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Abstract: The development of suitable heat-resistant materials and appropriate thermal structure design for a hypersonic 

aircraft requires highly precise heat transfer predictions. Unfortunately, existing techniques for measuring the transient 

heat flux by thermal sensors in impulse facilities are overly complex; any slight deviation from ideal conditions may lead 

to inaccuracy. In this study, the influence of different model materials leading to lateral heat conduction between model 

and sensor on the accuracy of heat flux measurements using type-E coaxial thermocouples was investigated. The 

behavior of the materials results to a deviation from the assumption of one-dimensional heat conduction more or less. 

The materials examined were stainless steel, aluminum, carbon steel, and polyamide, which are frequently used as model 

materials in ground tests. The influence of the model materials was estimated by comparing the heat flux derived from 

the junction temperature with the actual heat flux loading. Particular attention was paid to aluminum, which is 

extensively used as wind tunnel model material. An engineering-based approach is also presented to conduct high 

accuracy measurements. The results show that the difference in the thermal properties between the sensor and the model 

materials creates complicated lateral heat conduction between them; stainless steel 304 is suggest as the use of model 

material whenever high-accuracy heat transfer measurements are desired due to its similarity of the thermal properties to 

type-E sensors. The use of polyamide PA6 material resulted in a larger heat flux due to its smaller thermal effusivity and 

the aluminum and carbon steel led to lower heat fluxes due to their larger thermal effusivity. The deviation of either 

material increases over testing time. 

Keywords: Heat transfer measurement; Lateral heat conduction; Shock tunnel; Thermocouple; Hypersonic 

I.  Introduction 

The accurate prediction of aerodynamic heating is important for the design and development of hypersonic flight 

vehicles, and its prediction often remains difficult by modern computational fluid dynamics (CFD). Experimental 

measurements still play an indispensable role in addressing this problem. Due to the high costs and complexity of flight 

tests, most aerodynamic heating experiments are performed in ground impulse facilities, like shock tunnels and shock 

tubes, for which the available test time is usually in the order of a few milliseconds. However, experimental data of high 

accuracy is challenging to obtain. Nevertheless, this data is also important for the calibration and validation of CFD 

codes, especially for thermal and chemical nonequilibrium conditions. Therefore, there is an urgent need for improving 

the measuring accuracy and reducing the uncertainties associated with the predictions of aerothermal test data. 
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Transient heat transfer measurements in impulse test facilities are performed by capturing the transient temperature 

rise of the sensor, flush-mounted in the wall of the test model. The time-resolved data is then processed to calculate the 

heat flux by applying a physical heat conduction model with few, mostly simplified assumptions. Generally, the 

techniques can be divided into two categories: one based on the use of heat flux sensors, such as resistance thermometers, 

thermocouples, and calorimeters, and the other based on non-intrusive techniques such as temperature sensitive paint and 

thermography. However, each technique has its own advantages and challenges. Because of the technologically 

immature nature of non-intrusive techniques, heat flux sensors that are typically cylindrical in shape, are still primarily 

used for heat transfer measurements, especially in high enthalpy facilities [1]. There is, of course, a tremendous amount 

of literature pertaining to this subject and ranging from experimental techniques to analytical and computational analyses 

[2-4]. Any improvements in the heat transfer measurements necessitate an in-depth investigation of the technique, 

including gauge installation, gauge calibration and sensitivity tests, data reduction procedures, the analysis of gauge size 

effects, and uncertainties. For example, Sanderson [5], Marineau [6], the Shock Wave Laboratory [7] and Li [8] 

conducted intensive studies on the design, modeling, and calibration of coaxial thermocouples and great progress was 

made. The coaxial thermocouples have been demonstrated to be accurate and reliable for short-duration transient 

temperature measurements and they have especially performed well in high enthalpy shock tunnels with harsh 

hypersonic freestream flow environment. Often the flow contains small particles of metallic and nonmetallic materials 

which pose problems to the mechanical integraty of other sensors but not of the coaxial thermocouples. They are also 

widely used in many other applications, such as gun barrel studies [9], internal combustion engine heat transfer 

measurements [10] and boiling research [11]. In another study, Wang [12] examined the influence of the sensor 

installation on the accuracy of heat transfer measurements; protruding installation led to a larger heat flux and recessed to 

lower ones compared to the reference heat flux loading. There have also been made valuable suggestions for sensor 

installation to improve the accuracy.  

Although much progress has been made in improving the accuracy of heat transfer measurements in recent decades, 

often there is still a difference of ±10 % between experimental and theoretical results e.g. for a sharp cone standard 

model [13]; the difference might be even larger at certain local regions of more complex model shapes [14]. It remains 

necessary to extensively investigate the factors and rules influencing the heat transfer measurements before further 

progress can be made. 

For highly transient heat transfer measurements, the heat flux is mostly derived from the monitored surface 

temperature signal employing the essential assumption of one-dimensional, semi-infinite heat conduction within the 

sensor. Any deviation from this assumption leads to inaccuracy. In reality, however, it is hard to meet this assumption. 

For example, coaxial thermocouples consist of at least three different materials with different thermal properties, 

including two thermocouple materials and one insulation material and the thermal environment is inevitably non-

homogeneous [15]. Li [8] numerically investigated the heat conduction within a type-E coaxial thermocouple. He pointed 

out that the actual heat conduction process near the junction deviates strongly from that described by the commonly used 

one-dimensional heat conduction theory due to the heat blocking effect of the insulation layer. His study provided 

reference information for the fabrication of surface junction thermocouples. However, it is focused only on the heat 

conduction inside the thermocouples.  
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Since the majority of type-E coaxial thermocouples consist of a chromel annulus on the outside, the sensor ideally 

should be installed into a model with chromel material in order to best match the thermal properties. However, this 

approach is structurally and financially prohibitive. Stainless steel, aluminum, and carbon steel are frequently used as 

model materials in ground tests and their thermal properties differ from those of typical sensors or thermocouples. Thus, 

a lateral heat transfer between the model and the sensor inextricably exists, substantially affecting the accuracy of the 

heat transfer measurements. In particular, aluminum alloy is a favorite choice for test models due to its relatively low 

density and excellent mechanical machining properties. It is a preferred model material for large impulse facilities, such 

as the JF12 shock tunnel, where the nozzle exit diameter amounts to 2.5 m. A typical test model has a length of 3–5 m 

and a weight of several hundred kilograms [16, 17]. Aluminum significantly reduces the model weight; however, the 

significant difference in its thermal properties to those of the sensor leads to problems for the heat transfer measurements. 

Moreover, the effective test time of large impulse facilities are extended as the technology has improved. For example, 

the test time of the JF12 shock tunnel amounts to 100 ms, which is approximately an order of magnitude longer than that 

of conventional shock tunnels. This further complicates the unsteady heat conduction between the model and the sensor, 

affects the accuracy of measurements, and challenges the one-dimensional heat conduction assumption. For these 

reasons, heat transfer measurements at these conditions still need extensive research. 

In the present study, type-E coaxial thermocouples have been used, which were fabricated by the Shock Wave 

Laboratory and which have been widely used. The influence of different test model materials on the accuracy of heat 

transfer measurements is examined first by a series of experiments. Furthermore, the temperature distribution and heat 

transfer within the sensor and model are examined by solving the two-dimensional heat conduction equations 

numerically. Corresponding fundamentals and mechanisms are discussed in detail, which provide information on the 

inevitable measurement uncertainty caused by lateral heat conduction between sensor and model. Particular attention was 

focused on aluminum as test model material because of its extensive use. Other factors that may influence the 

measurement accuracy, such as the sensor diameter or a possible placement of a stainless steel tube between the sensor 

and the model material, are also discussed. In all, this investigation provides guidance for a suitable design of test models 

regarding heat flux measurements in impulse facilities and shows how to improve the measuring accuracy. 

II.  Experimental Techniques 

A. Experimental setup 

Heat flux measurements in impulse facilities are extremely sensitive to many physical factors, like the free-stream 

flow uniformity, gas purity and others. In addition, the measuring uncertainty caused by these factors makes it difficult to 

analyze the influence of different model materials on the measuring accuracy. Therefore, heat flux measurements were 

performed with a radiative heat flux source at the Shock Wave Laboratory (SWL) of RWTH Aachen University, 

Germany. A relatively simple model configuration was selected to reduce the uncertainties coming from a complex 

model geometry. For simplicity, the coaxial thermocouples were installed into a cylinder with 28 mm diameter and a 

thickness of 10 mm (see Fig. 1). Three different materials, stainless steel (304), aluminum (7075), and polyamide (PA6), 

were tested. The first two materials are frequently used for wind tunnel models in impulse facilities. To fully elucidate 
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the relevant physical mechanisms, polyamide was also tested here for its relatively different thermo-physical parameters 

from the other two, although it is not widely used as wind tunnel model material. 

A type-E coaxial thermocouple built by the SWL was installed at the center of the cylindrical body. The diameter of 

the thermocouple is 1.9 mm and its thermal calibration factor is ck  = 8600 W·s0.5/(m2·K). The contact method is 

used to calibrate the thermocouple. The uncertainty of the calibrated ck value is within 6 %. Details about the 

calibration can be found on the homepage of the Shock Wave Laboratory [7]. The calibration of the temperature 

sensitivity shows that it perfectly agrees with published values e.g. in the NIST tables [18]. The thermocouple junction 

was formed by abrading the top surface of the thermocouple with sandpaper. It has to be emphasized that some measures 

were taken to ensure consistency of the different test cases. First, the same sensor was used for all the experiments; the 

influence comes to uncertainty of ck  to our conclusions can be eliminated. After the sensor was installed, the model 

surface was painted black in a repeatable way with Super-Therm heat-resistant paint, which eliminates the difference in 

the emissivity of the different model materials. Thus, the model surface could be treated as thermally black and all the 

energy from the calibration system was absorbed by the model and the sensor surface. Although the thickness of the paint 

has influence on the response time of the thermocouples, the test time in our experiments is long enough to neglect this 

influence. Thus, the heat conduction within the paint was not considered in this paper. 

 

Fig. 1 Radiative heat flux source and test bodies; units in mm. 

The same voltage amplifier was used to amplify the output of the type-E thermocouple at a gain factor of 1000. The 

signals from the sensors were acquired by a signal conditioner and processed on a PC-based data acquisition system at a 

sampling rate of 100 Hz. The same low-pass filter was used for all measurements to eliminate high-frequency spurious 

components. 

From the measured surface temperature T, the heat flux q  is calculated according to Schultz and Jones [19] by a 

solution of the transient one-dimensional heat conduction equation, Eq. (1), 
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where ρ, c and k are the density, heat capacity, and heat conductivity of the sensor material; T and t are the temperature 

and time, respectively. This equation is valid at least for the beginning of the relatively long measuring time shown in 

this paper. 

B. Experimental Results 

First, the repeatability of the experiments and the measurements has been checked. Figure 2 shows the obtained heat 

flux histories for three measurements for the same nominal test condition. For the three tests, the standard deviation of 

the heat flux is about 1.7 %. The averaged heat flux amounts to 7200 W/m2.  

 

Fig. 2 Heat flux of repeated experiments for stainless steel model material. 

Typical temperature signals and corresponding heat fluxes for different model materials derived from Eq. (1) are 

shown in Fig. 3. Since the wall thickness of the test models is only 10 mm, the results of the first several seconds are 

showed here. Although the test time here is much longer than the effective test time in an impulse facility, there is a clear 

difference between the three materials from the very beginning. Polyamide (PA6) results in a higher temperature rise and 

heat flux than the stainless steel body (304). The aluminum cylinder (7075) yields a lower heat flux than the stainless 

steel one.  

For a constant heat flux into a semi-infinite body, the surface temperature change can be obtained by a solution of the 

transient one-dimensional heat conduction equation, shown in Eq. (2):  

2q t
T

ck
                                                                                           (2) 

The relationship T t   shows that the measured signal should follow a parabolic trend since the radiative heat 

flux q  is constant and the value of ck  can also be considered constant due to the small temperature increase during 

the measurement. This behavior is well represented by the temperature signal for stainless steel in Fig. 2. The 

dissimilarity in the trends of polyamide (PA6) and aluminum (7075) with stainless steel 304 also suggests that the heat 

conduction between sensor and model is different for the three model materials.  

Table 1 shows that the ck  value of 304 is close to that of chromel/constantan, which results in similar surface 

temperatures for the sensor and the model surface. Thus, the heat exchange between 304 and the sensor is small. The 
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lower ck  value of PA6 results in a higher surface temperature than the sensor, while 7075 has a smaller one. The 

surface temperature difference between model and sensor causes lateral heat transfer close to the surface, which does not 

meet the one-dimensional assumption. Namely, polyamide will transmit energy to the sensor resulting in a higher 

temperature signal and therewith heat flux, while aluminum absorbs energy from the sensor resulting in a lower heat flux. 

This is the reason for the temperature and heat flux differences observed in Fig. 3. Even worse, the heat fluxes for PA6 

and 7075 are unsteady and change markedly over time as shown in Fig. 3. This makes it difficult to use a correction 

factor for the different materials.  

Table 1 Thermo-physical parameters of the materials [20]
 

Materials Constantan Chromel 
Stainless steel, 

304 

Aluminum 

7075 

Carbon steel 

(0.5% C) 
Polyamide PA6 

ρ, kg/m3 8920 8730 7930 2800 7833 1140 

c, J/(kg·K) 393.1 447.5 500 960 465 1600 

k, W/(m·K) 21.17 19.25 17 130 54 0.37 

(ρck)0.5, 

W·s0.5/(m2·K) 
8616 8672 8210 18693 14025 822 

 

                  

Fig. 3 Experimental results for different model materials. (a) surface temperature, (b) heat flux. 

For obtaining a better understanding of the lateral heat transfer between sensor and model, a thermal insulation layer 

has been placed between the sensor and the aluminum body. The setup with heat-resistant paint or a gap as insulation is 

shown in Fig. 4. The paint insulation has a thickness of about 0.02 mm where the outer side of the thermocouple is 

coated with Super-Therm heat-resistant paint. The gap, which uses air as insulation, has a thickness of about 0.2 mm. 

Because the heat-resistant paint and the air gap have a very small heat conductivity, they significantly reduce the heat 

transfer between sensor and model. The corresponding results are shown in Fig. 4 and indicate that the gap results in the 

same heat flux as the 304 stainless steel  material, which is regarded as reference heat flux. The paint insulation results in 

a smaller heat flux than the 304 material but a higher one than the 7075 material. This result is expected, since the higher 

the thermal resistance of the insulation layer, the less heat is transferred between sensor and model. The air gap blocks 

most of the lateral heat flux whereas the paint insulation only blocks part of it.  
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From these results it can be concluded that test model materials with obvious different thermal properties as the 

sensor ones significantly affect the heat transfer measuring accuracy. Unfortunately, these experiments cannot 

demonstrate the heat energy exchange between sensor and model in detail and the experimental setup did not allow a 

time resolution in the millisecond range. However, they clearly show at least qualitatively the influence of lateral heat 

conduction. Thus, further investigations using numerical simulations were carried out. 

 

Fig. 4 Heat flux histories for a paint and air gap insulation. 

III. Numerical Simulations 

A. Simulation Methodology 

To provide a valuable complement to the experimental results and to better understand the heat exchange between 

sensor and model, especially for the first several milliseconds, numerical simulations have been conducted because of its 

easier operation and detailed information. The governing equation employed is the axisymmetric unsteady heat 

conduction equation: 

 
2 2

2 2
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i i

kT T T T

t c r rx r
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where x and r are the axial and radial coordinates of the physical space; ρ, c and k are the density, heat capacity and 

heat conductivity of the material, T and t are the temperature and time, respectively. The subscripts 1 and 2 denote the 

sensor and the model, respectively. Eq. (3) is solved using a finite difference method for the spatial discretization and a 

fourth order Runge-Kutta method for time integration [21].  

As in the experiments, the simulated model wall has a thickness of 10 mm and a cylindrical shape with 28 mm 

diameter. Considering the axial symmetry of the computational model, half of the geometry has been considered as 

shown in Fig. 5. The radius of the sensor is indicated by rs and given by 0.95 mm. Structured grids are applied; the zones 

near the surface and the sensor/model interface are incorporated with clustered points to provide good spatial resolution. 

A grid convergence study was conducted for three different grid resolutions (401×401, 601×601 and 801×801 grid points) 

and aluminum as model material. There was a negligible difference of the junction heat flux normalized by the loading 
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heat flux for all grids as shown in Fig. 6. Finally, the grid with 601×601 grid points was employed for the present study. 

It is worth to mention that Fig. 6 shows the same peak heat flux behavior at the beginning of the thermal loading as the 

experiment shown in Fig. 3. 

The initial temperature of the sensor is set to T∞ = 295 K for the calculation. Since the heat transfer rate from the 

radiator to the sensor is constant in the experiments, for the simulations a constant heat flux q  is also uniformly applied 

on the top surface, i.e., 
0

w

x i

qT

x k

 
 

 
 (i = 1, 2), 0t  . The other boundary conditions are shown in Fig. 5. An adiabatic 

boundary condition is applied to the right and lower boundaries including the model and sensor, and a symmetric 

boundary condition for the left. In addition, temperature and heat flux satisfy the continuity condition at the interface 

between the two different materials. 

 

            

Fig. 5 Schematic drawing of the simulated model 

(not to scale, units in mm). 

Fig. 6 Junction heat flux for three grid resolutions. 

To provide theoretical guidance for the thermomechanical design of models and to obtain the best solution for 

high accuracy heat transfer measurements, four materials have been considered: stainless steel (304), carbon steel 

(0.5 % C), aluminum (7075), and polyamide (PA6), where the first three are commonly used. Aluminum is of 

special interest as mentioned above for large wind tunnel models. The physical material parameters used in the 

calculations are shown in Table 1. For the considered short times, i.e. small temperature changes, these parameters 

are assumed to be constant with temperature. Considering the very close properties of chromel and constantan for a 

type-E coaxial thermocouple and for simplification in computation, the parameters of constantan are chosen to 

represent the sensor. The sensor junction in the experiments and numerical simulations is located at half of the 

sensor radius, as shown in Fig. 5. Since the thickness of the insulation layer between chromel and constantan is 

approximately 10 μm, it is acceptable to fix the junction position at one grid point at this position for which the heat 

flux is determined. 

B. Comparison with Experimental Results 
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As in the experiments, the heat flux 
wq  = 0.72×104 W/m2 is used as the loading heat flux on the top surface in the 

following simulations. A comparison between experimental and numerical data for the junction temperature and the 

heat flux derived from Eq. (1) is shown in Fig. 7 for aluminum as model material. The results show a good 

agreement between experimental and numerical results for both of them. It needs to be noted that there would be 

heat diffusion from the sensor to the air on the bottom side in our experiments. However, since the air has very small 

heat conductivity, the heat diffusion is negligible for the top surface heat transfer calculation. This can be also 

verified in Fig. 4 that the air gap blocks the lateral heat flux and results in the same heat flux as the 304 stainless 

steel material. In case of the air gap insulation the thermocouple has no thermal contact to the model material. But in 

case of the stainless steel model it has. Since in both cases the same heat flux level is achieved, the different type of 

sensor installation, especially at the bottom wall, is of no influence. As mentioned above, due to the low heat 

conductivity of air, the heat transfer from the model into the air is very small. Therefore, the adiabatic boundary 

condition is applied on the bottom side for all cases. 

                       

Fig. 7 Comparison of experimental and numerical results. (a) surface temperature, (b) heat flux. 

Figure 8 shows the simulated temperature distribution inside and on the top surface of the sensor for aluminum 

as model material at the moment of t = 70 ms. As expected, a more complicated heat conduction process inside the 

model takes place. First, the temperature along the top surface of the computing model is not constant and the larger 

ρck value of aluminum results in a lower surface temperature than for the sensor. However, the heat transfers faster 

within the aluminum in the x-direction than along the sensor, which results in higher temperature than for the sensor 

at the bottom regions, as shown exemplarily for x = 1.28 mm in Fig. 8(b). Thus, the thermal environment of the 

sensor is complex; dissipating energy laterally to the model at the surface region, but absorbing heat from its bottom 

neighbor, as indicated by the arrows in Fig. 8(a); this complexity certainly affects the temporal changes in the 

junction temperature that is of interest for the heat flux measurements. These findings disagree with the assumption 

of one-dimensional heat transfer due to the different thermo-physical parameters of aluminum 7075 and the sensor 

material. Therefore, Eq. (1) derived by a solution of the transient one-dimensional heat conduction equation is 

inappropriate here and leads to a significant error in the experiments as shown for the initial measuring phase for 

aluminum in Fig. 3.  
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Fig. 8 Temperature distribution for aluminum as model material at 70 ms. (a) temperature field inside the 

model, (b) temperature distribution at x = 0 (model surface), x = 0.09 mm and x = 1.28 mm. 

 

Additionally, since the thickness of the model is 10 mm, it takes about 200 ms for the heat energy to transfer 

from the aluminum surface to the bottom due to its high heat conductivity [19]. However, this time interval is much 

longer for the other materials with smaller heat conductivity shown in Table 1. The average temperature increase 

after about 200 ms can be estimated as wqT

t cl





, where l is the model wall thickness. This shows that the 

temporal temperature gradient is higher for aluminum than for the sensor due to its smaller ρc value. The energy 

transfer rate from the sensor to the model subsequently decreases over time. This is the reason for the heat flux 

increase for the aluminum material in Fig. 2 after about 12 seconds. Nevertheless, our concern is the heat transfer in 

impulse facilities, especially in shock tunnels, where the effective test time is usually no longer than 100 ms. 

Therefore, in the following the discussion is mainly focused on this time period.  

C. Numerical study of the influence of the model material 

In this chapter the time-dependent influence of the model material is studied by numerical simulations. For this, 

the heat flux ratio 
j wq q  is considered, where the heat flux wq  represents the heat flux loading on the sensor and 

model surface and 
jq  is derived from the junction temperature as in the experiments. It is noteworthy that although 

the magnitude of wq  affects the temperature increase (as seen from Eq. (2)), or, the temperature difference between 

sensor and model increases with a higher wq . However, it has no influence on the non-dimensional value of 
j wq q  in 

the present study, as shown in Fig. 9. Thus, a higher heat flux loading than 0.72×106 W/m2 is used to obtain a more 

significant surface temperature increase in the following calculations. This finding also indicates that the results and 

conclusions are independent for the transient heat transfer measurement from the absolute heat flux loading. Also to 

note is that the heat flux loading wq is constant with time, which is a reasonable approximation for heat transfer 

measurements during the effective test time of impulse facilities.  
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Fig. 9 Heat flux ratio 
j wq q  versus time for different heat flux loading; model material aluminum. 

Figure 10 shows the heat flux ratio for the sensor (diameter of 1.9 mm) installed in different model materials. 

During the first period of time when 
j wq q  approaches 1 for all materials, the model material has negligible effect on 

the junction temperature or heat flux. For the considered sensor diameter this period lasts for about 5 ms. If the test 

time of an impulse facility is within this period, there is no need to consider the influence of the model material or 

lateral heat conduction while conducting heat flux measurements. After this period, the different materials result in 

different heat fluxes. The PA6 yields a higher heat flux than the loading heat flux, 
j wq q  increases over time with a 

deviation of about 11.2 % after 100 ms. In contrary, aluminum and carbon steel result in lower heat fluxes with a 

deviation of about 20.5 % and 13 % after 100 ms, respectively. Fig. 11 shows the temperature distribution on the top 

surface of the model at t = 100 ms. Polyamide results in a higher surface temperature than the sensor, aluminum and 

carbon steel to a lower one, which is in agreement with the discussion in section 2.2. Thus, polyamide transfers 

energy to the sensor at the surface leading to higher junction temperature and therewith larger heat flux, whereas 

aluminum and carbon steel absorb heat from the sensor leading to lower heat fluxes. This deviates from the one-

dimensional heat conduction assumption as expected and therefore leads to an inaccuracy of the deduced heat flux. 

                         

Fig. 10 Heat flux ratio 
j wq q  versus time for 

different model materials. 

Fig. 11 Surface temperature distribution at t = 100 

ms. 
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As expected, the ratio 
j wq q  for stainless steel is fairly close to one, which means the influence of this model 

material on the measuring accuracy is very small (less than 1 %). In addition, it indicates that the approach of using 

the heat flux for the stainless steel model as the heat flux loading for the numerical simulations is reasonable. Thus, 

it is recommended to use stainless steel as model material whenever high-accuracy heat transfer measurements are 

desired.  

D. Engineering-based approach 

As described above, the use of aluminum as model material is of certain advantage but would lead to problems 

for testing times longer than 5 ms or small sensor diameters. The air gap insulation shown in Fig. 4 is able to solve 

this problem for the considered case of a radiative heat flux source where there is no gas flow. However, for a wind 

tunnel model the gap would affect the local surface of the model, it substantially would disturb the gas flow passing 

the sensors leading to experimental inaccuracy, and with ongoing time it would be obstructed by small particles, 

which are always present in the flow. To overcome these problems, it is recommended to place the thermocouple 

into a stainless steel tube, which in fact increases the distance between the junction and the sensor’s cylindrical outer 

wall. The influence of this combination on the measuring accuracy has been studied by numerical simulation.  

 

Fig. 12 Schematic diagram of the sensor with stainless steel tube installed into an aluminum model (not to 

scale, units in mm). 

In Fig. 12, r304 is the radius of the stainless steel tube and rs = 0.95 mm is the radius of the sensor. r304 is varied to 

2 mm, 3 mm, and 4 mm, respectively. The heat flux ratio 
j wq q  and surface temperature distributions are shown in 

Fig. 13 and Fig. 14. It is apparent that the stainless steel tube effectively solves the problem of severe lateral heat 

conduction in aluminum models. Within 40 ms, the ratio 
j wq q  and therewith the heat flux is the same for all three 

tube radii. After this time, the heat flux for the 2 mm tube decreases over time, whereas the other two remain 

constant. However, even the tube with 2 mm radius results in a measuring deviation less than 2 % after 100 ms. The 

deviation is less than 1 % for the 3 mm and 4 mm cases. Thus, a stainless steel tube with an outer radius of 3 mm or 

larger is fully sufficient for 100 ms test time allowing to combine the advantages of stainless steel for heat transfer 

measurements and of aluminum as model material.   
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Fig. 13 Heat flux ratio 
j wq q  versus time for three 

different tube radii.  

Fig. 14 Surface temperature distribution at t = 100 

ms. 

 Since the ck value of 304 is quite close to that of the sensor as shown in Table 1, the stainless steel tube has 

the similar effect as enlarging the diameter of thermocouple. Ultimately, the larger the sensor, the larger the distance 

is between the sensor junction and the test model, and the smaller the impact is of the lateral heat conduction on the 

junction temperature. It can also be concluded that a coaxial thermocouple with an inner constantan wire of small 

diameter is better suited to locate the junction further away from the surrounding test model material. These 

observations suggest that the model material, the test time of the facility and the sensor diameter should be taken 

into consideration whenever high-accuracy heat transfer measurements are desired. 

IV.   Conclusion 

This study shows by experiments and numerical simulations the influence of the model material on the accuracy 

of transient heat transfer measurements performed with coaxial surface thermocouples. The different thermal 

properties of the sensor and the model material lead to lateral heat conduction between both. Consequently, the 

thermal behavior of the sensor deviates from the commonly used one-dimensional heat conduction model. Within a 

certain period of time, which is mainly determined by the sensor diameter, this lateral heat conduction has negligible 

effect on the measuring accuracy. Beyond this period, it leads to an inaccuracy except for stainless steel as model 

material, which has thermal properties similar to those of the considered type-E coaxial thermocouple. There is no 

doubt that stainless steel is the optimal choice as model material. Polyamide results in higher heat fluxes than the 

real heat flux. The deviation increases over time reaching about 11.2 % after 100 ms. In contrast, aluminum and 

carbon steel lead to lower heat fluxes with a deviation of about 20.5 % and 13 %, respectively. The results also 

show, the smaller the sensor diameter, the more severe is the deviation. For aluminum as wind tunnel model 

material, which has the advantages of relatively low weight and excellent machining properties, a stainless steel tube 

with an outer radius of 3 mm or larger is recommended to cover the coaxial thermocouple. In this case highly 

accurate heat flux measurements are possible even for long testing times of about 100 ms. In short, the lateral heat 
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conduction between the sensor and model has to be taken into consideration to ensure reliable heat transfer 

measurements. 
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Highlights 
 

 

1 Different model materials result in different heat flux rates in experiments 

2 Lateral heat conduction between sensor and materials exists due to their different thermal 

properties  

3 Stainless steel (304) is suggested as model material in impulse facilities 

4 A stainless steel tube is effective to improve the performance of aluminum models  

 

 

 


