is employed. To match 

the load-deflection curve as shown in Fig. 1d, however, the strains in the graphene near the 
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indenter had to be set to values well over 0.2, which is far beyond the linear elastic regime. 

The stress-strain curves along different loading directions do show nonlinearity and large 

break strain (see Fig. 1e). Therefore, a non-linear elastic constitutive behavior [56] has to be 

adopted by counting the higher order strain terms in the strain energy density formula [55]: 

  
 

 
            

 

 
                ,                   (8) 

where         are the third-order elastic moduli. Casting this relationship in a uniaxial strain 

context, Lee et al. [7] wrote the stress,  , and strain,  , relationship as         . Such a 

relationship captures reasonably well the nonlinear response of the indentation force vs. depth 

curves from their experiments. The same technique was also adopted later for measurement of 

the strengths of the grain boundaries in graphene [9] and graphene oxide [8]. Cadelano et al. 

[57] discussed the physical meaning of the effective nonlinear elastic modulus. The authors 

developed the constitutive nonlinear stress-strain relation for graphene, and predicted its value 

to be in good agreement with available data in literature. It is essential to use a physically 

sound constitutive model to capture the nonlinear region in the stress-strain curves, although 

another issue, the anisotropic failure strength of graphene [58], has been largely ignored in the 

existing analysis. 

2.4 Out-of-plane deformation 

In contrast to its in-plane deformation, the out-of-plane deformation which is peculiar to 

the one-atom thin graphene is of importance. Carbon atoms restricted to a finite-size surface 

closure like a sphere (fullerene) or a tube (CNT) can behave very differently from graphene 

flakes that are essentially flat. A free-standing graphene can easily be bent under thermal 

undulation [11]. Pivotal to this are the two mechanical parameters - bending rigidity and 

Gaussian bending stiffness - which govern the morphology of graphene under external 

stimuli. The structure and morphology manipulation, on the other hand, are broadly 

investigated for the potential applications of graphene in biological systems and stretchable 

electronics [59]. 
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2.4.1 Bending stiffness 

A reliable characterization of bending rigidity and Gaussian bending stiffness of graphene 

is of significance for both the design and the manipulation of graphene morphology for 

engineering applications. It may be interesting to see first the prediction from the continuum 

mechanics, although there are always concerns about the applicability of the continuum 

theories for predicting the mechanical properties of graphene or carbon nanotubes (CNTs). 

Based on the Kirchhoff–Love theory, the bending stiffness of thin plates is determined as 

       
   

        
,                        (9) 

where   is the Young‘s modulus,   is the Poisson‘s ratio, and with H is the the thickness of 

the thin plate. For graphene, we have   =1050GPa, and =0.186 [60-62]. The thickness H is 

where most controversies originated from. If one extrapolates the graphene thickness by 

counting its stacking in the crystalline graphite, we have H = 0.34 nm. Substituting this 

number H = 0.34 nm into eqn. (9) yields   =22.3eV, which is significantly larger than the 

measured value [63]. The break-down of the applicability of the continuum theory to predict 

the bending properties in graphene suggests that H may not be 0.34nm for a single layer 

graphene while a smaller effective thickness might reconcile the difference for    between 

the prediction by the continuum mechanics theory and the experimental value. 

Instead of applying the continuum mechanics theory to calculate the bending stiffness of 

the low-dimensional carbon nanostructures, atomistic simulations have also been broadly used 

to predict the mechanical behaviors of small structures and systems. Wei et al. [59] applied 

the density functional theory (DFT) calculations to obtain the energies of zero-dimensional 

fullerenes and one-dimensional single wall carbon nanotubes (SWCNTs) of different radii, 

and then derived both the bending rigidity and the Gaussian bending stiffness of free-standing 

single layer graphene (Fig. 2a). 

By combining the density functional theory calculations of energies of fullerenes and 

single wall carbon nanotubes with the configurational energy of membranes determined by 

the Helfrich Hamiltonian [64, 65], Wei et al. [59] designed a theoretical approach to 
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accurately determine the bending rigidity and Gaussian bending stiffness of single-layer 

graphene. For a membrane with three-dimensional topology, the configurational energy    

described by the Helfrich Hamiltonian [64, 65]
 
as: 

   ∫ [              
      ]   

 

 
,           (10) 

where   is the energy for unitary flat surface,    is the flexural stiffness (bending rigidity), 

   is the Gaussian bending stiffness,              is the mean curvature whereas    

and    are the two principal curvatures of a three-dimensional surface,         is the 

Gaussian curvature, and    is spontaneous curvature, which disappears for symmetrical 

membranes. The integral in eqn. (10) extends over the whole surfaces. 

Considering single layer graphene as a membrane, the surface energy   remains to be 

constant during pure bending. By utilizing the fact that SWCNT can be rolled up from a 

graphene [5], in graphene the term associated with the Gaussian curvature disappear. By 

varying the radius of SWCNTs, one would then find that the energy per atom in SWCNT can 

be related to the energy per atom in graphene with the radii of SWCNTs by 

     
         

  

   ,                           (11) 

where r is the radius of SWCNTs,      
   is the energy per atom in a SWCNT,    is the 

energy of an atom in a flat graphene, and     √    ⁄         is the planar footprint 

(area) of a carbon atom in graphene with d being the C-C bond length. By calculating the 

energy per atom in SWCNTs with different radii, it is straightforward to derive the bending 

rigidity of graphene using eqn. (11). To determine the Gaussian bending stiffness   , a series 

of spheroidal fullerenes with total atom numbers from 60 to 540 are considered, which have a 

corresponding radius variation from 1.86   to about 11  . Using eqn. (10), the energy per 

atom in fullerenes can be given as 

     
       

      

  .                       (12) 
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With    known using eqn. (11),    in eqn. (12) could then be determined. The bending 

rigidity and Gaussian bending stiffness of single-layer graphene are 1.44eV (2.31×10
-19

Nm) 

and -1.52eV (2.43×10
-19

Nm), respectively. The bending rigidity from this model is close to 

the measured result. 

2.4.2 Correlation between the two bending stiffness 

The relationship between the bending rigidity and the Gaussian bending stiffness in 

graphene is intriguing. The graphene sheet may be treated classically as an elastic plate and 

the solutions to the bending deformation of thin plates can be adopted. Assuming isotropic 

and homogeneous, and following Timoshenko and Woinowsky [66], the differential equation 

of the deflection   of a graphene sheet is given as 

   

     
   

       
   

    
 

  
.                       (13) 

where q is the distributed load normal to the surface. By neglecting the contribution of the 

shearing stress on the deflection of the graphene, its total energy is then given as 

  
 

 
  ∫ { (

   

    
   

   )
 

       [
   

   

   

    (
   

    
)
 

] }     ,    (14), 

where the integration is extended over the entire surface of the graphene. 

Recognizing that 

         (
   

    
   

   )                    (15a) 

and 

       
   

   

   

    (
   

    
)
 

,                  (15b), 

we may split the energy terms in eqn. (14) into the bending and the twisting contributions, 

respectively. By substituting the two terms in eqn. (15) into eqn. (14) and then making a 

comparison with eqn. (10), the following relationship between    and     for thin plates 

is obtained, 
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    .                           (16). 

Recalling that the Poisson ratio in graphene is found to be small, approximate to 0.1 in a 

broad temperature range [54], we will have a 
  

  
 ratio about - 0.9. If eqn. (16) is applied to 

graphene, we found that the prediction roughly matches with the results from DFT 

calculations [59]. 

In the classical theory, the value of acceptable Poisson ratio should be positive. Yu and Ru 

[67] showed that when the ratio of the Gaussian bending rigidity to the common flexural 

rigidity falls within the non-classical range, actual mechanical behavior of such a membrane 

with two independent bending rigidities could be very sensitive to the exact values of the two 

independent bending rigidities and hence the Poisson ratio. Recently, Davini et al. [68] 

considered a discrete model of a graphene sheet with inter-atomic interactions governed by 

the harmonic approximation of the 2nd-generation Brenner potential, which depends on bond 

lengths, bond angles, and two types of dihedral angles. The authors proposed an analytical 

expression for the Gaussian stiffness, which turns out to be in good agreement with the DFT 

calculations. It was revealed recently [69] that the thermal fluctuations of elastic sheets can 

affect the effective bending stiffness at finite temperatures. Zhang et al. [70, 71] demonstrated 

controllable out-of-plane wrinkles by utilizing the ultra-low bending stiffness of graphene and 

topological defects. Boddeti et al. [72] demonstrated that graphene blisters with switchable 

shapes could be realized by controlling pressure and adhesion, where both stiffness play a 

governing role for morphology stability. 

2.5 Edge effects 

One of the most significant geometrical features of graphene is the unprecedented surface 

area to volume ratio owing to the nature of one-atom-thickness. The ultra-low bending 

resistance of such thin layers makes it difficult to control their morphology. Furthermore, the 

presence of edges in graphene nanostructures gives rise to rich morphology change due to the 

non-equilibrium edge atoms. With an aberration-corrected transmission electron microscope 

with both atomic-scale spatial resolution and 1-second temporal resolution, Girit et al. [73] 
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observed the dynamics of carbon atoms at the edge of a single layer graphene. The detailed 

edge reconstruction and the stability of the "zigzag" edge configuration were reported. The 

results of the ab initio calculations of the effect of reconstruction and passivation of zigzag 

edges demonstrated that hydrogen-passivated ideal zigzag edges are more energetically 

favoured than the pentagon-heptagon zigzag edges. However, the reconstructed edge is more 

stable in the absence of hydrogen [74]. At high temperature and low (quasi-static) mechanical 

loading rate [75] it is possible to obtain fully reconstructed zigzag edges through sequential 

reconstructions at the crack tip during the fracture of graphene. 

The success in making graphene ribbons (GNR) with nanoscale widths on the order of 

tens of nanometers [76-80] boosts the research in understanding the morphologies of those 

nanostructures [81], in addition to the theoretical predictions that the edge states in GNR lead 

to the size effects on the electronic state of graphene for being metallic, insulating, or 

semiconducting [82, 83]. Point defect annealing and edge reconstruction during 

edge-reconstruction process lead to ribbon morphology patterning and distinct physical 

properties resulted from local edge structure [80]. When the electron and phonon mean free 

paths are comparable to or even greater than the ribbon widths, electron and phonon transport 

can be altered dramatically [84-86]. A number of studies reported the ballistic, 

hydrodynamical, and even rectified phonon transport in graphene nanoribbons after Hu et al. 

[87]. Ritter and Lyding [88] used a tunnelling spectroscopy to show that the electronic 

structure of GNRs with 2-20 nm width varies on the basis of the graphene edge lattice 

symmetry. GNRs with a higher fraction of zigzag edges exhibit a smaller energy gap than a 

predominantly armchair-edge ribbon of similar width. Zhang et al. [89] reviewed the chemical 

properties in graphene edges, especially the catalyst-passivated graphene edges and their role 

in graphene CVD growth. Kim et al. [90] experimentally demonstrated that folded structures 

in graphene could be realized by introducing anisotropic surface curvature during graphene 

synthesis or material transfer processes, and consequentially modifies the electronic band 

structure of graphene. 

Distinct bonding characteristics of atoms at the free edges of GNR may introduce 

excessive edge energy and edge force which are also chiral dependent [91-96]. Shenoy et al. 

[91] demonstrated that edge stresses could introduce intrinsic ripples in a free-standing 
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graphene sheet even in the absence of any thermal effects. Compressive edge stresses along 

the zigzag and the armchair edges of the sheet can cause out-of-plane warping to attain 

several degenerate shape modes. Cranford and Buehler [97] developed a mesoscopic 

two-dimensional model for a graphene sheet utilizing coarse-grain bead-spring elements with 

rotational-spring potentials. The authored used their mesoscopic model to study the structure 

and conformational behavior of twisted ultra-long multilayer graphene ribbons with lengths of 

hundreds of nanometers. They even revealed a distinct transition from a twisted (saddle-like) 

configuration to a helical (coil-like) configuration as a function of the imposed rotation and 

number of graphene layers. 

Deformation of GNRs is driven by the excess energy in the presence of edges and the 

subsequent edge stress. The mechanical deformation of a free-standing GNR could be 

modeled as a long membrane, with edges represented by elastic strings either in an elongated 

or compressed state and glued to the long edges of the membrane. Taking an analogue 

between the edge stress of a 2D membrane and surface stress of a 3D bulk solid, Shenoy et al. 

[91] wrote the energy per unit length of a GNR with width   as 

       
 

 
             

    ,                    (17) 

where    denotes the edge stress, and    is the elastic moduli of the edges, and    is the 

reference energy state. To understand the edge-stress-driven warping in graphene 

nanoribbons, Shenoy et al. [91] considered a two-dimensional half-space,          

and        . The authors used the perturbation strategy by assuming the out-of-plane 

deflection   is in the form of 

            
     ,                     (18) 

where   is the wave number and the characteristic wave penetration depth is  . In the edge 

(    ), the periodic rippling size is        and the amplitude of the ripples is  . The 

strain components of in the GNR could hence be given as [98] 
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.                    (19) 
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It is noted that the first term of the right hand side in the eqn. (19) comes from the in-plane 

displacement        , and this part is usually neglected due to its relatively small 

contribution to the overall deformation and the strain energy. For compressive edge stresses, 

warping in the edges is a favorable configuration with lower free energy. The free-energy 

density associated with different deformation modes, as seen in eqn. (17), could then be 

deduced. The wave penetration depth is then deduced by using the energy minimization 

criterion and is related to   as        , and the most-probable amplitude of edge ripples is 

[91] 

  [
    

( √     √ )
 

        
 

   

  
  

]

   

,                    (20) 

Indeed, molecular dynamics simulations with the Adaptive Intermolecular Reactive 

Empirical Bond Order (AIREBO) potential [99] as implemented in the software package 

LAMMPS [100] have been used to predict the compressive edge stresses in GNR. The values 

are 10.5 and 20.5 eV/nm in the armchair and zigzag edges, respectively. The predicted 

penetration depth and rippling amplitude are in good agreement with the corresponding 

results from MD simulations, as shown in (Figs. 2b to d). A combination of edge stress and 

the low bending resistance of GNR could be utilized to make complex folding structures, as 

demonstrated in Fig. 2e by Kim et al. [90]. Figures 2f to h showed cutting-edge experiments 

to monitor mechanical vibrations in suspended graphene sheets [101]. 

It is worth pointing out that several important factors were not considered in the 

theoretical analysis summarized in eqns. (17) to (19): (1) In reality, a GNR is of finite width. 

The finite width, in particular when a GNR is only several nanometers in width, could not be 

captured by the analysis based on semi-infinite two-dimensional space. As revealed by Lu and 

Huang [102], for graphene nanoribbons of width less than the intrinsic wavelength, 

interaction between the two free edges becomes significant, leading to anti-phase correlation 

of the buckling waves. (2) Temperature is found to play an important role in the rippling of 

graphene which is called thermal undulation. The edge stress is also a function of 

temperature. (3) The competition of rippling by thermal undulation with edge stress-driven 
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rippling would lead to some more interesting phenomena. Dewapriya and coauthors revealed 

that temperature, in combination with free edges, influences significantly the mechanical 

properties of graphene [103]. 

2.6 Strength and fracture of pristine graphene 

We discuss in previous sections the elastic response of graphene. Beyond the elastic limit, 

a pristine graphene breaks in response to further tension. The stress at which graphene is torn 

apart characterizes the strength of graphene, and is another extraordinary property of this class 

of amazing two-dimensional materials. 

2.6.1 Strength 

Given the same chemical nature, the strength of single layer graphene is expected to be 

the same as that of carbon nanotubes if the edge effect is neglected, as confirmed by the very 

first experimental measurement on the strength of graphene. Lee et al. [7] measured the 

intrinsic strength of monolayer graphene by nano-indentation in an atomic force microscope. 

While it is not a standard tensile test to characterize the stress-strain response of materials, the 

authors extracted the stress-strain curve from the force-depth curve obtained from the 

indention tests. The inferred Young's modulus of E = 1.0 TPa and intrinsic strength of 130 

GPa for monolayer graphene match reasonably well with the strength of single wall carbon 

nanotubes [10, 104, 105]. These experiments established the foundation that graphene is the 

strongest material ever measured. The measured strength of 130 GPa for graphene is about 

20% higher than the calculated value by the density functional perturbation theory at 0 K. 

The inferred strain in the graphene sheet directly beneath the diamond indenter at the 

measured failure load is anomalously large compared to the fracture strains predicted by both 

the soft-mode and the acoustic analyses. Liu et al. [52] calculated the phonon spectra of 

graphene as a function of uniaxial tension by the density functional perturbation theory to 

assess the first occurrence of phonon instability on the strain path, which controls the strength 

of a defect-free crystal at 0 K. The failure strength to break the zigzag plane (loading along 

armchair direction and the armchair plane (loading along zigzag direction) are 110 GPa and 
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121 GPa, respectively. This discrepancy, as further elaborated by [106], may originate from 

the strain-shielding effect initiated by mechanochemical interactions at the graphene–indenter 

interface. Transmission electron micrographs and a molecular model of the diamond 

indenter‘s tip together suggest that the tip surface contains facets comprising crystallographic 

{111} and {100} planes. 

A more systematic study on the ideal tensile strength of pristine graphene as a function of 

the loading orientation by using the density functional theory (DFT) and energy minimization 

calculations was given by Yin et al. [58]. The detailed computational procedure has been 

described in reference [107]. By defining   as the angle between the tensile loading direction 

(along x-axis) and the zigzag edge and    the strength of an individual C-C bond, the critical 

stresses to break the zigzag plane is defined as 

   
  

          
.                         (21a) 

Similarly, the critical stresses to break the armchair plane are 

   
   

    [                     ]
.                (21b) 

The required stress to break the zigzag plane and that to break the armchair plane at different 

angle θ differ significantly, with the latter being larger than the former. From the energy 

perspective, however, the zigzag plane should be harder to break as it has greater edge energy 

than that of the armchair plane [108]. This difference implies that one may need to distinguish 

the brittle fracture governed by the ideal strength with that by the edge energy. 

2.6.2 Fracture 

In the presence of cracks, graphene sheets typically break along the initial crack. A 

comprehensive review on the fracture behavior of graphene has been given by Teng et al. 

[28]. As there is no perceivable macroscopic plastic deformation in the stress-strain response 

of a graphene, graphene is believed to be brittle in nature, i.e., the single layer graphene 

fractures at the nominal peak stress. It exhibits negligible plasticity till its failure at room 

temperature
 
[8]. As discussed in Section 2.1, its elastic response is isotropic at small strain. 
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Here we focus on the directionality of fracture in graphene and its fracture toughness 

measurement. 

According to the Griffith criterion, the critical fracture stress    beyond which a 

pre-cracked isotropic stripe under mode I loading would extend is given as [109]: 

   
 

    
√

  

  
,                           (22a) 

where E is Young‘s modulus,   is the apparent fracture resistance of the crack plane. In 

brittle materials,   is regarded as the surface energy for 3D materials and the edge energy for 

2D materials. In eqn. (22),      is a geometrical factor given by [110] 

                       √    
  

 
   and   

 

  
,      (22b) 

where   is the width of the stripe with a central crack of length 2a. 

Both   and the critical crack size are of practical importance. Zhang et al. [111] 

measured the fracture toughness using a nanomechanical device in a scanning electron 

microscope. The fracture toughness of graphene was measured by obtaining the critical stress 

intensity factor of a pre-cracked graphene and then deducing its critical strain energy release 

rate to be            . In contrast, the measured fracture toughness of the CVD-grown 

graphene by Hwangbo et al. [112] is about               √ ) and this number is 

higher than that from Zhang et al. [111]. Note that the two groups used different testing 

techniques: Zhang et al. [111] tested free-standing graphene using a micromechanical system 

while Hwangbo et al. [112] employed pressure bulge testing setup. Whether the difference 

came from the geometrical effects (e.g., possible rippling in the graphene during bulge tests 

will enlarge the apparent fracture resistance) remains to be explored with well-controlled 

experiments. Via a comparative in situ fracture toughness testing on single-edge V- and 

U-notched multilayer graphenes and boronitrenes BN) in a high-resolution transmission 

electron microscope (HRTEM), Wei et al. [113] reported that the fracture toughness of 

multilayer graphene and boronitrene to be               √  and        

       √ , respectively. 

More recently numerical simulations showed that the fracture behaviour in graphene is 

orientation-dependent [114]. Table 1 gives the fracture resistance of graphene when the initial 
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crack is along different chirality. Here the orientation of a single layer graphene is described 

by two vectors    and   , and the crack edge is described by a chiral vector        

   . The armchair and the zigzag directions correspond to   =(1,1) and   =(1,0), 

respectively. It is seen that the difference in G (predicted by the Griffith criterion) or MD 

(from direct MD simulations) along different orientations is rather small. However, a crack 

prefers to extend along the zigzag edge in graphene, which was due to the local 

strength-based failure rather than energy-based Griffith criterion [58]. 

3. Defects in graphene and mechanics of defected graphene 

It is generally known that many properties of materials and structures are strongly 

affected or even determined by either intrinsic or extrinsic defects or their combination. This 

is more evident in the one-atom thick graphene and its derivatives like carbon nanotubes, 

fullerenes and so on. Indeed, it seems unavoidable for the presence of defects from 

geometrical necessity [115]. A typical fullerene, for example, is composed of twelve 

pentagons (see Fig. 3a). Understanding the mechanical properties of defects is a key challenge 

but aslo of particular importance for graphene. In this section, we summarize commonly seen 

defects in graphene and their mechanical description from up-to-date literature. 

3.1 Typical defects 

Defects in graphene may be categorized into three types if we differentiate how they are 

usually produced, i.e., thermal dynamically resulted, deformation introduced, and artificial 

ones. The thermally activated defects are generally of low energy level, like point vacancy 

and 5-7-7-5 rings, and 5-8-5 rings. Those defects are seen in graphene fabricated by different 

methods [116], and they also exist in other carbon allotropes like fullerene, carbon nanotube, 

and graphite. In particular, in grain boundaries of polycrystalline graphene, such defects are 

geometrical necessity to accommodate the incoherent lattice structure at lower energy. 

However, so far there are yet no reports regarding how frequently a typical thermal dynamic 

defect may appear. Identifying such defects like vacancy and non-hexagonal rings requires 

high-resolution tools, which renders a statistic analysis very time consuming and costly. 
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External deformation could also introduce such kind of defects; and it may even result in 

nanoscale cracks and nanoscale pores. Those mechanically triggered defects could be either 

transient or permanent in response to the removal of the deformation. Furthermore, to achieve 

a specific functionality, many groups have employed chemical strategies and high-energy 

bombing methods like irradiation to generate defects as well. We now introduce in detail 

those commonly seen defects and explain how they affect the nanomechanics of graphene. 

The simplest example of topological disorder in graphene and other sp
2
-hybridized 

carbon systems is the Stone-Thrower-Wales defect, usually called Stone-Wales, which results 

from rotating a C-C bond by 90◦ with regard to the midpoint of the bond—referred to as the 

SW transformation—so that four hexagons are turned into two pentagons and two heptagons 

[117, 118] (see Fig. 3b). Several derivatives had been identified, including the so-called 

inverse SW defect [119-122] and the di-vacancy defect [123], which is formed by the removal 

of two adjacent carbon atoms (Fig. 3c). It has been seen that grain boundaries are dominantly 

composed of pentagons-heptagon pairs to accommodate the lattice mismatch of pristine 

graphene flakes at different orientation, which is an important way to realize large-area but 

polycrystalline graphene, as seen in Fig. 3d. Reconstructed zigzag edges in GNR are also 

composed of pentagons-heptagon pairs, as proved by Jia et al. [80], Fig. 3e). More recently, 

Kim et al [124] demonstrated reversible and extended pentagon-heptagon (5-7) reconstruction 

at zigzag edges, and explored experimentally and theoretically the dynamics of the transitions 

between the edge configuration states. 

By utilizing cutting-edge techniques, Warner et al. [125] determined the atomic structure, 

including the bond length and charge density variations of edge defects within extended arm 

chair defects in graphene, as well as bond elongation within a pair of 5-8-5 di-vacancies. 

Irradiation induced 5-8-5 defects [126] and grain boundaries formed by a group of 5-8-5 

defects [127] had also been observed, as shown in Figs. 3f, g and h, respectively. There are 

also growing interests in making nanoscale defects in graphene for special applications, such 

as nanopores (Fig. 3i) in graphene-based membranes for molecular separation [128]. 
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3.2 Pentagon-heptagon ring 

Among all those different types of defects, the most-commonly seen pentagon-heptagon 

pairs deserve further consideration. Pentagon-heptagon pairs are analogous to dislocations in 

bulk crystalline materials, and are the most important defects in two-dimensional hexagonal 

lattice. From a geometrical perspective, a pentagon-heptagon pair resembles a disclination 

dipole [129-132], which consists of two disclinations of opposite signs. In the view of this, 

Wei et al. [26] constructed the stress field of a pentagon-heptagon pair by using the 

disclination dipole model. The stress components induced by a disclination dipole with a 

positive disclinations residing at (0, -d) and a negative one at (0, d) (see Fig. 4a) are given as: 

   

  
 

 

 
  

         

         
 

  

         
 

  

         
,                (23a) 

   

  
 

 

 
  

         

         
 

  

         
 

  

         
,                (23b) 

   

  
 

      

         
 

      

         
.                             (23c) 

The stress contours of    ,    , and     predicted by the disclination dipole model, as seen 

in Figs. 4b to d, agree well with the large-scale MD simulations (Figs. 4e to g) produced by a 

pentagon-heptagon pair using a 1000nm×1000nm graphene sample in vacuum. Warner et al. 

[133] measured the strain fields of individual pentagon-heptagon pair, and showed how the 

defect deforms graphene by elongation and compression of C-C bonds, shear, and lattice 

rotations. The experimental result shown in Fig. 4h agrees well with the theoretical prediction. 

The stress fields described by eqn. (23) significantly differ from those of a dislocation within 

the core although they are similar for the region far away from the core. The accumulated 

effect by the local difference is important to understand grain boundary strength, as to be 

explained below. 

3.3 Grain boundary 

With the stress fields of individual pentagon-heptagon pair known, in particular the weak 

bond associated with the defect (see Figs. 4j and k), it is important to understand its influence 

on the strength of graphene. Accompanied with the development of synthesis techniques 
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capable of generating large area graphene, GBs were found to exist in most of the 

as-fabricated graphene [134-138], and those GBs are composed of pentagon-heptagon defects. 

Indeed, understanding how GBs primarily composed of pentagon-heptagon defects in 

graphene alter its physical properties is of both scientific and technological importance [24, 

25, 138-143]. Recently, Biro and Lambin [144] reviewed the literatures on grain boundaries 

(GBs) in graphene, with a focus on the experimental findings on graphene grown by chemical 

vapor deposition (CVD) under a very wide range of experimental conditions (temperature, 

pressure hydrogen/hydrocarbon ratio, gas flow velocity, and substrates for growth). Here we 

summarize the theoretical advances on constructing the grain boundary and mechanical 

strength relationship. 

3.3.1 The formation of two-dimensional grain boundaries 

Geometrically, a general GB in three dimensional polycrystalline materials is 

characterized by five degrees of freedom, three from the relative rotation of adjacent grains 

and two due to the angular directions of the planar GB. For two dimensional polycrystalline 

graphene, only two rotational degrees of freedom are needed to define a general GB, the 

mis-orientation of the two grains ( ) and the rotation of the boundary line itself ( ), as shown 

in Fig. 5a. For here and in what follows, we refer   as grain mis-orientation and   as GB 

rotation. Figure 5b shows the atomic structures of GBs with constant  but different  from 0
o
 

to 27.5
o
. The GB structures with constant  but  varies 4.7

o
 to 27.5

o 
are shown in

 
Fig. 5c 

[27]. It is interesting to note that the density of GB defects depends strongly on grain 

mis-orientation but is not sensitive to GB rotation. 

The kinetic mechanisms leading to the type of grain boundaries have been broadly 

investigated. Cockayne et al. [142] presented a class of topological defects in graphene, 

composed of a rotating sequence of dislocations that close to themselves, forming grain 

boundary loops that either conserve the number of atoms in the hexagonal lattice or 

accommodate vacancy or interstitial reconstruction, while leaving no unsatisfied bonds. Such 

a grain boundary loop resembles ―flower‖ pattern in scanning tunneling microscopy studies of 

epitaxial graphene grown on SiC(0001), as shown in Figs. 5d and e. 
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Theoretically, Seymour and Provatas [145] developed a new structural phase-field crystal 

(PFC) model which allows for stabilization of graphene, as well as the coexistence with a 

disordered phase. The model is adopted for efficient simulations for the nucleation and 

growth process of polycrystalline 2D materials, which shows the defect structures produced in 

CVD grown polycrystalline graphene. Ophus et al. [146] then characterized the structure of 

many different grain boundaries in single-layer graphene using HRTEM, and introduced a 

new algorithm for generating grain boundary structures for a class of hexagonal 2D materials. 

The authors found excellent agreement between the simulated and experimentally observed 

grain boundaries. 

3.3.2 Strength of an individual GB 

The formation of GBs would affect the strength of materials. The theoretical efforts 

studying the strength of GBs began with the exploration by Grantab et al. [25] who found that 

more GB defects could counter-intuitively give rise to higher strength in tilt GBs. A more 

comprehensive analysis by Wei et al. [26] demonstrated that GB strength can either increase 

or decrease with the tilt, and the behavior can be well explained by the stress fields introduced 

by pentagon-heptagon pairs as shown in section 3.2. It is not just the density of defects that 

affects the mechanical properties, but the detailed arrangement of defects is important. 

Well-stitched high angle grain boundaries in graphene would only slightly degrade its 

strength. 

In the special case that grain boundaries are symmetrical tilt ones, the strengths of tilt 

GBs increase as the square of tilt angles if pentagon-heptagon defects are evenly spaced [26]. 

In that scenario, the residual stress     in an infinitely long tilt GB with tilt angle   (or 

equivalently GB mis-orientation) is given as 

   

  
  

   𝛥 

  𝑑
 

  

  ,                       (24) 

where 𝛥,  ,     are geometrical parameters associated with the defects and their 

arrangement,   is the rotational strength of the disclinations, and          where   is 

the Young‘s modulus. The negative sign in eqn. (24) suggests that the residual stress 
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introduced by the neighbouring defects in the GB is compressive, which could compensate 

the exerted tensile stress and lead to high strength in the absence of interaction from other 

defects. Notably, the compressive stress at positive 𝛥 (above the origin, on the side of the 

negative disclination) is proportional to   . It is also important to know that   is not     

from simple geometrical consideration, but a value depending on the type of grain boundaries. 

Table 2 lists the corresponding geometrical and material parameters for both armchair and 

zigzag tilt GBs [26]. An excellent agreement between theoretical analysis and molecular 

dynamics simulations was found, as shown in Fig. 5f. 

In parallel to the theoretical analysis, two groups reported the strengths of individual 

grain boundaries experimentally. Lee et al. [8] combined the structural characterization by 

means of transmission electron microscopy with nano-indentation tests to study the 

mechanical properties of CVD-grown graphene films with different grain sizes. They found 

that the strength of graphene films is only slightly reduced despite the existence of grain 

boundaries. Indentation tests directly on grain boundaries confirmed that they are almost as 

strong as the pristine ones. Rasool et al. [9] measured the strengths of suspended bi-crystal 

graphene membranes with different GB mis-orientations, and revealed that grain boundaries 

with large mis-orientations in polycrystalline specimens have higher strengths than their low 

angle counterparts. These high angle grain boundaries even show strength comparable to that 

of single-crystal graphene. The higher strength in GBs of larger mis-orientations could be 

well explained by the larger compressive residual stress introduced by more neighboring 

pentagon-heptagon defects. 

3.3.3 Strength of polycrystalline graphene 

The understanding on the strength of individual GBs paves the road for understanding the 

strength of polycrystalline graphene containing abundant GBs, which is of significance in 

engineering practice. Suk et al. [147] studied the failure of CVD-grown polycrystalline 

graphene by nano-indentation test in a scanning electron microscope. Their measurement 

indicates that that graphene membranes without any grain boundaries had a failure strength of 

45.4 ± 10.4 GPa, compared to 16.4 ± 5.1 GPa for those with grain boundaries. A large 
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variation in strength is seen. Shekhawat and Ritchie [148] investigated the statistical 

fluctuations in the toughness and the strength of polycrystalline graphene containing inherent 

nanoscale line and point defects—grain boundaries and grain-boundary triple junctions. They 

showed that the statistical variation in the toughness and the strength can be understood with 

‗weakest-link' statistics, and elucidated the origins of the grain-size dependence of its strength 

and toughness. Such ‗weakest-link' statistics may be employed to explain the controversial 

observations from MD simulations. Sha et al. [149] showed that the breaking strength and 

average grain size in graphene follow an inverse pseudo Hall-Petch relation, in agreement 

with experimental measurements [9]. They also explained this inverse pseudo Hall-Petch 

relation by reasoning that the weakest-link determines the failure behavior of brittle materials. 

On the other hand, Song et al. [150] reported a Pseudo Hall–Petch strength reduction in 

polycrystalline graphene where samples of smaller grains exhibit higher strength. The 

observed crack localization and strength behavior were interpreted by a dislocation-piled-up 

model. The insensitiveness of flaws in nanocrystalline graphene could be originated from the 

statistical nature of defective GBs in competition with pre-existing flaws [151]. An interesting 

observation was made by Lin et al. [152] on the fracture behavior of the two-layer stacked 

graphene membranes using nano-indentation performed with an atomic force microscopy. 

The authors observed distinctly different fracture force distribution of stacked graphene from 

that of monolayer graphene: The stacked graphene membrane becomes less sensitive to the 

defects during nano-indentation, improving the overall performance of the graphene 

membranes. 

It is worth noting that the original Hall-Petch relation is only strictly applicable to 

crystalline metals in which their strength is governed by the dislocation activities. It describes 

the strengthening mechanism resulted from grain boundaries by retarding dislocation motion; 

smaller grains in bulk polycrystalline materials imply more grain boundaries to serve as 

barriers to dislocation motion. Considering that no plastic deformation carrier is found in 

graphene at room temperature, applying the Hall-Petch relation in graphene might be a wrong 

shot. The ‗weakest-link‘ statistics could be better suited to describe the grain size-dependent 
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strength in graphene. The strength-grain size relationship is all governed by the coherence of 

GBs and triple junctions in graphene. 

3.4 Defect engineering 

As every coin has two sides, defects in graphene could be engineered to realize particular 

structure configuration or certain exciting properties. Orlikowski [153] discussed the 

possibility of employing a combination of ad-dimers and strain to form nanotube-based 

quantum dots. By using the density functional theory calculations, Lust and Carr [154] 

reported a set of stable domain structures including blisters, ridges, ribbons, and 

meta-crystals. Through such a treatment, graphene with some particular chemical properties 

or ultra-fine pore could be also realized, while the latter could be utilized for specialized 

filtering and selective membranes for chemical and biological applications [155, 156]. 

For free-standing graphene, defects may introduce local compression given the graphene 

is flat. The compressive state is unstable, which leads to out-of-plane bulging from which the 

local high stress is relaxed by warping [10, 26, 157, 158]. Such mechanical deformation may 

be described by the generalized Föppl-Von Karman equation for a flexible solid membrane 

[70] and be utilized to design topological surfaces [70, 71, 159, 160], given that patterned 

defects could be synthesized. 

Instead of changing graphene layers, Wang and Crespi [161] explored a way to engineer 

grain boundaries in two-dimensional crystals by controlling the substrate. They demonstrated 

that depositing graphene on a substrate of non-zero Gaussian curvature may facilitate the 

growth of finite-length grain boundaries that terminate abruptly within a mono-crystalline 

domain. By properly designing the substrate topography, these grain boundaries can be placed 

at desired locations and at specified misfit angles. New properties specific to certain grain 

boundary geometries, including magnetism and metallicity, can thus be engineered into 2D 

crystals through topographic design of their growth substrates. 
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3.5 Defect motion 

The pentagon-heptagon defects – dislocations in the hexagonal 2-D lattice, has been 

investigated for motion possibility with the aim to making the strongest material to deform 

plastically. 

The Stone-Wales defect has received a considerable amount of attention as it has the 

lowest formation energy among all intrinsic defects in the graphene system. As proposed by 

Yakobson [162], a pentagon-heptagon defect presumably plays an important role in plastic 

deformation of carbon nanotubes (CNTs) under tension by accommodating the strain, as 

detailed in Fig. 6a. Molecular dynamics simulations by Ding et al. [163] recaptured the 

deformation scenarios, as seen in Fig. 6b. Such simulations could also help to shed light on 

the diffusion, coalescence, and reconstruction of vacancy defects in graphene layers at 

elevated temperatures [164]. The suggested plastic deformation and kink formation in CNTs 

seems to agree well with the experimental observation [164]. Huang et al. reported that kink 

motion, in reminiscent of dislocation motion in crystalline materials, contributed to plastic 

deformation in all carbon nanotubes when being tensile loaded at high temperatures [165]. 

The deformation mechanism proposed by Yakobson [162] describes the main route of 

mechanical relaxation in a series of two-dimensional nano-crystals, suggesting a brittle 

cleavage at low temperature but plastic flow is likely at high temperatures or under electron 

radiation [166]. In both cases, deformation starts with diatomic rotation, which produces a 

dislocation dipole with the pentagon–heptagon cores. Under high stress, the defects depart 

from each other, leaving behind a permanent shearing [162, 167-169]. 

High resolution transmission electron microscopes (HRTEM) have been widely 

employed to exploit the motion of defects in graphene. Warner et al. [133] reported the 

stepwise dislocation movement along the zig-zag lattice direction mediated either by a single 

bond rotation or through the loss of two carbon atoms. The strain fields were determined, 

showing how yje dislocations deform graphene by elongation and compression of C-C bonds, 

shear, and lattice rotations. A cutting-edge aberration-corrected TEM study by Lehtinen et al. 

[168] demonstrated how the impinging energetic electrons stimulate atomic-scale 

Downloaded from https://academic.oup.com/nsr/advance-article-abstract/doi/10.1093/nsr/nwy067/5040249
by guest
on 21 June 2018



 

morphological changes in graphene. The full life cycle of transformations from the birth to 

annihilation, was seen in situ, and atom-by-atom (see Fig. 6d). Also with an 

aberration-corrected TEM, Kurasch et al. [169] used the energy of imaging electrons to 

stimulate individual bond rotations in the GB core region. They then observed in situ, 

atom-by-atom GB migration and its dependence on GB curvature. Scanning tunnelling 

microscopy (STM) was also broadly used to examine the growth of graphene on the 

Si-terminated facet of 6H-SiC (0001) [170]. The initial stages of ultrahigh vacuum 

graphitization resulted in the growth of individual graphene sheets on SiC terraces. The 

authors demonstrated that multilayer thickness resulted in high density of defects which 

located predominantly below the first layer of graphene. 

The aforementioned research advances our understanding on the mobility of defects in 

graphene. The plastic deformations revealed so far, however, is contingent upon the assistance 

of the impinging energetic electrons or the help of high temperature. At room temperature, 

graphene sheets, either single layer or multiple layers, is brittle in nature. Even at high 

temperature or under irradiation, there is no literature reporting perceivable plasticity in 

graphene. While the mechanical performance of graphene at high temperature is very 

appealing, there seems to be a long way to go for achieving macroscopic plasticity in 

graphene. 

4. Graphene on a substrate 

Monolayer graphene exhibits rich morphology, including rippling in free-standing 

graphene introduced by stresses (see Fig. 7a) or thermal undulation. The mismatch of the 

coefficient of thermal expansion (CTE) between graphene and the substrate could induce 

strong compressive strain (    (      )) for a temperature drop    in the graphene 

film (see Figs. 7b-i). Mechanically, two features are important to describe a graphene layer on 

a substrate, the adhesion energy and wrinkling. The wrinkling in graphene on a substrate is 

highly sensitive to the adhesion energy between graphene and the substrate [171, 172]. 
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4.1 Adhesion 

The adhesion between the graphene layers (in the case of multilayer graphene [18, 173]) 

or that between graphene and the substrate [13, 174-178] is critical for the transfer of the 

graphene layer as well. A number of experiments had been performed to obtain the adhesion 

energy of graphene on different substrates [13, 175-178]. There are two striking observations 

which are worth noting: (1) the values of graphene-substrate adhesion energy are greater than 

that of similar micromechanical systems, and one may attribute this characteristic to the low 

bending resistance of graphene, which promotes conforming contact of graphene with the 

substrates of arbitrary topography, and (2) the adhesion energy between single layer graphene 

and a substrate is significantly higher than that of a multi-layer graphene on the same 

substrate. For graphene of more than two layers, their adhesion energy on the same substrate 

remains nearly the same. For example, the adhesion energy of monolayer graphene and the 

silicon oxide was found to be           and           for samples containing two to five 

graphene layers [13, 171, 172]. The second observation reminds us to exercise caution when 

discussing the interaction of graphene with substrates. 

4.2 Wrinkling 

Once the strain energy resulted from thermal mismatch during cooling the 

graphene-substrate system is large enough to overcome their adhesion, the graphene layer 

buckles to form wrinkles, relaxes its in-plane compression at the expenses of interfacial 

energy due to delamination and bending energy in wrinkles. The wrinkles can form during 

both the growth and the transfer process which are very hard to release. 

The wrinkling of graphene could be described using the continuum theory for thin elastic 

sheets. Cerda and Maha [179] deduced a general theory of wrinkling using elementary 

geometry and the physics of bending and stretching. Their main results include the scaling 

laws between the wavelength of the wrinkles   with stiffness   due to an ―elastic substrate‖ 

effect, with         , and the amplitude of the wrinkle    . Given different 

crystallographic planes have distinct density of atomic packing and surface energy, there is a 
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strong dependence of wrinkling patterns on the substrate that graphene is grown on [180, 

181]. 

For simplicity but without the loss of general physics, we may describe the out-of-plane 

displacement z of the wrinkles by a sinusoidal function, 

             ,                     (24), 

where   is the amplitude and   the wavelength. Wang and Devel [182] showed that the 

dependence of the ripple structure on the compressive edge strain   should be governed by 

   
        

        
                               (25) 

Bao et al. [183] reported the very first direct observation and controlled creation of one- 

and two-dimensional periodic ripples in suspended graphene sheets, using both spontaneously 

and thermally generated strains (see Fig. 7a). They demonstrated that the ripple orientation, 

wavelength and amplitude are tunable by controlling the boundary conditions and making use 

of the negative thermal expansion coefficient of graphene. Such manipulation of wrinkles 

may lead to advanced application of graphene-based nanoelectronics [184]. Under the 

influence of substrate, Tapaszto et al. [185] observed periodic rippling of nanometre-scale 

wavelength in the suspended graphene membranes under thermal strain using scanning 

tunnelling microscopy. The observed nano-rippling mode differs significantly from the 

predictions of the continuum mechanics model, which indicates the breakdown of applying 

the plate theory for graphene. 

5. Perspectives 

Regardless that the tremendous progress has been achieved on the deformation behaviour 

of graphene in response to mechanical or thermal undulation, there are still compelling needs 

to several key issues which cannot be satisfactorily addressed using the existing theories or 

computational tools. We comment below three mechanically-related issues which are of 

significance for the morphology manipulation of graphene in contact with substrates or under 

thermal undulation. Those issues call for further development in theory and computational 

tools for better predicting the mechanical behaviour of graphene. 
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5.1 Interlayer van der Waals interaction 

The stacking of multiple layers of graphene forms graphite. The interlayer bond nature 

and its effective description are important for multilayer graphene as well as interactions of 

graphene with other structures. From a recent perspective by Geim and Grigorieva [186], 

research on graphene and other two-dimensional atomic crystals made layer by layer in a 

precisely chosen sequence, often referred to as ‗van der Waals‘ heterostructures, may result in 

unusual properties and new phenomena. Such interaction, not surprisingly, would have a 

significant influence on the physical properties of those layered two-dimensional structures 

[187-189]. Van der Waals interaction could also be used for epitaxy, which is often limited by 

the need for lattice matching between the two material systems. This strict requirement is 

relaxed when epitaxy on layered two-dimensional (2D) materials, which is mediated by weak 

van der Waals interactions, and also allows facile layer release from 2D surfaces [190]. The 

mechanical behaviour of multiplayer graphene is fully determined by the interlayer van der 

Waals force. The interlayer shearing and rigidity affect the stiffness of a ‗van der Waals‘ 

heterostructures [173]. The strength and fracture toughness also rely on how monolayers are 

bonded together. 

While the in-plane deformation in graphene could be well captured by the all-electron 

density functional theory (DFT) calculations, popular density functionals for most 

first-principles based calculations are unable to describe correctly van der Waals interactions 

resulting from the dynamical correlations between fluctuating charge distributions [191]. In 

most atomistic simulations, practitioners chose the empirical Lennard-Jones (L-J) potentials to 

represent the interlayer interaction. Now the development is moving towards using the 

empirical correction for dispersion (van der Waals) effects (DFT-D method) by adding a 

semi-empirical dispersion potential to the conventional Kohn-Sham DFT energy to work 

around the limitation of DFT method and give better accuracy in contrast to the L-J 

approximation [191-193]. Different versions of the correction have then been developed. In a 

recent one by Grimme et al. [194, 195], more complicated, geometry-dependent dispersion 

coefficients and Becke-Jonson damping were taken into account. Cooper et al. [196-198] 

developed an exchange functional which is compatible with the nonlocal Rutgers-Chalmers 
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correlation functional (van der Waals density functional, vdW-DF). This functional, when 

employed with vdW-DF, demonstrates remarkable improvements on intermolecular 

separation distances while further improving the accuracy of vdW-DF interaction energies. 

The DFT-D method and its derivatives have been broadly employed to capture the 

physics and mechanics of multilayer graphene [199-202], and the interaction of graphene with 

metal substrate [203]. It should be noted that the superlubricity in graphite [204] and weak 

shear strength [205] in graphene ought to be connected with the vdW characteristics between 

carbon layers. So far, even the DFT method and its derivatives are semi-empirical. They may 

work well in capturing one or several physical properties but are not justified to be accurate in 

general or other properties. A consensus on a reliable interaction formula to capture the vdW 

interaction in graphene is far from being reached. Another growing field of graphene is the 

interaction of graphene with other materials where an accurate atomic potential is desired for 

the commonly known fact that the accuracy of an atomistic simulation is by far no better than 

the potential one uses. 

5.2 Limitation of thermal-mechanical coupling 

At high temperatures, ripples are formed in free-standing graphene due to thermal 

fluctuations. The amplitude of ripples may be approximated from the free energy of the 

interface by a surface tension  . If we consider the crumpled graphene surface, free energy in 

terms of surface tension times the surface area can be written as [206], 

     ∫√  | ⃗⃗  |
 
        

 

 
 ∫| ⃗⃗  |

 
            (26) 

where   is the height of the graphene at each 2D position         , the height-height 

correlation function may then be written as 

〈        ( ⃗ )  〉  
∫       |       ( ⃗⃗ )|

 
     ⁄

∫            ⁄             (27a) 

The integral of the above equation leads to 

〈        ( ⃗ )  〉  
  

  
     ⁄  , as               (27b) 
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where a is a microscopic length. Equation (27) suggests that there is a divergent height-height 

correlation. The large   behavior is the signature of a rough surface at high temperature. In 

contrast, 〈        ( ⃗ )  〉       , as     at low temperature, and we might expect a 

―smooth‖ interface. How such transition from smooth to rough surface influence the phononic 

thermal conductivity of a suspended 2-D material remains unclear. Rationales may help to 

shed light on the increasing in thermal conductivity of GNR with the sample size even when 

the size is beyond tens of microns. 

5.3 Scale up 

In its two-dimensional form, graphene is thought to be the strongest of all known 

materials. It is desirable to use such low-dimensional carbon structures as building blocks to 

realize three-dimensional (3-D) engineering materials and structures which may inherit their 

superb properties. There are many past and ongoing researches aiming to utilize the amazing 

mechanical properties of graphene and other carbon allotropes as strengthening agent in three 

dimensional structures [207, 208] or composites [209-213]. 

In reality, the scale-up leads to a substantial degradation of properties that we desire to 

retain. The realized mechanical and thermal properties of 3-D carbon materials, by staggering 

graphene sheets or vertically grown carbon nanotube arrays, are significantly lower than those 

of individual graphene sheets or individual CNTs [211]: the strongest graphene paper reported 

in the literature has a strength 2~3 orders of magnitude lower than that of graphene [210, 

212].   The huge gap in the thermal and mechanical properties between the low-dimensional 

carbon allotropes and their 3-D derivatives originates from the dissimilar bonding 

characteristics between carbon atoms within graphene or CNTs and the architected 3-D 

engineering materials: The intra-structure bonding is covalent in nature, while van der Waals 

bonding dominates between different layers/tubes or with other materials [212]. Such 

heterogeneous bonding leads to property inheritance a mission impossible. 

The interest in finding 3-D carbon structures has been lasting for decades. Recent success 

in the synthesis of carbon honeycomb (C-honeycomb) [214] shows a great potential in scaling 
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up the low-dimensional carbon allotropes to 3-D engineering materials and structures while 

retaining strong covalent bonding. Such a C-honeycomb structure may circumvent the change 

of bonding while using graphene as basic building blocks.  Pang et al. [215] reported the 

atomistic structure of a stable 3-dimensional carbon honeycomb (C-honeycomb) structure. 

The authors demonstrated that a combination of sp
2
 bonding in the wall and sp

3
 bonding in 

the triple junction stabilize C-honeycomb. The detailed stable structures and their phonon 

dispersion are given in Fig. 8. Due to the low density in such stable 3-D architectured 

C-honeycomb with covalent bonding, its specific strength of C-honeycomb could be the best 

in structural carbon materials, and specific thermal conductivity is also much better than most 

metal and high thermal conductivity semiconductors, as clearly seen in Fig. 8g. 

5.4 Summary and outlook 

Since the successful peeling of graphene by Novoselov et al. [1], the mechanical 

properties of graphene have attracted great attentions from the research community. 

Examining the applicability of the classical mechanics theories to the materials with extreme 

aspect-ratio of large in-plane dimensions over one-atom thick limit, revealing new mechanical 

behaviours, and developing new theories to capture the nano-mechanics of graphene have 

been of the paramount interests. In this work, we review the current progress on the in-plane 

and out-of-plane mechanics of graphene. The structure-mechanical property relationship in 

graphene, in terms of its elasticity, strength, bending, with or without the defects, is presented. 

Although derived and validated at the macroscopic scale, several continuum theory formulae 

have been successfully applied to describe the elasticity of single layer graphene. It is also 

suggested that the currently developed theories and modelling tools for the deformation of 

graphene are probably applicable to other members in the growing family of two-dimensional 

materials. At the end, we also commented that several mechanics-related issues need to be 

addressed in the near future for better understanding the fascinating two-dimensional carbon 

allotrope. 

The exploration on the extraordinary properties of graphene is strongly mechanically 

relevant: the original theory of structural instability in two-dimensional crystals is a pure 

mechanics concept; the very first way of obtaining single layer graphene is through 
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mechanical exfoliation by utilizing its ultra-small adhesion. We indeed would expect that 

mechanics may continue to play a pivotal role for the synthesis and the application of 

graphene. When graphene is functionalized as a critical component, intrinsic defects, 

pre-straining and morphology evolution due to lattice mismatch would all affect the final 

performance of the graphene-based system. For instance, wrinkles in graphene may lead to 

anisotropic electrical mobility
 
[216], local charge accumulation

 
[217], corrosion resistance 

degradation
 
[218], and mechanical strength and thermal conductivity reduction [217, 219]. In 

contrast, we may also use graphene as a building block for further development of composite 

materials and heterostructures. In the latter circumstance, the properties of graphene including 

strength, fracture toughness, and adhesion at the microscopic level, will play important roles 

for the macroscopic properties of the hierarchically architectured materials. In addition, the 

rich morphology, abundant defects, as well as the defect-defect interaction, and morphology-defect 

coupling give rise to further challenge to obtain the structure-property relationship of graphene-based 

macroscopic materials. Given the attraction of graphene for nanomechanical systems [220] and 

composite materials [210, 212], many of the mechanical issues which are responsible for 

reliability and durability need to be addressed before the real world applications. 
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Figure 1. The stress-strain response of pristine two-dimensional materials with the hexagonal 

lattice. (a) Graphene lattice. (b) Continuum approximation of a honeycomb structure. (c) 

Sketch of using nano-indentation to measure the strength of graphene grain boundaries (GBs). 

The top shows the indenter on a polycrystalline graphene; bottom left shows the top view of a 

dent with graphene on the top and bottom right shows a graphene GB [9]. (d) Indenting load 

versus depth [7]. The two sets of data demonstrated that the force-displacement response is 

independent of the tip radius of an indenter, and the breaking force marked at each points 

corresponds to different loading conditions [7]. (e) The stress-strain behavior of  graphene 

loaded with different angle   with respect to the zigzag edge [58]. 
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Figure 2. Governing parameters and modes of out-of-plane deformation of graphene. (a) The 

two governing material properties, bending rigidity and Gaussian bending stiffness, were 

deduced from single wall carbon nanotubes and fullerenes of different size (from [113]). (b-d) 

Morphology of graphene nanoribbons resulted from edge stress induced warping (reproduced 

from [91]). (e) Various complex folding structures [90]. (f-h) Mechanical vibrations in 

suspended graphene sheets [101]. 
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Figure 3. A variety of defects in single-layer carbon allotropes. (a) Pentagons in fullerenes 

(C80). (b) Stone-Thrower-Wales defect [117, 118]. (c) Observation of 5-7 defects (from [123]). 

(d) Grain boundaries in polycrystalline graphene (from [24]). (e) Pentagon-heptagon rings in 

the edge (from [80]. (f-g) 5-8 defects (from [126]): (f) The HRTEM image of 5-8 defects. Scale 

bar is 1 nm. (g) DFT-optimized structure of the defect for comparison with (f). (h) STM image of 

a linear defect (chain of two 5-rings with one 8-ring) formed in graphene epitaxial layer on Ni 

(111) substrate [127]. (i) Graphene-based membranes with artificial vacancies for molecular 

separation [128]. 
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Figure 4. Stress field induced by a 5-7 defect. (a) The structure of a 5-7 ring and its 

equivalence to a disclination dipole. (b) to (d) The stress contours of σxx, σyy, and σxy predicted 

by the disclination dipole model; and e, f, and g, the corresponding contours for σxx, σyy, and σxy 

calculated using MD simulations. (h) Experimentally measured shear strain introduced by a 

5-7 ring (Reproduced from [133]). (i)-(j) The structure used for DFT calculation and the local 

weakest bond (shared by the 6-7 ring) in the 5-7 defect (from [27]). 
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Figure 5. Grain boundary structure in a graphene sheet. (a) The two degrees of freedom in a 

GB in 2D materials – the misorientation  and the GB rotation . (b) Atomic structures of GBs 

with constant    but different  from 0o to 27.5o. (c) GB structures with constant  but  varies 

4.7o to 27.5o (from [27]). Note GB defect density depends on  but is insensitive to . (d) and (e) 

Topographic images of rotational GBs (from [142]): (d) Four rotational GBs of different size (1 

to 4), and (e) STM observation of type 1 GB in the epitaxial graphene on SiC. (f) The 

relationship of the strength vs. tilt angle (mis-orientation) of symmetrical GBs (from [26]). 
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Figure 6. Motion of defects in single layer carbon allotrope. (a) Illustration to show the ductile 

versus brittle deformation mechanisms by the motion of 5-7 rings, (II) to (IV) for brittle and (II) to 

(III’) and (IV’) for ductile deformation (from [162]); (b) Molecular dynamics simulations to show 

plastic deformation mechanism in CNTs (from [163]).  (c) In-situ observation of kink motion in 

a SWCNT under tension [165]. Sketches in the figures show the change in the shape and 

position of the kinks. (d) In-situ observation of defect formation, transformation and separation 

of a single layer graohene (from [168]). 
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Figure 7. Wrinkling of graphene on a substrate (experiments and simulations): (a) SEM 

images of a membrane before annealing (left), after annealing to 425 K (middle) and to 475 K 

(right). Notice the increase in wavelength and amplitude of the ripples with the annealing 

temperature (From [183]). (b) SEM image of graphene with wrinkles on SiO2/Si substrate (from 

[181]). (c-h) Morphology of graphene on Cu substrate of different crystallographic planes. (b) to 

(d) Morphology at 300K after initial relaxation, (c) Cu (1 0 0), (d) Cu (1 1 0), (e) Cu (1 1 1). The 

morphology of graphene on (f) Cu (1 0 0), (g) Cu (1 1 0), (h) Cu (1 1 1) after a sufficiently long 

period. Color reflects the height of wrinkles. (i) The dependence of binding energy and wrinkles 

height on Cu crystallographic planes (from [181]). 
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Figure 8. Stable C-honeycomb structure. (a) Atomistic structure of C-honeycomb and the 

coordinate system defined based on the honeycomb; (b) Local atomistic structure at the zigzag 

triple junction of a c-honeycomb; (c) The electron density at the junction region; (d) The phonon 

dispersion of the stable C-honeycomb with cell size of 5.8 Å where all phonons are with 

positive frequencies. (e) Local atomistic structure at the armchair triple junction of 

c-honeycomb; (f) The phonon dispersion of the stable C-honeycomb with cell size of 5.2 Å 

where all phonons are with positive frequencies. (g) Specific strength of C-honeycomb of 

different cell sizes and other carbon-based materials [215]. 
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Table 1: Crack/loading angle, crack chirality, and the apparent fracture resistance    predicted by the 

Griffith criterion (obtained through fitting the strength vs. crack length curve by using eqn. (22)) and 

    from MD simulations by calculating the energy of free edges along those particular chiralities. 

Crack angle 0
o
 7.5

o
 15.9

o
 22.5

o
 30

o
 

Chirality   (m,n) (1,1) (5,8) (2,5) (2,11) (1,0) 

   15.9 15.1 14.0 13.5 11.0 

    11.7 12.7 13.1 13.4 11.0 

 

Table 2. The geometrical and material parameters used for Eqn. (24) to obtain the theoretical curves 

shown in Fig. 6f for both armchair and zigzag tilt GBs. 

 

Name 

Units 

  

(degree) 

𝛥 

(a) 

   

(a) 

  

(a) 

    

(GPa) 

Zigzag 21.8 1.5 4.7 0.8 76 

armchair 27.8 3.2 6.3 1.5 33 

 

 

Downloaded from https://academic.oup.com/nsr/advance-article-abstract/doi/10.1093/nsr/nwy067/5040249
by guest
on 21 June 2018


