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ABSTRACT  

Deflected crack trajectories are detected in hydraulic fracturing. There are 

numerous physical quantities impacting the deflection of a fluid-driven crack. A 2D 

model of the elasto-hydrodynamics system is established to predict the crack trajectory 

and to investigate the coupling effects of anisotropic in-situ stress, fluid viscosity, fluid 

injection rate and crack inclination on the crack deflection. The displacement 

discontinuity method (DDM) and the finite difference method (FDM) are used to solve 

the nonlinear problem. The concept of deflection region is defined to quantify the crack 

deflection. Results show that the size of the deflection region is dominated by the 

inclination angle. Increase of the magnitude and the difference of in-situ stresses 

promotes crack deflection. The combined effects of fluid viscosity and fluid injection 

rate are divided into three stages: significant prevention stage, significant promotion 

stage and insignificant prevention stage. This study provides the method for crack 

trajectory prediction and crack deflection control. 
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1. Introduction 

Hydraulic fracturing has been used to enhance the production of conventional and 

unconventional energy resources from underground reservoirs for decades. In the 

process, hydraulic fracturing trajectory is affected by the properties of reservoir rock, 

fracturing fluid, the magnitude and the direction of in-situ stress [1]. In-situ stress 

corresponds to the natural stress in the rock mass prior to any artificial disturbance. 

Mathematical models [2-14] and experiments [15-20] are developed to clarify the 

effects of the physical quantities and to explain the physical mechanism of hydraulic 

fracturing. 

There are studies analyzing the propagation of the fluid-driven cracks. The studies 

revealed that a straight fluid-driven crack is in the toughness-dominate regime or in the 

viscosity-dominate regime, depending on the competition between fracture toughness 

and fluid viscosity in the propagation of the crack [3-5]. For a steadily propagating 

crack, which is driven by the Newtonian fluid, the size of the fluid-lag zone is revealed 

to stay constant, while it will decrease when in-situ stress increases [6-8]. Shen and 

Zhao [8-10] discussed the growth of a fluid-driven crack in a homogenous medium, 

and showed the potential shear-stress induced deflections of fluid-driven cracks. Since 

the fracturing operation is conducted at a great depth, where the minimum principal in-

situ stress is typically in horizontal direction, multistage hydraulic fracturing in 

horizontal wellbores is reported [11-13] to economically develop unconventional 

resources in shale reservoirs. The fluid-driven cracks deflect if the incline angle of the 

wellbore is nonzero [1]. In a hydraulic crack system where multiple cracks propagate 

parallelly, the stress-shadow effect, referred as the strong interaction among closely 

spaced cracks, may cause suppression and deflection of fluid-driven cracks [13,14]. 

However, these investigations are under the assumption that the initial crack is 

perpendicular to the minimum principal in-situ stress and the fluid-driven crack 

propagates straightly along the direction of the maximum principal in-situ stress. If the 

initial crack is inclined to the principal in-situ stresses, what will the crack trajectories 
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be? 

Field experiments [15,16] indicated that deflections and offsets of fluid-driven crack 

trajectories widely exist in hydraulic fracturing. Laboratory experiments [17,18] were 

conducted to investigate the trajectories of inclined fluid-driven cracks under uniaxial 

compressive stress. According to different trajectories, the deflected cracks are divided 

into different types: tensile crack, shear crack and mixed tensile-shear crack [17]. 

Whatever type it takes, the trajectories are finally along the direction of the maximum 

principal stress. Other triaxial-loading experiment investigations [19,20] also indicated 

that the magnitude and direction of in-situ stress should be considered in the prediction 

of fluid-driven crack trajectory. However, the effects of the physical quantities, 

including in-situ stress, fluid viscosity, fluid injection rate and crack inclination angle, 

still need to be clarified for the prediction of the deflected trajectories. 

As shown in Fig. 1, a fluid-driven crack trajectory in an infinite elastic rock medium 

is studied. The highly pressurized fracturing fluid, which is forced into the crack, 

introduces stresses on the crack surfaces, resulting in the opening and the propagation 

of crack in the elastic medium. During the study of hydraulic fracturing, the rock is 

assumed to be homogeneous, isotropic and impermeable. The stresses 
1   and 

2   

correspond to the anisotropic in-situ stress, with 
1   and 

2   being the maximum 

and the minimum principal in-situ stress, respectively [21]. The principal in-situ 

stresses remain constant with the crack propagation. Assume that there is no lag zone 

at the crack tip. The injected viscous fluid is modeled as the Newtonian and 

incompressible fluid, and the system is assumed in the toughness-dominant regime. 

This paper is organized as follows. Firstly, a 2D model of hydraulic fracturing is 

established and validated, using the theories of lubrication flow and linear elastic 

fracture mechanics (LEFM). Secondly, crack trajectories are predicted, and the stress 

field near the crack surfaces is studied. Thirdly, the effects of physical quantities, such 

as inclination angle, injection rate, fluid viscosity and in-situ stress, on the deflected 
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trajectories of fluid-driven cracks, are clarified. At last, the mechanism of the fluid-

driven crack deflection is discussed. 

 

Fig. 1. (a) Schematic of the crack deflection in fracturing operation. (b) Model of the 

initial crack.   is the inclination angle. 
1   and 

2   are the maximum principal in-

situ stress and the minimum principal in-situ stress, respectively. The initial crack is 

inclined to the principal in-situ stresses. 

2. Model Development 

The geometry and boundary conditions are symmetric about the inlet of fracturing 

fluid, as shown in Fig. 1(b). Hence a curvilinear coordinate system is used, with the 

origin O  being at the inlet of the fracturing fluid, coordinate axis s  being along with 

the crack trajectory, coordinate n  being perpendicular to the crack trajectory and   

being inclination angle, i.e., the angle between the crack trajectory and the direction of 

the maximum principal stress. According to the symmetry of physical quantities, the 

governing equations and boundary-condition equations are described in the right half 

plane, where 0s  . 

2.1. Governing equations 

The viscous flow of fracturing fluid is described by the lubrication theories without 
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body forces, for example, the nonlinear Reynolds equation [22]: 

( )31

12

w
w p

t 


= 


  ,  (1) 

which can be obtained by combining the continuity equation and the Poiseuille’s law 

for a viscous flow: 

+ 0
w

=
t





q ,  (2) 

3

12

w
p


= −q  ,  (3) 

where η  is the dynamic viscosity of fracturing fluid, w  is the crack opening, p  is 

the fluid pressure, and q  is the fluid flux. These field quantities are functions of both 

the coordinate s  and the time t . 

The fluid pressure p  is related to the boundary condition of stress in elasticity 

theory. According to Crouch [23], stress tensor   at any point within the elastic region 

is defined as the integral of displacement discontinuity D  over the crack trajectory S : 

( ) ( ) ( ) ( ), d
S

= S    T Ξ D  ,  (4) 

where the quantity Ξ   is a rank-three tensor, representing the influences of the 

displacement discontinuity at    on the stress field at    in the elastic medium. 

Therefore, we can call it “displacement-stiffness tensor”. This equation is further 

discussed in Appendix A. 

LEFM is used to analyze the crack problem. As being widely used and validated in 

hydraulic fracturing simulations [8-10,12], the maximum circumferential stress 

criterion [24] is used in the simulation of crack propagation. In the criterion, a crack 

will propagate in the direction where the circumferential stress is maximal and reaches 

a critical value. When the critical stress is given by the fracture toughness ICK , the 

maximum circumferential stress criterion can be expressed as: 

( )I ІІ IC

1
cos 1 cos 3 sin

2 2
K K K


 + − =   ,  (5) 

where IK   and IIK   are the stress intensity factors (SIFs) of mode Ⅰ and mode Ⅱ 
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fracture, respectively, and    is the deflection angle of the crack trajectory, which 

satisfies: 

I IIsin (3cos 1) 0K K + − = .  (6) 

The boundary conditions are expressed as follows: 

1 2 1 2

0 0

, ,

, ,

sin cos cos sin

0
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s t
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q q q

  

 

         

 

   

=

= + = − −

= =
 (7) 

where 
s  and 

n  are shear and normal stresses at crack surfaces, respectively, 0sq =  

is the fluid flow rate at inlet, 0q  is the fluid injection rate, and tq  is the flow rate at 

the crack tip. 

2.2. Numerical method 

The model of the crack trajectory simulation is based on the displacement 

discontinuity method (DDM), which is a kind of boundary element method. The 

method is developed by Crouch [23] and designed for handling problems with crack-

like geometries. In DDM, for a N-elements problem, the normal and the shear 

displacement discontinuities can be calculated by the equation: 

( )
1

N
s ss s sn n

i ij j ij j

j

C D C D
=

= + , ( )
1

N
n ns s nn n

i ij j ij j

j

C D C D
=

= + , (8) 

where ss

ijC  , sn

ijC  , ns

ijC   and nn

ijC   are boundary stress influence coefficients. The 

coefficient sn

ijC , for example, gives the actual shear stress at element i  ( s

i ) due to a 

constant unit normal displacement discontinuity of element j   ( n

jD  ). In this 

simulation, we use piece-wise constant displacement discontinuity elements with the 

middle points of each element being the collocation points. 

Finite difference method (FDM) is used to solve the equations of the elasto-

hydrodynamics system. In this model, the crack opening is obtained by Eq. (8). The 

SIFs are measured by the crack opening, under the assumption that the fluid-driven 
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crack is in the toughness-dominant regime, where the crack is elliptical [8]. We take the 

following equations derived by Olson [12]: 

( )
I 24 1

t

E
K w

a


=

−
, 

( )
II 24 1

t

E
K v

a


=

−
,   (9) 

where E  is the Young's modulus,   is the Poisson's ratio, a  is the length of the 

crack tip element, 
tip

n

tw cD=   and 
tip

s

tv cD=   are corrected normal and shear crack 

openings at the crack tip element, respectively. The correction factor 0.806c = , 
tip

nD  

and 
tip

sD   are normal and shear displacement discontinuities of the tip element, 

respectively. 

2.3. Normalization 

For the convenience of further analysis, the normalized form of governing equations 

is taken. The normalization scheme is as follows: 

0s l s= , 0a l a= , 0w l w= , p p= , 0i iq q q=  and t Mt= , (10) 

in which 0l   is the initial crack radius.   ,    and M   are time-independent 

quantities, which are obtained by substituting normalization scheme into Eqs. (2), (3), 

(5), (7), (8) and (9). The mass conservation must be ensured. Normal and shear 

displacement discontinuities of tip element is measured by crack opening. With the 

assumption that the system is in the toughness-dominant regime, the fracture toughness 

is used to measure the fluid viscosity. Consequently, Eqs. (2) and (8) are normalized, 

and the quantities are derived as: 
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Then, other dimensionless quantities are obtained: 
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where    is the dimensionless fluid viscosity, 1 
  and 2 

  are the dimensionless 

principal in-situ stresses. It is evident that the dimensionless number   represents the 

combined effect of both the physical properties of reservoirs and the real working 

conditions (the fluid viscosity and the fluid injection rate). For a given reservoir,   is 

proportional to the product of the injection rate 0q  and the fluid viscosity  . 

2.4. Validation 

To validate the numerical model used in this simulation, as shown in Fig. 2, a case 

of uniformly pressurized radial crack is studied. The numerical results with different 

grids are checked by the following analytical solution [10]: 

( )2

2

0

8 1
1

w
w p s

l E



 

−
= = −


.   (13) 

In the validation test, we take 0.2 =  , 
51.5 10 PaE  =   , 10 Pap  =   and 

41 10 −=   . Fig. 2(b) shows that the results calculated by this numerical model are 

consistent with the analytical results. According to Eq. (9), as shown in Fig. 2(c), crack 

tip opening is validated to ensure the correctness of the SIFs calculation. In addition, as 

shown in Fig. 3, during the simulation process, the crack trajectory converges well with 

the increase of the mesh density. 
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Fig. 2. (a) Schematic of the uniformly pressurized radial crack in the validation, where 

w  is the crack opening, p  is the fluid pressure, 0l  is the crack radius and s  is the 

coordinate axis. (b) Crack opening comparison between numerical and analytical 

results, where N is the grid number. (c) Crack opening calculation of the tip element 

versus analytical results, where the grid number N ranges from 10 to 90 with an 

increment by 10. 

 

Fig. 3. Deflected crack trajectories predicted in different mesh densities, where N is the 

grid number of the initial crack. 

3. Results and Discussions 

In previous sections, the details of the hydraulic fracturing simulation model were 
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introduced and validated. In this section, we are going to investigate the stress field near 

the curved crack during the propagation process, and to quantitatively study the effects 

of the crack inclination angle, the viscosity of fracturing fluid and the anisotropic in-

situ stress on the crack deflection, respectively. 

3.1. Stress field 

The stress field near the crack surface, especially the stress field near the crack tip, 

plays a dominant role in the crack propagation process [25]. How stresses are 

distributed and regularized near a crack’s tip will dominate the mode of failure and may 

hold the key to resolving important open questions about issues such as crack stability 

and path selection [26,27]. In this subsection, the curved crack morphology at different 

time will be described during the crack propagation process. The stress field near the 

crack surfaces will also be investigated, corresponding to each crack morphology. 

A preset crack with the inclination angle of 60 degrees is studied to describe the 

crack trajectory and investigate the stress field under the acting of the anisotropic in-

situ stress. In this simulation, the dimensionless viscosity 49 = , the dimensionless 

stresses 
1 0.174  = , 2

2 1.57  −=  . 

As shown in Fig. 4, the crack trajectories at different time are pictured with the initial 

crack staying straight at 0t =  . The crack trajectory deflects gradually towards the 

direction of the maximum principal stress under the effect of the in-situ stress. At 

40=t , the inclination angle reaches 0 degree, which means that the crack propagates 

in the same direction as the maximum principal stress and the crack deflection process 

is completed. Here, the term ‘deflection region’ is defined as the region surrounded by 

the curved crack trajectory and the lines parallel to the direction of the maximum and 

the minimum principal stress, respectively. More details about the deflection region will 

be studied in the subsections 3.2-3.4. 

The hydrostatic stress ( )11 22 2p  = +   and the shear stress 12   in elastic 
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medium are described in Fig. 4(b) and Fig. 4(c), respectively. As shown in Fig. 4, with 

the injection of fracturing fluid, the crack inflates and the crack surfaces are expanded. 

Therefore, the hydrostatic stress in the vicinity of the crack surfaces stay compressive, 

while the hydrostatic stress near the crack tip remain tensile. Stress concentration occurs, 

and dominates the crack propagation. The contours also indicate that the stress field 

caused by fluid pressure is going to vanish at a distance roughly equaling to the crack 

length, within which will another crack be influenced by the stress field. The shear 

stress tends to be zero at the vicinity of the crack surfaces. 

During the deflection process, the fluid-driven crack propagates symmetrically from 

initial crack tips and finally along the direction of the maximum principal in-situ stress. 

The fluid pressure and the in-situ stress determine the stress distribution near the crack 

tip and further determine the SIFs. When the crack is inclined to the maximum principal 

in-situ stress, the direction of the maximum circumference stress at the crack tip is also 

inclined. It makes the crack start to deflect, according to the maximum circumferential 

stress criterion. With the propagation of the fluid-driven crack, the direction of the 

maximum circumference stress changes gradually under the effects of the in-situ stress 

and the fluid pressure. It is in the direction of the maximum principal in-situ stress that 

the circumferential stress finally gets its maximum value and the deflection process 

finishes. 



 

 12 / 22 

 

 

Fig. 4. (a) Crack trajectories, (b) hydrostatic stress field and (c) shear stress field for (is) 

0t = , (ii) 20t =  and (iii) 40t = , respectively. The contours indicate the magnitude 

of the stress. 

3.2. Inclination angle 

As mentioned in subsection 3.1, the ‘deflection region’ is a representation of the 

process in which an inclined crack turns its direction towards the maximum principal 

stress. To measure the ‘deflection region’, as shown in Fig. 5(a), dimensionless 

quantities l , 
1l  and 

2l  are used, which represent half the curved crack length, half 

the length of region boundary parallel to the direction of 
1  , and half the length of 

region boundary parallel to the direction of 
2   , respectively. The cracks with the 
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inclination angle varying from 25 degrees to 60 degrees are simulated to evaluate the 

effect of inclination angle on the crack deflection. The parameters used in this 

simulation are the same as those listed in subsection 3.1. As shown in Fig. 5(b), the 

deflection region expands dramatically with the increase of the inclination angle. This 

phenomenon is more apparent when the inclination angle is larger than 45 degrees. 

 

Fig. 5. (a) Schematic of the deflection region. 2l  is the dimensionless crack length, 

12l  is the dimensionless length in the direction of 
1   and 

22l  is the dimensionless 

length in the direction of 
2   ; (b) dimensionless quantities l  , 

1l   and 
2l   with 

respect to the inclination angle. 

3.3. Fluid viscosity and injection rate 

In hydraulic fracturing, fluid viscosity and injection rate are controllable in the field 

treatment. In toughness-dominant regime, by nondimensionalization and normalization, 

the dimensionless quantity   is derived, which represents the combined effect of fluid 

viscosity and injection rate. It is thus necessary to clarify the effect of dimensionless 

viscosity on the deflection region. According to the data of laboratory experiments and 

field observations, the dimensionless viscosity,   , varies from 0 to 1000 in real 
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working conditions [28-31]. Thus, we simulated the deflection process with   

varying from 0 to 1000 and the inclination angle equaling to 30 degrees. The results of 

the simulation are plotted in Fig. 6. With the increase of the dimensionless quantity  , 

the deflection region evidently undergoes changes in three stages. At first, the deflection 

region increases dramatically and reaches its maximal value when   equals to 172, 

after which the deflection region decreases dramatically and reaches its minimal value 

when   equals to 240, finally it increases gradually and nearly linearly at the third 

stage. Therefore, the stages are named as significant prevention stage, significant 

promotion stage and insignificant prevention stage, respectively. The results indicate 

that by controlling the injection rate and selecting the fracturing fluid, one can 

quantitatively control the deflection of the fluid-driven crack.  

As shown in Fig. 6, with the increase of the dimensionless viscosity, the fluid-driven 

crack becomes more difficult to deflect owing to the increase of the viscous dissipation. 

In addition, according to Jeffrey [16], oscillation of crack width occurs in the process 

of crack deflection, which leads to the intensification of viscous dissipation and the 

deceleration of the crack propagating speed. In our study, the oscillation is most intense 

at the point where 172 = , for which reason Fig. 6 behaves non-monotonically and is 

divided into three regions. In the real working condition, 0 =   and 1000 =  

correspond to extreme situations, and the inflection points 172 =  and 240 =  are 

more easily to reach. In the significant prevention stage and the significant promotion 

stage, the inflection points can be achieved by small adjustments of  . 
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Fig. 6. Dimensionless quantities l  , 
1l   and 

2l   with respect to the dimensionless 

viscosity  . 

3.4. In-situ stress 

The problem is divided into two situations to measure the effect of anisotropic in-

situ stress on the crack deflection. In the first situation, the stress ratio 
1 2    

remains constant and equals to 10, to measure the effect of in-situ stress magnitude on 

the crack deflection. In the second situation, the maximum principal stress 
1   is set 

to be 0.02, to measure the effect of the stress ratio 
1 2   . During the simulation, the 

inclination angle equals to 30 degrees and dimensionless viscosity    equals to 49. 

Simulation results are plotted in Fig. 7. 

As shown in Fig. 7(a), with the increase of in-situ stress, the deflection region 

decreases dramatically, which means that increase of stress magnitude promotes crack 

deflection, for the instance that under competition with fluid pressure, the increase of 

the maximum principal stress promotes its effect on the stress distribution near the crack 

tip, which makes crack propagating direction closer to the direction of the maximum 

principal stress under maximum circumferential stress criterion. Previous research [32] 
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explained that for preset parallel cracks with the inclination angle equals to 0, large 

stress differences prevent deflection caused by interaction among cracks. However, in 

this study, as shown in Fig. 7(b), with the increase of stress ratio, the deflection region 

decreases dramatically at the beginning, then becomes almost constant for the ratio 

being larger than 5. That is to say, for an inclined crack, large stress differences promote 

crack deflection, which is in contrast with the situation of the fore mentioned cracks, 

and this effect does not become evident when stress ratio is larger than 5. 

 

Fig. 7. (a) Dimensionless quantities l , 
1l  and 

2l  with respect to the magnitude of 

the maximum principal in-situ stress with 
1 2 = 10   ; (b) dimensionless quantities 

l , 
1l  and 

2l  with respect to the stress ratio with 
1 = 0.2  . 

4. Conclusions 

The curved trajectory of an inclined fluid-driven crack under anisotropic in-situ 

stress is studied. By using DDM and FDM, the crack deflection is simulated under 

maximum circumferential stress criterion. The numerical model incorporates the 

physical effects of fracture, viscosity, injection rate and in-situ stress. Results show that 

an inclined fluid-driven crack curves its trajectory gradually and finally propagates in 

the direction of the maximum principal stress. A mixed-mode crack of type I and II 

propagates under the combined effect of fluid pressure and in-situ stress. The simulation 
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also reveals the changes of stress field near the crack during the deflection process. 

Variable-controlling analysis explains the influences of the factors, respectively. The 

conclusions are drawn as follows: 

(1) The term ‘deflection region’ is defined to quantify the deflection of a fluid-

driven crack. 

(2) The inclination angle strongly impacts on the size of the deflection region. 

Larger inclination angle leads to a larger deflection region, the phenomenon is 

extremely apparent when the inclination angle is larger than 45 degrees. 

(3) The combined effect of injection rate and viscosity of the fracturing fluid is 

complicated. The process is divided into three stages: significant prevention 

stage, significant promotion stage and insignificant prevention stage. 

(4) Increase of the magnitude and differences of the anisotropic in-situ stress can 

effectively promote the deflection of the inclined fluid-driven crack. And the 

effect is not significant if the stress ratio is large enough. 

(5) The crack propagating direction is dominated by the combined effect of fluid 

pressure and in-situ stress via the stress field near the crack tip. The distribution 

of stress field caused by fluid pressure is negligible compared with the in-situ 

stress at a distance that nearly equals to the crack length. 

This study provides a systematic simulation of the deflection process of an inclined 

fluid-driven crack. The results clarify the effects of inclination angle, anisotropic in-

situ stress, fluid viscosity and fluid injection rate on the crack trajectories. It may help 

in predicting the crack trajectories and in controlling the crack deflection. 
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Appendix A 

Equation (4) is widely used [12,13] in elastic rock-deformation theory to solve the 

displacement discontinuities. For given boundary conditions of stress, iD   can be 

solved by Eq. (4), which can be written in component form as follows: 

( ) ( ) ( ) ( ), djk i
S jki

T D S     =  ,   (A1) 

where the displacement discontinuity iD  at the point   contributes its influence on 

the stress field jkT  at the point   through the “displacement-stiffness tensor”, jki . 

The equation is derived from the solutions of Lord Kelvin’s problem [33], that is, the 

displacement field and the stress field caused by a single force acting in the interior of 

an infinite solid: 

i ik kU A f= , ij ijk kT f= ,  (A2) 

in which iU   is the vector of displacement. Due to the existence of crack, the 

displacement discontinuity can be expressed as i i iD U U− += −  . kf   is the external 

force vector. The rank-two tensor ikA   and the rank-three tensor ijk   represent the 

influence of the single force on the displacement field and the stress field, respectively. 

The solutions in plain-strain [23] are expressed as follows: 

( )
( ) ( ) , ,

1
3 ln

4π 2
ik ik i kA r r r    

  
 = − + + + +

, (A3) 

( )
( ) ( ), , , , , ,

1
2

2π 2
ijk j ik i jk k ij i j kr r r r r r

r
      

 

−
 = + − + +
 +

, (A4) 

where    and    are the Lamé’s constants, ij  , ik   and jk   are the Dirac 

functions, r  is the position coordinate. One can derive Eq. (A1) by eliminating kf  

in Eq. (A2) and then integrating along the crack boundary. As shown in Eq. (8), the 
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displacement discontinuities along the crack is obtained by equating the net pressure of 

fluid to the normal stress on the crack surfaces in Eq. (7). 
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