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a b s t r a c t

In this work we consider two-dimensional capillary–gravity waves propagating under the influence
of a vertical electric field on a dielectric of finite depth bounded above by a perfectly conducting
and hydrodynamically passive fluid. Both linear and weakly nonlinear theories are developed, and
long-wave model equations are derived based on the analyticity of the Dirichlet–Neumann operator.
Fully nonlinear computations are carried out by using a time-dependent conformal mapping method.
Solitary waves are found, and their stability characteristics subject to longitudinal perturbations are
studied numerically. The shedding of stable solitary waves is achieved by moving a Gaussian pressure
on the free surface with the speed close to a phase speed minimum and removing the pressure after
a period of time. The novel result shows that a depression bright solitary wave and an elevation
generalized solitary wave co-exist in the solitary-wave excitation.

© 2019 ElsevierMasson SAS. All rights reserved.

1. Introduction

Electrohydrodynamics (EHD), which is concerned with the
coupling between electric fields and fluid flows, enjoys a wide
range of applications in chemistry and engineering, such as coat-
ing processes in [1], and cooling systems in a conducting pump
in [2]. In practice, an EHD problem usually involves a free sur-
face or an interface between two liquids. Therefore, a good un-
derstanding of wave motions under electric fields benefits the
engineering community. Research on EHD interfacial waves was
first conducted by Taylor & McEwan in [3]. Their theoretical and
experimental results showed that normal electric fields can lead
to a destabilization of the interface between a conducting fluid
and a dielectric. A few years later, Melcher & Schwarz performed
a linear stability analysis of the problem under tangential electric
fields, which were shown to be capable of regularizing short
waves in [4]. These two early works described the effect of
electric fields on the linear stability of interfacial waves. The study
was then extended to many other EHD problems. For example,
two works by [5,6] showed the control and suppression of the
Rayleigh–Taylor instability using horizontal electric fields. Non-
linear EHD Kelvin–Helmholtz instability was investigated in [7,
8]. Large amplitude travelling waves in electrified fluid sheets
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were computed using the full Euler equations in [9]. The touch-
down singularity was observed in a thin film in [10], where the
lowest point of the fluid interface reaches the solid bottom. The
theoretical studies in the aforementioned references employed
the method of multiple scales, whereas the numerical results
were obtained either by a boundary integral method or direct
numerical simulations.

In the absence of electric fields, the problem reduces to the
study of classic capillary–gravity waves. It is well acknowledged
that a Korteweg–de Vries (KdV) equation can be derived for two-
dimensional long capillary–gravity waves. The equation admits
elevation solitons for τ > 1/3, and depression solitons for τ <
1/3, where τ is the Bond number defined by

τ =
σ

ρgh2 , (1)

with σ being the coefficient of surface tension, g the acceleration
due to gravity, ρ the fluid density and h the thickness of the fluid
layer. However, when solving the full Euler equations, depression
and elevation solitary waves were found by [11,12] for τ < 1/3.
The elevation waves from the former paper are characterized by
a train of non-decaying oscillations in the far field. These waves
are the so-called generalized solitary waves, and it was later
shown in [13] that the oscillatory tails never vanish. In this work,
we examine whether the effect of electric fields can remove the
far-field ripples of the generalized solitary waves.

The problem of two-dimensional free-surface capillary–gravity
waves propagating on a perfectly conducting fluid under the
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effect of vertical electric fields has been investigated intensively
by many authors. In the papers of [14–16] the KdV, modified KdV
and KdV–Benjamin–Ono equations were derived respectively.
These models were obtained in the long-wave approximation,
where the depth of fluid layer is assumed to be much smaller
than the typical wavelength. A comprehensive summary of the
model equations can be found in [17]. Fully nonlinear travelling-
wave solutions were found in [18], based on a boundary integral
method. It is noted that there are no studies on time-dependent
solutions of the full Euler equations. However, when the fluid is
assumed to be a dielectric, and the gas layer a perfect conductor,
a time-dependent conformal mapping technique, first pioneered
by [19], was employed in [20] to compute the dynamics of
solitary waves in deep water. In this work, we generalize the
results of [20] to the case of a finite-depth fluid layer and ex-
amine the destabilizing effect of the normal electric field. Both
weakly nonlinear models and fully nonlinear computations are
considered.

The rest of the paper is structured as follows. The prob-
lem is formulated mathematically in Section 2. The linear the-
ory and weakly nonlinear models are derived respectively in
Sections 3 and 4. The numerical scheme based on the time-
dependent conformal mapping is described in Section 5. The fully
nonlinear results are presented and discussed in Section 6. Finally,
a conclusion is given in Section 7.

2. Formulation

We consider the two-dimensional irrotational flow of an in-
viscid incompressible fluid of finite depth that is bounded above
by a hydrodynamically passive region. The fluid is assumed to be
a perfect dielectric with permittivity ϵ0. The passive region above
the fluid is assumed to be perfectly conducting. This Dielectric
(fluid)–Conductor (gas) system is actually a one-layer problem
which can be formulated by using Cartesian coordinates with the
y-axis directed vertically upwards, and y = 0 at the undisturbed
level. The formulation is shown in Fig. 1. The gravity g and the
surface tension σ are both included in the formulation. The de-
formation of the free surface is denoted by y = ζ (x, t). A vertical
electric field with voltage potential v is applied. We assume that
v = −V0 at the bottom, where V0 is a constant. Since the fluid
motion can be described by a velocity potential function φ(x, y, t),
the governing equations can then be written as

∇
2φ = 0, for y < ζ (x, t), (2)

∇
2v = 0, for y < ζ (x, t), (3)

ζt = φy − φxζx, on y = ζ (x, t), (4)

v = 0, on y ≥ ζ (x, t), (5)

v = −V0, on y = −h, (6)

φy = 0, on y = −h. (7)

Furthermore, it is shown in [20] that the Bernoulli equation
satisfied on the free-surface gives

φt +
1
2
|∇φ|

2
+ gy −

ϵ0

ρ(1 + ζ 2x )

[
1
2
(1 − ζ 2x )(v

2
x − v2y ) + 2ζxvxvy

]
−
σ

ρ

ζxx

(1 + ζ 2x )3/2
= 0, on y = ζ (x, t), (8)

where the subscripts denote partial derivatives. The last three
terms of (8) are respectively the force due to gravity, the Maxwell
stresses resulting from the electric field, and the force due to
surface tension. Eqs. (4) and (7) are the kinematic boundary
condition on the free surface and the no-penetration condition at

Fig. 1. Configuration of the problem. The gravity acts in the negative y-direction.
We denote the equation of the unknown free surface by y = ζ (x, t).

the bottom. The condition (5) expresses the fact that the region
above the fluid is a perfect conductor, and in turn implies

vx + vyζx = 0, on y = ζ (x, t). (9)

Condition (9) allows us to manipulate the electric field term in
the dynamic boundary condition (8), resulting in

φt +
1
2
|∇φ|

2
+ gζ +

ϵ0

2ρ
|∇v|2 −

σ

ρ

ζxx

(1 + ζ 2x )3/2
= 0 on

y = ζ (x, t). (10)

We choose h,
√
h/g and V0 as the reference length, time and volt-

age potential respectively. In this scaling, the bottom boundary is
given by y = −1. The governing Eqs. (2) and (3) remain the same,
while the dynamic boundary condition (10) becomes

φt+
1
2
|∇φ|

2
+ζ+

Eb
2

|∇v|2−τ
ζxx

(1 + ζ 2x )3/2
= 0 on y = ζ (x, t),

(11)

where τ is the Bond number (see (1)) and Eb is the electric Bond
number defined by

Eb =
ϵ0V 2

0

ρgh3 . (12)

The boundary conditions on the voltage potential are now scaled
to be

v = 0, on y = ζ (x, t) , (13)

v = −1, on y = −1 . (14)

The kinematic conditions (4), (7) and (9) remain unchanged.

3. Linear theory

We linearize the system by writing

ζ (x, t) = Aei(kx−ωt) , (15)
φ(x, y, t) = Bei(kx−ωt) cosh k(y + 1) , (16)
v(x, y, t) = y + Cei(kx−ωt) sinh k(y + 1) , (17)

where A, B and C are small constants. By applying condition (9),
we have

v = y −
ζ sinh k(y + 1)
sinh k(ζ + 1)

. (18)

By differentiating (11) with respect to t , making use of (4) and
dropping all the nonlinear terms, we obtain the linear dispersion
relation

c2p =

(1
k

+ τk
)
tanh k − Eb , (19)
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Fig. 2. Graph of the linear dispersion relation for Eb = 0.9 (solid), 0.95 (dashed),
0.99 (dashed–dotted) and 1 (dotted) when τ = 1/4 and the critical value
E∗

b = 0.9423.

where cp = ω/k is the phase speed. Short waves (k ≫ 1) are
always linearly stable for a fixed Eb. However, for long waves
(k → 0), we obtain c2p ∼ 1 − Eb, which indicates that long waves
are linearly unstable for Eb > 1. It is well known that there exists
a minimum of the phase speed when τ < 1/3. In the following
discussion, and throughout the paper, we choose τ = 1/4 in most
of our numerical computations. This choice of τ is made such that
there exists a minimum in the dispersion relation, allowing the
existence of depression solitary waves and elevation generalized
solitary waves, as discussed in Section 1.

When Eb < E∗

b ≃ 0.9423, the right-hand side of (19) is positive
for every k, and there exists a minimum at k = k∗

= 1.4026,
where the depression solitary waves bifurcate [21]. However, if Eb
becomes larger than E∗

b , the electric field starts to destabilize the
waves with wavenumber close to k∗. When Eb is further increased
to be greater than 1, the long waves (k → 0) are all destabilized,
i.e. the KdV is no longer a valid model, and only short waves
survive. An illustrating graph of cp against k for different Eb is
shown in Fig. 2.

4. Weakly nonlinear regime

In this section, we study the weakly nonlinear regime under
the long wave assumption. We derive the KdV equation by using
the Dirichlet–Neumann operators for this problem, and discuss
how the weakly nonlinear regime relates to the fully nonlinear
computations which will be presented in Sections 5 and 6.

4.1. Dirichlet–neumann operators

The Dirichlet–Neumann operator (DNO) can be defined for the
fluid velocity potential as follows

G(ζ )Φ = −ζxφx + φy =

√
1 + ζ 2x

∂φ

∂n
, (20)

where Φ(x, t) ≜ φ(x, ζ , t) is a surface variable, and n is the unit
normal vector pointing out of the surface. A modified voltage
potential can be defined by w = v − y and the kinematic
condition (9) becomes

wx + ζxwy = −ζx . (21)

On y = ζ , we define W(x, t) ≜ w(x, ζ , t) = −ζ (x, t). A DNO for
W can be written as

G−(ζ )(−ζ ) = G−(ζ )W = −ζxwx + wy =

√
1 + ζ 2x

∂w

∂n
. (22)

Following [22], the kinematic and the dynamic boundary condi-
tion can be rewritten in terms of the surface variables Φ and ζ
by using the DNOs as follows

ζt = G(ζ )Φ , (23)

Φt = −ζ + τ
ζxx√
1 + ζ 2x

+ Mf + Me , (24)

where

Mf =

(
G(ζ )Φ

)2
+ 2

(
G(ζ )Φ

)(
ζxΦx

)
−Φ2

x

2(1 + ζ 2x )
, (25)

and

Me = −
Eb
2

(
G−(ζ )ζ

)2
− 2G−(ζ )ζ − ζ 2x

1 + ζ 2x
. (26)

It was shown by [23] that the DNOs are analytic provided the L∞-
norm and Lipschitz-norm of the displacement ζ are smaller than
a certain constant. They can be expanded in the Taylor series

G(ζ ) =

∞∑
n=0

Gn(ζ ) , (27)

G−(ζ ) =

∞∑
n=0

G−

n (ζ ) , (28)

where Gn and G−
n are homogeneous of order n in ζ . Applying G

to the ground state solution eikx cosh k(y+ 1) of the fluid velocity
potential and G− to eikx sinh k(y + 1) of the voltage potential, the
first two terms of the series can be obtained after performing
similar calculations as to those in [17,22]

G0 = D tanh(D) , (29)
G−

0 = D coth(D) , (30)

G1(ζ ) = DζD − G0ζG0 , (31)
G−

1 (ζ ) = DζD − G−

0 ζG
−

0 , (32)

where D = −i∂x. By ignoring the terms of o(ζ 2), the governing
system is reduced to

ζt = G0Φ + G1(ζ )Φ , (33)

Φt = −ζ + τ
ζxx√
1 + ζ 2x

+
1
2

[
(G0Φ)2 −Φ2

x

]
−

Eb
2

[
(G−

0 ζ )
2
− 2G−

0 ζ − 2G−

1 (ζ )ζ − ζ 2x

]
. (34)

4.2. Long-wave models

In this subsection, we derive the model equation under the
long wave limit, i.e. assuming that the typical wavelength is much
greater than the depth of the fluid layer. The displacement ζ and
the velocity potential function are assumed to be small. Their size
is measured by a small parameter ϵ. We consider the following
scaling:

ζ = O(ϵ2) , Φ = O(ϵ) , ∂x = O(ϵ) ,
∂t = O(ϵ) , τ = O(1) , Eb = O(1) .

Eqs. (29) and (30) can be expanded as polynomials in D

G0 = D2
−

1
3
D4

+
2
15

D6
+ O(ϵ8) , (35)

G1 = DζD − D2ζD2
+ O(ϵ8) , (36)

G−

0 = Id +
1
3
D2

−
1
45

D4
+ O(ϵ6) , (37)

G−

1 = −ζ + DζD −
1
3
D2ζ −

1
3
ζD2

+ ζ 2 + O(ϵ6) . (38)

The governing system reads

ζt = −Φxx −
1
3
Φxxxx − ζΦxx − ζxΦx , (39)
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Φt = −
1
2
Φ2

x − (1 − Eb)ζ +

(
τ −

Eb
3

)
ζxx −

3Eb
2
ζ 2 , (40)

which is a Boussinesq-type system in ζ andΦ . A one-dimensional
Benney–Luke type equation can be obtained by differentiating
(40) with respect to t and combining this with (39) to find

Φtt − c20Φxx +

(
τ −

1
3

)
Φxxxx + (Φ2

x )t +

(
1 +

3Eb
c20

)
ΦtΦxx = 0 ,

(41)

where c20ζ = −Φt + O(ϵ4) has been used. Here, c0 =
√
1 − Eb

is the long wave speed which can be obtained by taking the
limit k → 0 in the linear dispersion relation (19). To get the
uni-directional Korteweg de Vries equation (KdV), we introduce

X = ϵ(x − c0t) , T = ϵ3t . (42)

Changing the variables from (x, t) to (X, T ) in (41) and keeping
only the terms up to O(ϵ5) yields

ΦXT −
1
2c0

(
τ −

1
3

)
ΦXXXX +

3
2

(
1 +

Eb
c20

)
ΦXΦXX = 0 . (43)

Transforming back to the original variables, the celebrated KdV is
obtained

qt + c0qx −
1
2c0

(
τ −

1
3

)
qxxx +

3
2

(
1 +

Eb
c20

)
qqx = 0 , (44)

where q = Φx. When τ = 1/3, it is not difficult to obtain a
fifth-order KdV equation as follows

qt + c0qx +
1

90c0
qxxxxx +

3
2

(
1 +

Eb
c20

)
qqx = 0 . (45)

The derivation can be easily extended for three-dimensional
waves, where a Kadomtsev–Petviashvili equation will be ob-
tained. The readers are referred to [17] for more details.

4.3. Connection to other EHD problems

Many other electrohydrodynamic problems of free-surfaces
have been investigated in the last decade. In particular, the prob-
lem of Perfect Conductor (fluid)–Dielectric (gas) received much
attention [10,16–18,24]. The associated linear dispersion relation
under our scaling is

c2p =

(1
k

+ τk − Eb coth Rk
)
tanh k , (46)

where R = h+/h is the ratio of the depths of the two layers. The
corresponding KdV equation for R ≫ 1 is

qt + qx −
Eb
2
Qqx +

1
2

(
1
3

− τ

)
qxxx +

3
2
qqx = 0 , (47)

where Q is a pseudo-differential operator, defined by

Q =

√
−∂xx coth(R

√
−∂xx) . (48)

We note that Q reduces to H∂x when R → ∞, i.e. the upper
region is infinitely deep, with H being the Hilbert transform
defined by

H[f ](ξ ) =
1
π

∫
f (ξ ′)
ξ ′ − ξ

dξ ′ . (49)

Then (47) reduces to a KdV–Benjamin–Ono equation [16]

qt + qx −
Eb
2
H[qxx] +

1
2

(
1
3

− τ

)
qxxx +

3
2
qqx = 0 . (50)

We note that (50) can be generalized to a Benjamin–Ono
Kadomtsev–Petviashvili equation in three-dimensional problems
(see [17,25]).

It is of interest to note that, in the particular case R = 1,
i.e. the upper and the lower region are of the same size, the linear
dispersion relation (46) is exactly the same as (19) for the case of
Dielectric–Perfect Conductor. Under the long-wave limit, Q can
be expanded as a Taylor series in D as shown in Section 4.2.
Eq. (47) reduces to

qt + c0qx −
1
2c0

(
τ −

1
3

)
qxxx +

3
2

(
1 −

Eb
c20

)
qqx = 0 . (51)

The linear terms match with those from (44), as expected.

5. Numerical scheme

To solve the fully nonlinear equations numerically, we em-
ploy the time-dependent conformal mapping technique. It is a
method pioneered by [19], which maps the free surface onto
the horizontal axis in a new complex plane denoted by (ξ, η).
The fluid domain is transformed onto a strip with depth D. The
harmonic conjugate of x(ξ, η) can be obtained via the Cauchy–
Riemann equations for the analytic function z(ξ, η) = x(ξ, η) +

iy(ξ, η). Similarly, we can derive the harmonic conjugates of
φ(ξ, η) and v(ξ, η), denoted byψ(ξ, η) and ν(ξ, η) respectively. In
the transformed plane, we write the surface variables as X(ξ, t) ≡

x(ξ, 0, t), Y (ξ, t) ≡ y(ξ, 0, t), Φ(ξ, t) ≡ φ(ξ, 0, t), Ψ (ξ, t) ≡

ψ(ξ, 0, t), V (ξ, t) ≡ v(ξ, 0, t) and N(ξ, t) ≡ ν(ξ, 0, t). The map
can be formally defined as the solution of the following boundary
value problem

yξξ + yηη = 0, ψξξ + ψηη = 0, for − D < η < 0, (52)

y = Y (ξ, t), ψ = Ψ (ξ, t), on η = 0, (53)

y = −1, ψ = Q , on η = −D, (54)

where Y (ξ, t) = ζ (ξ, 0, t). Q is an arbitrary constant, and we
choose Q = ⟨Ψ ⟩, where ⟨·⟩ is the mean value defined as

⟨f ⟩ =
1
L

∫ L/2

−L/2
f (ξ )dξ , (55)

where
[
−

L
2 ,

L
2

]
is the computational domain, and L is usually

chosen to be the wavelength. It can be shown that

D = 1 + ⟨Y ⟩, (56)

Xξ = 1 − T [Yξ ], (57)

Ψξ = T [Φξ ], (58)

Nξ = −
1
D

+ T [Vξ ], (59)

where T [.] is defined by

T [f ](ξ ) =
1
2D

PV
∫

f (ξ ′) coth
( π
2D

(ξ ′
− ξ )

)
dξ ′ . (60)

Here ‘PV’ denotes the Cauchy principal value of the integral. We
note that Vξ = 0 as v is identically zero everywhere on the
free surface. Next, we follow [26] to derive the time-evolution
equations, which finally read

Yt = YξT
[
Ψξ

J

]
− Xξ

Ψξ

J
, (61)

Φt =
1
2J

(
Ψ 2
ξ −Φ2

ξ

)
− Y −

Eb
2D2J

+ τ
XξYξξ − YξXξξ

J3/2

+ΦξT
[
Ψξ

J

]
, (62)

where J = X2
ξ + Y 2

ξ is the Jacobian of the conformal map.
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Fig. 3. Solitary wave profiles for τ = 1/4 in the absence of electric fields.

For travelling waves, all functions depend on x − ct , where
c is an unknown constant. After similar calculations as those
presented in [27], we have

Ψ = cY . (63)

Then the resulting governing equation becomes

1
2

(
c2 +

Eb
D2

)(
1
J

− 1
)

+ Y − τ
XξYξξ − YξXξξ

J3/2
= 0. (64)

In the present paper, solitary waves are approximated by long
periodic waves. It follows that D is needs to be updated over
time in unsteady simulations to ensure that the wavelength in
the conformal space is the same as that in the physical space. The
surface elevation can be expressed as a Fourier series

Y (ξ ) =

N∑
n=1

an cos
(
2nπξ

L

)
+ bn sin

(
2nπξ

L

)
, (65)

where the coefficients an, bn are unknowns. By imposing sym-
metry at X = 0, all the sin terms vanish, i.e. bn are zero for
arbitrary n. The T -transform is computed numerically by Fourier
multipliers as follows

T [g] = F−1
[
i coth(kD)F[g]

]
, (66)

where F is the Fourier transform. In most computations, we use
2048 Fourier modes and L = 100 to achieve a high computing
accuracy. This numerical scheme has been successfully used in
the context of gravity waves [28] and flexural-gravity waves [29]
on water of finite depth.

6. Numerical results

6.1. Travelling waves

The fully nonlinear problem is solved by using the numer-
ical scheme introduced in Section 5. We start by computing
solitary waves for τ = 1/4 in the absence of electric fields,
i.e. capillary–gravity waves. We manage to reproduce the results
of [11] for depression solitary waves and elevation generalized
solitary waves. Two typical wave profiles are depicted in Fig. 3.
Next, we include a normal electric field with strength measured
by Eb. To examine the long wave model obtained in Section 4.2,
we compute depression solitary waves with speed close to c0 for
Eb = 0.5 and τ = 1/3 by using the full Euler and the fifth-order
KdV equation. The results matched quite well as shown in Fig. 4.

Next, we restrict our attention to the solitary waves for τ =

1/4 in the presence of a normal electric field, and study numer-
ically the bifurcations as well as their dynamics. The complete
amplitude–speed diagram for solitary waves is presented in Fig. 5
for Eb = 0.5, and some corresponding profiles are shown in

Fig. 4. Comparison between the numerical solutions for a depression wave with
c = 0.7068 for τ = 1/3 and Eb = 0.5 by the full Euler equation (solid) and the
fifth-order KdV equation (dashed).

Fig. 6. The branch of depression waves starts at the minimum
of the dispersion curve (c = cmin), and decreases monotonically
to c = 0. When there is no electric field, [11] showed that
the static (i.e. no flow) solitary capillary–gravity wave obtained
was self-intersecting. It is found that the electric field has the
effect of suppressing overhanging, as sketched in Fig. 6a. When
the strength of the electric field is increased, the amplitude of
the static depression wave decreases and shrinks to zero at the
critical value of E∗

b , as shown in Fig. 7. For Eb > E∗

b , the regime
becomes linearly unstable and therefore no solitary waves exist
for such values of Eb. The curve of depression waves from Fig. 5
emanates from zero amplitude at c = cmin, which suggests that
the associated nonlinear Schrödinger equation is focussing, and
therefore wavepacket solitary waves bifurcate from infinitesimal
periodic waves. The one-dimensional stability can be examined
by imposing an initial longitudinal perturbation to the solitary
wave. An example is presented in Fig. 8, where the wave is
perturbed by −5% in amplitude at t = 0 and placed in a
frame of reference moving with the initial phase speed. As time
increases, the wave travels towards the left of the frame since
the depression wave of smaller amplitude propagates faster, as
can be seen from the amplitude–speed diagram 5. Such numerical
tests were performed to all the solutions from the depression
branch, and no one-dimensional instabilities were observed. For
elevation waves, the so-called generalized solitary waves with
non-decaying oscillatory ripples at the tail are found. These waves
also bifurcate from infinitesimal periodic waves, but at a speed
c ′

0 (> cmin). The value of c ′

0 depends on the value of L but if
the periodicity is suspended, i.e. L → ∞ and k → 0, c ′

0 tends
to c0 =

√
1 − Eb which equals 0.7071 for Eb = 0.5. As the

dispersion relation admits a minimum, these waves appear due
to the resonance of the long wave mode k = 0 with periodic
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Fig. 5. The solution branches of depression waves (left) and elevation generalized solitary waves (right) for τ = 1/4 and Eb = 0.5 in the amplitude–speed diagram.
The bifurcation points are marked as circles.

Fig. 6. The wave profiles that correspond to the points indicated in Fig. 5.

waves with wavenumber k† propagating at the long wave speed,
i.e. cp(k†) = c0. Although solution b looks like a KdV soliton, it
still has a very small non-decaying tail. Due to the assumption
of periodicity, there exists infinitely many generalized solitary-
wave branches for a fixed computational domain. Jumping to
the next branch on the right adds an additional far-field oscil-
lation to the wave in a half wavelength (see e.g. Fig. 6 c&f ).
To carry out a more rigorous investigation on whether true el-
evation solitary waves exist in the presence of a normal electric
field, we follow [13,30] to perform a numerical investigation by
monitoring the curvature of the solution at the right end of the
computational domain, denoted by κ0, for a fixed τ and various
Eb. As can be seen clearly from Fig. 9, the solution branches are
all u- or n-shaped and move away from zero as we increase
Eb. Therefore the value of κ0 never goes to zero, i.e. generalized
solitary waves do not approach KdV-like elevation soliton as a
limit in the presence of electric fields. This is a complement to the
work by [13] demonstrating a numerical evidence that capillary–
gravity elevation solitary waves do not exist on water of finite
depth either in the presence or absence of electric stress. The
one-dimensional stability can be studied in the same manner as

the depression case, provided the value of L is sufficiently large.
An initial amplitude-decreasing perturbation by 5% is imposed.
True generalized solitary waves (which have infinite energy) are
expected to be unstable. However we have not observed any one-
dimensional instabilities from the numerical results for time t up
to 4000 as shown in Fig. 10. This is a numerical issue that may
be due to the periodic assumption made in the numerical scheme
which restricts the energy to be finite.

6.2. Touch-down singularity

In this subsection we examine numerically the linear instabil-
ity which occurs when Eb > E∗

b by using the method introduced in
Section 5. A touch-down singularity is expected, due to the finite
depth of the fluid, and increase in amplitude of the interface. A
stable capillary–gravity depression wave (see the top left graph
of Fig. 11) is chosen as the initial state with the strength of Eb
varying in time as follows

Eb = 0.1(j−1) , for t ∈ [5(j−1), 5j) , j = 1, 2, 3, . . . , 11 , (67)

where t is the time variable. A moving frame of reference is
chosen such that the solitary wave is steady for Eb = 0. When
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Fig. 7. Graph of ζ (0) against Eb for depression solitary waves with zero
propagating speed.

Fig. 8. Dynamics of a stable depression wave with c = 0.6566, τ = 1/4,
Eb = 0.5. An amplitude-decreasing perturbation is initially applied. A reference
frame moving with c = 0.6566 is chosen.

the electric field is switched on and Eb < E∗

b , the solitary wave
remains stable. From the left column of Fig. 11, it is observed
that there is energy radiating in the form of small ripples because
of the discrete jumps in Eb. There will be less radiation if the
electric field is changed more gradually. Meanwhile, the speed
of the solitary wave is slower, and the wave amplitude becomes
larger as the electric field strength is increased, which agrees

Fig. 10. Dynamics of an elevation generalized solitary wave with c = 0.7212,
τ = 1/4, Eb = 0.5. An amplitude-decreasing perturbation is initially applied. A
reference frame moving with c = 0.7212 is chosen. Only part of the domain is
shown for a better display.

with the theory. When Eb > E∗

b (t ≥ 50), it can be seen
from the graphs on the right of Fig. 11 that the wave amplitude
increases very quickly, and ultimately approaches the bottom. At
t > 51.97, a numerical instability is observed due to an infinite
curvature where the surface collapses with the lower boundary.
We call this phenomenon a touch-down singularity, where the
wave is destabilized by the electric field. Such numerical exper-
iment of destabilization can be applied to other waves such as
periodic waves or generalized solitary waves. Similar touch-down
singularities are expected.

6.3. Excitation

In Section 6.1, the one-dimensional stabilities were examined.
To excite the stable solitary waves, we perform a numerical
experiment by adding an external moving Gaussian pressure dis-
tribution into the Bernoulli equation, which is defined as follows

P = 0.03e−(x+200−Ut)2 , (68)

with Eb = 0.5 fixed and U = 0.64, which is chosen to be close
to the phase speed minimum. The pressure is initially switched
on at x = −200 and later removed at t = 20. We let the
numerical experiment continue for a long time (up to t = 400). A
stable depression wave propagating with speed 0.5836 (< cmin)

Fig. 9. (Left) Value of κ0 versus the electric field strength Eb when τ = 1/4. (Right) A blow-up graph near Eb = 0.
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Fig. 11. Dynamics of a depression wave with c = 0.9660, τ = 1/4. The value of Eb is increased as a function of time. We only show part of the waves for better
display.

is obtained. As the surface is depressed below the mean level
locally by an external pressure, due to the conservation of mass
in the computational domain, it must be elevated above the
mean level somewhere. We have observed that such elevation
propagates in the form of a generalized solitary wave travelling
with speed 0.7347 (> c0) which is faster than the speed of the
depression wave. Hence it appears in the front and gets away
from the depression wave in time. The propagating wave speeds
are measured from the numerical experiment by computing the
mean velocities over a time interval t ∈ [200, 400]. The two
waves are highlighted in the bottom snapshot of Fig. 12. They
are compared to the travelling solitary wave solutions computed
in Section 6.1, and a strong agreement can be seen, as shown in
Fig. 13.

In the above numerical experiment, after the excitation of
the solitary waves, one can decrease progressively Eb to 0, such
that the solitary waves are classic capillary–gravity waves. These
waves can also be excited without the use of an electric field. We
repeat the experiment, this time taking Eb = 0 with a disturbance
P defined by (68) with U = 0.96. The pressure is switched off
at t = 20, and we see again the formation of a depression wave
and an elevation generalized solitary wave (see Fig. 14). However,
it can be observed from the two experiments of excitation for
Eb = 0 and Eb = 0.5 that the speed difference between the
solitary waves becomes greater in the presence of the electric
field, which in turn makes the two waves further apart from each
other in the same period of time. In fact, the generated depression
wave travels with a speed less than and close to cmin, while the
excited generalized solitary wave travels with a speed faster than
and close to c0. For a reasonable value of Eb, the difference c0−cmin
becomes greater than the non-electric case, which indicates that
the electric field is useful for separating the excited solitary waves
in a short time.

Fig. 12. Snapshots of the excitation experiment with Eb = 0.5 at time t = 2.5,
20, 200 and 400. A disturbance moving with speed 0.64 is switched on at t = 0
and off at t = 20. At the end of the experiment, a depression wave moving with
speed 0.5836 and an elevation generalized solitary wave with speed 0.7347 are
obtained.

7. Conclusion

In the current work, the problem of electrohydrodynamic
capillary–gravity waves on a dielectric fluid under a normal elec-
tric field was investigated. Linear and weakly nonlinear theory
were both presented. Long-wave model equations were derived
by using the Dirichlet–Neumann operators. Fully nonlinear com-
putations were carried out for solitary waves and their dynamics.
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Fig. 13. Comparison between the excited solitary waves (solid) and the travelling solutions (dashed-dotted). (Left) A depression wave with speed 0.5836. (Right) An
elevation generalized solitary wave with speed 0.7347. We only show part of the waves for better display.

Fig. 14. Snapshots of the excitation experiment with Eb = 0 at time t = 2.5,
20, 200 and 400. A disturbance moving with speed 0.96 is switched on at t = 0
and off at t = 20. At the end of the experiment, a depression wave moving with
speed 0.9385 and an elevation generalized solitary wave with speed 1.0391 are
obtained.

A numerical experiment of excitation was conducted to generate
the solitary waves. The comparisons between the excited and
steady solutions were drawn, and an excellent agreement was
obtained.
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