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Combined Effect of Pressure
and Shear Stress on Penny-
Shaped Fluid-Driven Cracks
Penny-shaped fluid-driven cracks are often detected in many fluid–solid interaction prob-
lems. We study the combined effect of pressure and shear stress on the crack propagation
in an impermeable elastic full space. Boundary integral equations are presented, by using
the integral transform method, for a penny-shaped crack under normal and shear
stresses. The crack propagation criterion of stress intensity factor is examined with the
strain energy release rate. Dominant regimes are obtained by using a scaling analysis.
Asymptotic solution of the toughness-dominant regime is derived to show the effect of
shear stress on the crack opening, crack length, and pressure distribution. The results
indicate that a singular shear stress can dominate the asymptotic property of the stress
field near the crack tip, and the stress intensity factor cannot be calculated even though
the energy release rate is finite. Shear stress leads to a smaller crack opening, a longer
crack, and a slightly larger wellbore pressure. A novel dominant-regime transition
between shear stress and pressure is found. Unstable crack propagation occurs in the
shear stress-dominant regime. This study may help in understanding crack problems
under symmetrical loads and modeling fluid–solid interactions at the crack surfaces.
[DOI: 10.1115/1.4038719]

Keywords: penny-shaped cracks, shear stress, crack propagation criterion, fluid-driven
cracks

1 Introduction

Fluid-driven cracks under symmetrical pressure and shear stress
on the crack surfaces are observed in various fluid–solid interac-
tion problems, such as magma (or water) driven cracks in the earth
crust (or glacier beds) [1–3], the fabrication of flexible structures
and electronics [4], the storage of carbon dioxide under the ground
[5,6], and hydraulic fracturing in the oil and gas industry to
enhance the production [7–15]. In the problems, a viscous fluid
flows into the channel between the crack surfaces generating sym-
metrical normal and shear stresses on the crack surfaces and fur-
ther forcing the solid to be fractured gradually. The problems are
pure mode-I because both the normal and shear stresses are sym-
metrical about the crack plane.

Most of the existing models assume that the shear stress is neg-
ligible compared to the normal stress [1–4,7,8,11,12]; however,
recent studies revealed that a singular shear stress may cause a
singular stress field with a square-root singularity, which is of the
same order as that caused by a normal stress [9,10]. This shear
stress-induced stress-singularity problem is due to the lack of
physical details near the crack tip. Physically, there is a fluid-lag
zone between the fluid tip and the crack tip [11]. The fluid-lag
zone is small and often neglected in modeling the problem. At the
crack tip, the lack of this physical detail leads to singular normal
and shear stresses acting on the crack surfaces because of the use
of lubrication theory approximation [9,12]. The asymptotic prop-
erties of displacement and stress fields change near the crack tip.

The change in the asymptotic properties of stress fields results
in the requirement of the examination of the crack propagating
criteria. One of the most often used criteria is the stress intensity
factor being equal to the fracture toughness. The calculation of
stress intensity factor relies on the square-root singularity of stress
field at the crack tip. However, a stronger singularity of stress field
may be obtained due to the shear stress [10]. Thus, the criterion of

stress intensity factor requires an examination for hydraulic frac-
turing. There are other criteria for mode-I cracks such as strain
energy release rate and J-integral. Only the strain energy release
rate is discussed because of the equivalence of the two criteria for
linear elastic materials. The strain energy release rate is calculated
as the validation of the stress intensity factor [16,17]. Owing to
the existence of shear stress acting on the crack surfaces, the con-
clusion that zero-stress intensity factor results in zero-energy
release rate may be conditionally right.

Unstable crack propagation was reported for pure mode-I
plane-strain fluid-driven cracks [10]. A negative shear stress act-
ing on the upper crack surface, which is positive on the lower
crack surface, tends to inhibit the crack. In the viscosity-dominant
regime, the crack surfaces overlap near the crack tip under the
shear stress, indicating an unstable crack propagation. Singular
stress intensity factor and energy release rate were obtained.
Either criteria are inappropriate under the assumption that the
crack is fractured straightly and steadily without a fluid lag. For
penny-shaped fluid-driven cracks that are subjected to different scal-
ing laws of crack opening, crack length and pressure [18,19], the
combined effect of symmetrical normal and shear stresses on the
stress intensity factor and strain energy release rate remains unsolved.

In this paper, the combined effect of pressure and shear stress
on fluid-driven penny-shaped cracks is analyzed. The fracturing
fluid is assumed of power-law rheology and modeled by lubrica-
tion theory. The theory of linear elastic fracture mechanics is used
to describe the deformation and fracture behavior of a brittle solid.
By using the integral transform method [4,20], the boundary inte-
gral equations of displacement and stress fields are derived. And
the shear stress-dependent stress intensity factor is derived from
the stress filed in front of the crack tip. In the toughness-dominant
regime, the crack-propagation behavior with the shear stress-
dependent stress intensity factor is analyzed by deriving an
asymptotic solution. The crack propagation criterion based on
stress intensity factor is examined with the energy release rate.
Near-crack-tip asymptotics are used in the viscosity-dominant
regime where stress intensity factor may be singular. It is found
that there can be instabilities and failures at the crack center, and
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the dominant-regime transition from shear stress to pressure is
discovered.

2 Mathematical Expression

A penny-shaped crack of length l is in the linear-elastic full
space, as shown in Fig. 1. The cylindrical coordinate system is
used such that the origin coincides with the crack center and the r-
axis is parallel to, and the z-axis is perpendicular to, the crack
plane. There are symmetrical normal and shear stresses p and s
acting on the crack surfaces and uniform compressive stress, r1,
at infinity. For convenience and without loss of generality, we
focus on the first quadrant where r> 0 and z> 0.

2.1 Fluid Flow. Lubrication theory is used to model the frac-
turing fluid with power-law rheology. Local mass conservation
gives

@w r; tð Þ
@t

þ 1

2pr

@q r; tð Þ
@r

¼ 0 (1)

where wðr; tÞ and qðr; tÞ are the distribution of crack opening and
flow rate, respectively. The relation between the flow rate, qðr; tÞ,
and pressure, pðr; tÞ, is given by

q r;tð Þ¼�sgn
@p r;tð Þ
@r

� �
4npr

C1=n2 2nþ1ð Þ=n 2nþ1ð Þ

����@p r; tð Þ
@r

w2nþ1 r; tð Þ
����

1
n

(2)

where sgnf�g is the Signum function, C and n are the flow consis-
tency index and flow behavior index, respectively. A detailed deri-
vation of Eqs. (1) and (2) is given in Appendix A. Flow rate is
pregiven at the wellbore, r ¼ 0, and at the crack tip, r ¼ lðtÞ, as

qð0; tÞ ¼ q0 and qðlðtÞ; tÞ ¼ 0 (3)

Physically, there is a wellbore and a fluid-lag zone at the center
and the tip of the crack, respectively. For a long crack, the radius
of the wellbore can be neglected [11]. It is known from Ref. [13]
that the fraction of the fluid-lag zone to the half-length of the
crack decreases quickly during the hydraulic fracturing under the
action of crustal stress, and the effect of the fluid-lag zone can be
neglected at a large time. Consequently, the details of the center
and the tip of the crack are assumed to be negligible. Global mass
conservation gives

q0t ¼ 2p
ðlðtÞ

0

wðf; tÞfdf (4)

which is dependent on Eq. (3)1. Here, Eq. (4) is used for conven-
ience. The relationship between pressure and the crack opening is
obtained, by integrating Eq. (1) with the boundary condition Eq.
(3)2 and substituting the result into Eq. (2), as

@p r; tð Þ
@r

¼�sgn

ðl tð Þ

r

@w f; tð Þ
@t

fdf

( )
C0

w2nþ1 r; tð Þ

����1r
ðl tð Þ

r

@w f; tð Þ
@t

fdf

����
n

(5)

in which C0 ¼ C� 22nþ1½ð2nþ 1Þ=2n�n. The shear stress can be
obtained by force equilibrium as

s r; tð Þ ¼
w r; tð Þ

2

@p r; tð Þ
@r

(6)

2.2 Quasi-Static Crack Propagation. By using the Hooke’s
law, r ¼ kcIþ 2lc, the equations of equilibrium are [4]

r2uþ 1

1� 2�
rc� u

r2
¼ 0 (7)

r2c ¼ 0 (8)

where c ¼ r � u is the dilatation of an infinitesimal element, �
is the Poisson’s ratio, r ¼ erð@=@r þ 1=rÞ þ ez@=@z and
r2 ¼ @2=@r2 þ ð1=rÞ@=@r þ @2=@z2.

The far-field stress can be decomposed with the superposition
method. The assumption of r1 ¼ 0 is used in the following for
convenience. The dynamic conditions on the crack surface of the
original crack problem are:

rrzðr; 0þÞ ¼
sðrÞ; r 2 ð0; lÞ
0; r 2 ðl;1Þ

(
(9)

rzzðr; 0þÞ ¼ �pðrÞ; r 2 ð0; lÞ (10)

and the related kinematic boundary condition is

uzðr; 0þÞ ¼ 0; r 2 ðl;1Þ (11)

The normal displacement is coupled with the crack opening as

uzðr; 0þÞ � uzðr; 0�Þ ¼ 2uzðr; 0þÞ ¼ w (12)

2.3 Solution to the Crack Problem. Hankel transforms are
used to solve Eqs. (7) and (8) with the boundary-condition equa-
tions (9)–(11) [10,20]. The displacement and stress components
are, therefore

ur r; zð Þ ¼ �
1

pl
1� 2�ð ÞIP10 þ 2 1� �ð ÞIT10½ � þ 1

pl
zIP11 þ zIT11ð Þ

(13)

uz r; zð Þ ¼
1

pl
2 1� �ð ÞIP00 þ 1� 2�ð ÞIT00½ � þ 1

pl
zIP01 þ zIT01ð Þ

(14)

rrr r; zð Þ ¼ �
2

p
IP01 þ 2IT01ð Þ þ 2

p
zIP02 þ zIT02ð Þ

þ 2

p
1� 2�ð Þ 1

r
IP10 þ 2 1� �ð Þ 1

r
IT10

� �

� 2

p
z

r
IP11 þ

z

r
IT11

� �
(15)Fig. 1 A penny-shaped crack driven by a viscous fluid flow

and a uniform normal stress at infinity
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rrz r; zð Þ ¼
2

p
IT11 �

2

p
zIP12 þ zIT12ð Þ (16)

rzz r; zð Þ ¼ �
2

p
IP01 �

2

p
zIP02 þ zIT02ð Þ (17)

where IPij and ITij are defined by

IPij r; zð Þ ¼
ðl

0

I ij n; r; zð Þdn
ðn

0

fp fð Þdfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � f2

p (18)

ITij r; zð Þ ¼
ðl

0

I ij n; r; zð Þndn
ðl

n

s fð Þdfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � n2

p (19)

in which the subscripts “P” and “T” represent the normal and
shear stresses, respectively, and I ij is given in Table 1. Thus, only
the infinite integrals for j¼ 0 are required to be solved. The solu-
tion for full space can be obtained, with the solution for the first
quadrant and the mirror symmetry about the crack plane.

The calculation of displacement and stress on the crack surfaces
and in front of the crack tip under symmetrical loads requires the
integrations of IP00, IP10, IP01, IT00, IT10, and IT01, according to
Eqs. (13)–(17). The solution based on iterated integrals is obtained
by substituting Eqs. (18), (19), and z¼ 0 into Eqs. (13)–(17). For
0< r< l

uz r; 0þ

 �

¼ 2 1� �ð Þ
pl

ðl

r

dnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � r2

p ðn

0

fp fð Þdfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
þ 1� 2�
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ðl

r

ndnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p ðl

n

s fð Þdfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � n2

p (20)

and for r> l
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0
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p
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d
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ðl

0

n2dnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � n2

p ðl

n
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p
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pr

ðl

0

ndn

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � n2

p ðn

0

fp fð Þdfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � f2

p
þ 4 1� �ð Þ

pr

ðl

0

n2dn

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � n2

p ðl

n

s fð Þdfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � n2

p

(21)

rzz r; 0ð Þ ¼ � 2

pr

d

dr

ðl

0

ndnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � n2

p ðn

0

fp fð Þdfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � f2

p (22)

The iterated integrals can be reduced to single integrals, which are
given in the Appendix B. By using Eq. (12), the crack opening
can be calculated with

w r; tð Þ ¼
8

pE0

ðl tð Þ

0

KP00 f; rð Þp f; tð Þdfþ 2 1� 2�ð Þ
1� �ð ÞE0

ðl tð Þ

r

s f; tð Þdf

(23)

where E0 ¼ 2l=ð1� �Þ and KP00 is defined in Appendix B.
Uniform loads acting on the crack surfaces are assumed to vali-

date Eqs. (22) and (23) and to clearly show the effect of a negative
shear stress. The analytical solution can be obtained for z¼ 0 by
integrating the normal stress of Eqs. (20) and (22) and the shear
stress on the right-hand side of Eq. (B2) as

uz r; 0þ

 �

¼ 4

pE0
p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � r2
p

þ 1� 2�

1� �ð ÞE0
s0 l� rð Þ; r 2 0; lð Þ

(24)

rzz r; 0ð Þ ¼ 2

p
p0

lffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � l2
p � arccsc

r

l

� �
; r 2 l;1ð Þ (25)

in which p0 and s0 are constant normal and shear stresses, respec-
tively. Note that the uniform normal and shear stresses do not rep-
resent the pressure and shear stress in the fluid flow. For s0 ¼ 0,
the solution degenerates to the formula of only a normal stress act-
ing on the crack surfaces [20]. It is evident that a negative shear
stress reduces the value of uz, and leads to a non-zero first deriva-
tive of uz at the crack center, i.e., for a shear stress-only problem,
the uz is negative and the upper and lower crack surfaces overlap
each other. From the contour lines and streamlines of the displace-
ment, as shown in Fig. 2, the material on the axis of symmetry
moves toward the crack surface, and the material near the crack
surfaces moves away from the crack center. According to the
boundary conditions and property of axial symmetry, ~urð0; ~zÞ ¼ 0
and ~uzð~r ; 06Þ ¼ 0 for ~r > 1, the material has the ability to “slip”
along the axes. The shear stress rotates the material counterclock-
wise for ~z > 0 and clockwise for ~z < 0. The rotation of the

Table 1 The infinite integrals with Z5z2in and Hf�g being the
Heaviside function

r> 0, z> 0 z¼ 0 r¼ 0, z> 0

I00 Im
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z2 þ r2
p H n� rf gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � r2
p n

z2 þ n2

I10 �Im
1

r

Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 þ r2
p nH r � nf g

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � n2

p 0

I01

@

@r
þ 1

r

� �
I10 � @

@z
I00

I11 � @

@r
I00 0

I02 � @2

@r2
þ 1

r

@

@r

� �
I00 @2

@z2
I00

I12 � @2

@r2
þ 1

r

@

@r
� 1

r2

� �
I10

0
Fig. 2 Displacement field under uniform shear stress on the
crack surfaces: (a) contour lines of total displacement and (b)
streamlines of the displacement vector. The dot (1,0) represents
the crack tip
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material leads to the overlap of crack surfaces. Consequently, a
negative shear stress tends to inhibit a crack.

3 Shear Stress-Dependent Stress Intensity Factor and

Energy Release Rate

There are two kinds of energy dissipations, the fracturing of the
rock and the viscous flow of the fluid, which have been fully stud-
ied [12–14,21] and reviewed by Detournay [19]. The toughness-
dominant regime represents the work done by fracturing the rock
being much more than that done by overcoming the friction of the
fluid flow; and the viscosity-dominant regime is defined con-
versely. In the two different dominant regimes, the near-crack-tip
asymptotics are different. In the toughness-dominant regime, the
viscosity of the fracturing fluid is negligible, and the square-root
singularity of the stress field at the crack tip holds. Whereas, in
the viscosity-dominant regime, the fracture toughness is negligi-
ble, and the non-square-root singularity of the stress field at the
crack tip can only be obtained with the coupling of fracture
mechanics and lubrication theory. The stress intensity factor, KI,
is commonly calculated as

KI ¼ lim
r!lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðr � lÞ

p
rzz r; 0ð Þ ¼ 2ffiffiffiffi

pl
p

ðl

0

fp fð Þdfffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � f2

p (26)

which is independent of the shear stress. Note that the hydraulic
crack is modeled as pure mode-I because the pressure and shear
stress are symmetrical about the x1-axis. Here, the near-crack-tip
properties of the boundary integral equations are studied and the
crack propagation criteria of stress intensity factor and energy
release rate are examined.

Near-crack-tip asymptotics are required to evaluate the stress
intensity if the stress intensity factor is shear stress dependent.
The asymptotic solutions of displacement and stress fields near
the crack tip are known for the stress intensity factor being non-
zero [16,17]. The hydraulic fracturing is assumed in the viscosity-
dominant regime. Thus, the stress intensity factor is assumed to
approach zero. It is known that the pressure and shear stress
depend on the rheology of the fracturing fluid [19]. To overcome
this difficulty, power-law loads are implemented separately for
either a normal stress-only or a shear stress-only problem as

p rð Þ¼ p0 1� 1þ2ePð Þ 1� r2

l2

� �eP

" #
and s rð Þ¼ s0 1� r2

l2

� �eT

(27)

In which eP and eT are arbitrary constants subjected to eP >�1/2
and eT >�1, and 1þ 2eP is used to vanish the KI. The minus sign
in front of the parentheses of Eq. (27)1 is from the fluid–solid
interaction problem [9–12], where pressure decreases and shear
stress is negative because of the fluid viscosity. According to a
numerical calculation based on the Gauss–Chebyshev quadrature
[22], there are

uz r; 0þ

 �

¼ AP 1� r2

l2

� �1þeP

þ AT 1� r2

l2

� �1þeT

þO 1� r

l

� �3=2
" #

þ O 1� r

l

� �2þeT

" #
(28)

rrr r; 0ð Þ ¼ BP

r2

l2
� 1

� �eP

þ BT

r2

l2
� 1

� �eT

þ O 1ð Þ (29)

rzz r; 0ð Þ ¼ BP

r2

l2
� 1

� �eP

þ O 1ð Þ (30)

where A’s and B’s are constants, AP and BP are positive for eP

being negative, and AT and BT are negative for a negative shear
stress.

An improper choice of the stress component, to calculate the
stress intensity factor, may lead to the exclusion of the effect of
shear stress. From Eqs. (29) and (30), it is evident that stress inten-
sity factor is conditionally influenced by shear stress. However,
rrzðr; 0Þ is zero for the pure mode-I crack and rzzðr; 0Þ is inde-
pendent of the shear stress according to Eq. (30). Thus, rrrðr; 0Þ
is used rather than rzzðr; 0Þ to calculate KI as
K0I ¼ limr!lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðr � lÞ

p
rrrðr; 0Þ, where the prime symbol is

used to distinguish from that calculated with rzzðr; 0Þ. From Eq.
(29), there is

K0I ¼
2ffiffiffiffi
pl
p

ðl

0

fp fð Þdfffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � f2

p þ
ffiffiffiffi
pl
p

BT lim
r!lþ

r2

l2
� 1

� �eTþ1=2

(31)

which is related to KI as K0I ¼ KI þ
ffiffiffi
p
p

BT limr!lþ ðr2 � l2ÞeTþ1=2
.

A negative shear stress leads to a negative value of BT and the
decrease of the total stress intensity factor. This is in accord with
the result of Sec. 2.3 that a negative shear stress tends to inhibit a
crack. For eT > �1=2, K0I ¼ KI, the use of stress intensity factor is
valid, and there is a square-root singularity of stress field at the
crack tip. For eT < �1=2, K0I is infinite and the concept of stress
intensity with a square-root stress singularity is inappropriate. For
eT ¼ �1=2, K0I can be calculated as K0I ¼ KI þ 2s0

ffiffiffiffi
pl
p

.
Compared to stress intensity factor, energy release rate is more

general to build the crack propagation criterion. Only rzzðr; 0þÞ
and uzðr; 0þÞ are needed to calculate G for mode-I crack problems
[16,17]. Using Eqs. (28) and (30), one has

G ¼ lim
Dl=l!0þ

21þePþeTC 1þ ePð ÞC 2þ eTð Þ
C 3þ eP þ eTð Þ APBT

Dl

l

� �1þePþeT

(32)

in which Dl is the distance that the crack propagates and Cð�Þ is
the Gamma function. For eP þ eT � �1, G is finite and valid in
the determination of crack growth; otherwise, G is infinite. This
criterion is looser than eT > �1=2, which is derived from stress
intensity. A positive and infinite G represents infinite energy being
needed to fracture a material, and a negative and infinite G repre-
sents an unphysical phenomenon that a spontaneous crack grows
with releasing infinite strain energy from a material.

4 The Toughness-Dominant Regime—Asymptotic

Solution

In the toughness-dominant regime, where the work done by
fracturing the rock is much more than that done by overcoming
the friction of the fluid flow, crack opening and pressure are
characterized by

ffiffiffiffiffiffiffiffiffiffi
l� r
p

and ln ðl� rÞ, respectively [12]. Accord-
ing to Eq. (6), the shear stress is O½ðl� rÞ�1=2�, which results in a
stress field of the same order as that induced by pressure. The
stress intensity factor represents the amplitude of the stress field
in the vicinity of the crack tip. As discussed in Sec. 3, it is
rational to use r11 to calculate the stress intensity factor. Assum-
ing that the mode-I fracture toughness is valid, one can use this
stress intensity factor to build the crack propagation criterion.
The criterion of crack propagation becomes, therefore

K0I ¼
2ffiffiffiffiffiffiffiffiffiffi
pl tð Þ

p ðl tð Þ

0

p f; tð Þfdfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 tð Þ � f2

q þ
ffiffiffiffiffiffiffi
p

l tð Þ

r
lim
r!l�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 tð Þ � r2

p
w r; tð Þ

� @p r; tð Þ
@r

� KIC (33)

The fluid-driven crack problem is mathematically expressed with
Eqs. (5), (6), (23), (33) and a certain initial condition such as the
initial crack length l0. Consequently, crack opening, crack length,
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and pressure are functions of r, t, C0, n, l, �, KIC, l0, and q0. The normalization scheme is chosen to be

r¼ l0
~lð~tÞ~r ; wðr; tÞ¼ el0 ~wð~r ;~tÞ; pðr; tÞ¼P~pð~r ;~tÞ and t¼ T~t (34)

where

e ¼ 4KICffiffiffiffiffiffi
pl0
p

E0
; P ¼ KIC

2

ffiffiffiffi
p
l0

r
and T ¼ 8

ffiffiffi
p
p

l
5=2
0 KIC

E0q0

(35)

Two dimensionless parameters are obtained as

~C ¼ E02nþ1qn
0C0

25nþ1l2n�1
0 K2nþ2

IC

and ~Q ¼ 1� 2�ð ÞKIC

2 1� �ð ÞE0

ffiffiffiffi
p
l0

r
(36)

which represent the ratio of viscous dissipation to the work of fracturing and the ratio of shear stress-caused crack opening to the
pressure-caused crack opening, respectively. Using the normalization scheme, one obtains

~t ¼ ~l
2ð~tÞ

ð1

0

~wð~f;~tÞ~fd~f (37)

~w ~r ; ~tð Þ ¼ ~l ~tð Þ
ð1

0

p ~f;~t

 �

KP00
~f; ~r

 �

d~f þ ~Q

ð1

~r

~w ~f;~t

 � @~p ~f; ~t


 �
@~f

d~f (38)

@~p ~r ; ~tð Þ
@~r

~w2nþ1 ~r ; ~tð Þ

¼ � ~C~l ~tð Þ 1

~r

ð1

~r

~l ~tð Þ @ ~w ~f; ~t

 �
@~t

� ~l
0

~tð Þ @ ~w ~f;~t

 �
@~f

" #
~fd~f

( )n (39)

1 ¼
ffiffiffiffiffiffiffi
~l ~tð Þ

q ð1

0

~f~p ~f;~t

 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~f

2
q d~f þ pe

2
ffiffiffiffiffiffiffi
~l ~tð Þ

p lim
~r!~l

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~l
2

~tð Þ � ~r2

q
~w ~r ; ~tð Þ @~p ~r ;~tð Þ

@~r
(40)

with the initial condition being ~lð~t0Þ ¼ 1 in which ~t0 is an unknown variable that is obtained by solving Eq. (37).
Perturbation theory is used to solve Eqs. (37)–(40), where the dependent variables are expanded with ~C as

~lð~tÞ ¼ ~l0ð~tÞ þ ~C~l1ð~tÞ þ ~C
2~l2ð~tÞ þ � � �

~wð~r ;~tÞ ¼ ~w0ð~r ; ~tÞ þ ~C ~w1ð~r ; ~tÞ þ ~C
2

~w2ð~r ; ~tÞ þ � � �

~pð~r ;~tÞ ¼ ~p0ð~r ; ~tÞ þ ~C~p1ð~r ;~tÞ þ ~C
2
~p2ð~r ;~tÞ þ � � �

8>>><
>>>:

(41)

The first two orders of the asymptotic expansions are

~l0 ~tð Þ¼ 3
2
5~t

2
5; ~w0 ~x1;~tð Þ¼ 3

1
5~t

1
5

ffiffiffiffiffiffiffiffiffiffiffiffi
1� ~r2

p
and ~p0 ~x1;~tð Þ¼ 3�

1
5~t
�1

5 (42)

and

~l1 ~tð Þ ¼ � 34

75
þ 17

31=525
~Q~t

1
5 � 6p

25
e

~w1 ~r ;~tð Þ ¼ 58

31=575
~t
�1

5 þ 7

32=550
~Q~t
�2

5 þ 34=54p
25

e~t�
1
5

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~r2
p

þ 34=52

5
~t
�1

5I ~rð Þ � 3�1=5~t
�1

5~rarccos~r � 3�2=5~t
�2

5 ~Q ln
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~r2
p

~r

~p1 ~r ;~tð Þ ¼ � 17

34=550
~Qt�

4
5 þ 37=52pe

25
~t
�3

5 þ 32=5 32þ 75 ln 2ð Þ
225

~t
�3

5

�32=5~t
�3

5
1

3
ln ~r � 1

5
ln 1� ~r2ð Þ

� �

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

(43)
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with

I ~rð Þ ¼
ð1

~r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~f

2
q

arcsin~fd~fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~f

2 � ~r2

q (44)

in which there are two dimensionless parameters, ~Q and e, which
are dependent for a known Poisson’s ratio. For ~C ¼ 0, the asymp-
totic solution degenerates to the solution to the pressure-only
model, which was obtained by Savitski and Detournay [12]. The
zeroth-order asymptotic expansion represents a penny-shaped
crack driven by an inviscid fluid and shows no new information
other than the toughness scaling [19]. The first-order asymptotic
expansion takes effect for a relatively larger value of ~C, but the
singularities always exist.

The first-order asymptotic expansion is nontrivial due to the
existence of fluid viscosity. A larger ~Q leads to a smaller crack
opening and a larger pressure at a same point near the crack cen-
ter, and the effect of a constant ~Q increases with the increase of
Poisson’s ratio. It is evident that the first-order asymptotic expan-
sions of crack opening and pressure are singular. As shown in
Figs. 3(a) and 3(c), both crack opening and pressure are singular
at the wellbore for ~Q being non-zero. The singular pressure has
been discussed in the toughness-dominant regime [11–13], and
the singularities can be removed by considering the diameter of
the wellbore and the fluid-lag zone near the crack tip. The singular
crack opening, which is limited in the vicinity of the crack center
and the crack tip, is due to the existence of shear stress. Because
the singularity of shear stress is stronger than pressure according
to Eq. (6), and a singular crack opening is obtained from the sec-
ond term on the right-hand side of Eq. (38). Even though the sin-
gularities are unphysical and removable, they indicate potential
instabilities and failures to release the concentration of stress.

According to Fig. 3(b), the existence of shear stress leads to a
positive first-order expansion of crack length at a small time and a
negative one at a large time, and the transition is smooth over
time. A plausible reason is the competition between shear stress
and stress intensity factor. In the first stage, shear stress decreases
the crack opening leading to a higher pressure drop and a lower
stress intensity factor; and in the second stage, a higher wellbore
pressure is rebuilt to fracturing the rocks leading to a larger crack
opening and a small value of shear stress. At a small time, the
effect of shear stress is dominant. A smaller crack opening is
therefore obtained, and a longer crack is fractured because of the
fluid mass conservation. At a large time, the effect of stress inten-
sity factor becomes dominant. A larger crack opening is obtained
and the first-order expansion of crack length is negative. As
shown in Fig. 4, the first-order expansion of crack opening is neg-
ative at ~t ¼ 10�6 and gradually becomes positive, and the nega-
tive crack opening at the wellbore becomes increasingly
negligible with time. Even though the small time, e.g., ~t ¼ 10�6,
is not easy to be obtained in experiments, it is meaningful in the

theoretical analysis due to the transition between the dominant
effects of shear stress and fracture toughness.

5 The Viscosity-Dominant Regime

For a full-stress model in the viscosity-dominant regime, where
the work done by fracturing the rock is much less than that done
by overcoming the friction of the fluid flow, the crack may propa-
gate unstably. The crack opening and pressure near the crack tip
are characterized by ðl� rÞ2=3

and �ðl� rÞ�1=3
, respectively, by

using a pressure-only model [12]. Shear stress is obtained from
Eq. (6) as �O½ðl� rÞ�2=3�. Consequently, there is an unconver-
gent stress intensity factor and a negatively finite strain energy
release rate according to Eqs. (31) and (32). However, crack arrest
has not been reported in the past visible experiments [21,23–25].
There should be a criterion for the shear stress-induced crack
arrest.

Here, it is demonstrated, by using scaling analysis, that crack
arrest disappears at a large dimensionless time due to the decreas-
ing effect of shear stress. In a scaling analysis, it is convenient to
neglect the other relevant physical effects for one physical effect
being dominant [26]. The physical quantities become time inde-
pendent after the self-similar transformation. For a penny-shaped
crack, a set of simplified transforms

lðtÞ ¼ LðtÞ; wðr; tÞ ¼ WðtÞ ~wð~rÞ; pðr; tÞ ¼ RðtÞ~pð~rÞ and

r ¼ LðtÞ~r (45)

are used for the scaling analysis. In Eqs. (45), LðtÞ, WðtÞ, and RðtÞ
can be either exponential or power functions [1,19], which differ
from the boundary condition of flow rate. Using the power func-
tions [12,13,15,18], one obtains from the Eqs. (5), (6), (23), and
(33) that

Fig. 3 First-order asymptotic expansion of crack opening, crack length, and pressure in the toughness-dominant regime

Fig. 4 Time evolution of the first-order asymptotic expansion
of crack opening
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V ¼ q0t

2pL2 tð ÞW tð Þ ; P ¼ 8R tð ÞL tð Þ
pE0W tð Þ ; M¼ C0Lnþ1 tð ÞW0n tð Þ

R tð ÞW2nþ1 tð Þ ;

K ¼ KIC

2R tð Þ

ffiffiffiffiffiffiffiffi
p

L tð Þ

r
and Q ¼ p 1� 2�ð ÞW tð Þ

8 1� �ð ÞL tð Þ
(46)

where V is from the mass conservation; P is from the boundary
integral of crack opening under pressure; M is from the lubrica-
tion theory; K is from the crack propagation criterion; and Q is
from the boundary integral of crack opening under shear stress.
Following Refs. [12], [18], and [19] V ¼ P ¼M ¼ 1 is used to
ensure the mass conservation and globally positive crack opening
in the viscosity-dominant regime. Consequently, there are

L tð Þ ¼ qnþ2
0 E0

C0

� � 1
3 nþ2ð Þ

t
2 nþ1ð Þ
6þ3n

W tð Þ ¼ qnþ2
0 C02

E02

 ! 1
3 nþ2ð Þ

t
2�n

6þ3n

R tð Þ ¼ C0E0
nþ1


 � 1
nþ2

t�
n

nþ2

(47)

with two dimensionless groups

K ¼ KIC

qnþ2
0 C05E06nþ7


 � 1
6 nþ2ð Þ

t
2n�1

3 nþ2ð Þ and Q ¼ 1� 2�

1� �
C0

E0

� � 1
nþ2

t�
n

nþ2

(48)

which represent the ratio of the work of fracturing rocks to vis-
cous dissipation and the ratio of shear stress-caused crack opening
to the pressure-caused crack opening, respectively. The power-
law exponents eK and eQ of Q � teQ and K � teK are shown in
Fig. 5 for various n. The temporal evolution of the two dimension-
less groups gives the dominant-regime transitions between shear
stress and pressure, and between viscosity and fracture toughness.
It is evident that for a fracturing fluid with power-law rheology,
the shear stress dominates the problem either for the flow consis-
tency index being very large or for the time being small so that Q
is sufficiently large. The two conditions are not possible to
achieve in the indoor experiments, where well-prepared rocks or
glasses were used. However, the fluid channel constructed by frac-
turing a laminated rock consists of corners, throats, and other sec-
ondary structures, which can lead to very high hydraulic
resistance, and the effect of shear stress is much underestimated in
this analysis.

The near-crack-tip stress field in the rock can be obtained from
the local properties of pressure and shear stress. Similar to the
problem of a uniform normal stress acting on the crack surfaces, a
stress component can be reduced to two separate factors, a radial
component and an angular component. The former is determined

Fig. 5 Transition of the dominant regimes with respect to the
flow behavior index

Fig. 6 Angular distribution of normalized stress components around the crack tip. The normalized distance from the crack
tip is ~q 5 1024.
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by the radial coordinate and boundary conditions, and the latter is
determined by the power-law exponent of either pressure or shear
stress. The angular component is the normalized angular distribu-
tion of the stress component, which helps in the determination of
crack deflection. A polar coordinate system is introduced at the
crack tip as

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � lÞ2 þ z2

q
; and # ¼ Argðr � lþ izÞ (49)

where Arg represents the argument of a complex number, and q is
normalized by l. By assuming power-law pressure and shear stress
distributions in Eq. (27), the stress components in the rock are cal-
culated with Eqs. (15)–(17). The normalized angular distributions
of stress components near the crack tip are plotted in Fig. 6 for
normal stress-only and shear stress-only problems. fqq, fq#, and f##
represent the normalized rqq, rq#, and r##, respectively. It is evi-
dent that rqq and r## are in tensile state for ~p ¼ 1, but there are
both tensile and compressive states for rqq and r## around the
crack tip for eP < 0. The maxima of rqq and r## are at # ¼ 0, and
the minima are near the crack surfaces. And for eP > 0, negative
stress components are obtained and in accord with Sec. 4. For
shear stress-only problems, r## is negative except for # ¼ 0 and
6p, where r## ¼ 0. This means that the material is in compres-
sive state and possible to be fractured either straightly or perpen-
dicularly to the crack surface. Note that rqq is non-zero and
minimum at # ¼ 0, where r## is zero. Consequently, the use of
r##ðq; 0Þ does not reveal the asymptotic property of the stress
field. The analysis of the near-crack-tip stress field is based on
the singularities of pressure and shear stress. Either a fluid-lag
zone or a two-dimensional flow assumption will eliminate the
singularities [10,19,27]. Even though the fluid-lag zone, or the
region of two-dimensional flow, with a negligible size influences
the distribution of the stress field slightly because the stress sin-
gularities are integrable. A global solution to the fluid-driven
crack problem with a fluid-lag zone is still needed by using the
full-stress model.

6 Conclusions

A full-stress model is proposed to analyze the combined effect
of pressure and shear stress acting on the crack surfaces for a
penny-shaped fluid-driven crack. The boundary integral equations
of displacement and stress in the full linear elastic space with
crack are derived by integral transform method. An asymptotic
solution is derived in the toughness-dominant regime.

A negative shear stress (i.e., rrzðr; 0þÞ < 0 and rrzðr; 0�Þ > 0)
leads to the decrease of the normal displacement and stress and
tends to inhibit the crack. For cracks under power-law loads, the
exponents of the power-law shear stress may change the asymp-
totic properties of the solution, which results in the change of the
order of the stress singularity at the crack tip. For problems with
nonzero shear stress acting on the crack surfaces, rrrðr; 0þÞ, rather
than rzzðr; 0þÞ, should be used to calculate the stress intensity fac-
tor, because the latter is independent of the shear stress. The crack
propagation criterion of stress intensity factor is conditionally
valid for power-law loads. The strain energy release rate is proved
to be more universal than the stress intensity factor. There are
dominant-regime transitions between shear stress and pressure,
and between fracture and viscosity. The transitions are dependent
on the flow behavior index. Unstable crack propagation occurs in
the shear stress-dominant regime. The effect of shear stress
decreases with time. Shear stress leads to a smaller crack opening,
a longer crack and a slightly larger wellbore pressure. Singular-
ities of stress components and crack opening are found at the
crack center, which reveals potential instabilities and failures at
the wellbore.

This study gives a theoretical analysis on the combined effect
of pressure and shear stress in hydraulic fracturing, and will be

useful for future investigations of the fluid–solid interaction
problems.
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Nomenclature

AP, AT, BP, BT ¼ coefficients of the asymptotic solution, sub-
scripts “K”, “P” and “T” represent stress inten-
sity factor, normal and shear stress, respectively

~C ¼ dimensionless flow consistency index
E0 ¼ 2l=ð1� �Þ

fqq, fq#, f## ¼ normalized stress components of the polar coor-
dinate system at crack tip

G ¼ energy release rate
IPij, ITij ¼ functions of r and z, subscripts “P” and “T” rep-

resent the pressure and shear stress
I ij ¼ infinite integral of the inverse Hankel transform
KI ¼ mode I stress intensity factor calculated with rzz

K0I ¼ mode I stress intensity factor calculated with rrr

KIC ¼ fracture toughness
KPij, KTij¼ kernel functions related to IPij and ITij,

respectively
K ¼ time-dependent dimensionless group of ~K0 IC
l ¼ crack length
p ¼ distribution of pressure
~Q ¼ dimensionless parameter representing the ratio

of shear-stress-caused crack opening to the
pressure-caused crack opening

Q ¼ time-dependent dimensionless group of ~Q
ur , uz ¼ displacement components

w ¼ crack opening (width of the fluid channel)
c, c ¼ strain tensor and its trace

C ¼ Gamma function
e ¼ dimensionless parameter

l, � ¼ Shear modulus and Poisson’s ratio
r, rrr , rrz, rzz ¼ stress tensor and its components
rqq, rq#, r## ¼ stress components of the polar coordinate sys-

tem at crack tip
r1 ¼ uniform stress at infinity

s ¼ distribution of shear stress
The symbol “�” above a variable represents
that the variable is dimensionless

Appendix A: Derivation

Here, Eqs. (1) and (2) are derived. The viscous flow in the
very thin channel between the crack surfaces is approximately
one-dimensional. Pressure is, therefore, the function of coordi-
nate r and time only. The balance of force in the fracturing
fluid is

@p r; tð Þ
@r

¼ @s r; z; tð Þ
@z

(A1)

Using the Ostwald–de Waele relationship,
s ¼ Csgnf@vz=@zgj @vz=@zjn, Eq. (A1) is converted into

@p r; tð Þ
@r

¼ C
@

@z
sgn

@vz r; z; tð Þ
@z

� ����� @vz r; z; tð Þ
@z

����
n

" #
(A2)
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The mass conservation holds due to no sink and source inside the
channel. Consequently, there is

1

r

@

@r
rvr r; z; tð Þ½ � þ

@vz r; z; tð Þ
@z

¼ 0 (A3)

Equations (A2) and (A3) are the governing equations of the vis-
cous fluid flow. The integration of Eqs. (A2) and (A3) requires
velocity boundary conditions. Using the symmetry of the geome-
try, one has

vr r;�w r; tð Þ
2

; t

� �
¼ vr r;

w r; tð Þ
2

; t

� �
¼ @vr r; 0; tð Þ

@z
¼ 0 (A4)

vz r;
w r; tð Þ

2
; t

� �
¼ �vz r;�w r; tð Þ

2
; t

� �
¼ 1

2

@w r; tð Þ
@t

(A5)

Integrating Eq. (A2) twice across the fluid channel with Eq. (A4),
and Eq. (A3) across the fluid channel with Eq. (A5) gives

vr r; z; tð Þ ¼
n

nþ 1
� 1

C
sgn

@p r; tð Þ
@r

� ����� @p r; tð Þ
@r

����
 !1

n

� w r; tð Þ
2

� �1þ1
n

� z1þ1
n

( )
(A6)

1

r

@

@r
r

ðw r;tð Þ=2

�w r;tð Þ=2

vr r; z; tð Þdz

" #
þ @w r; tð Þ

@t
¼ 0 (A7)

The flow rate across a section of the fluid channel, i.e., a cylin-
drical surface with its radius being r and its height being wðr; tÞ, is
defined by

qðr; tÞ ¼ 2pr

ðwðr;tÞ=2

�wðr;tÞ=2

vrðr; z; tÞdz (A8)

Thus, Eqs. (A6) and (A7) are rewritten as

q r;tð Þ¼�sgn
@p r;tð Þ
@r

� �
4npr

C1=n2 2nþ1ð Þ=n 2nþ1ð Þ

����@p r; tð Þ
@r

w2nþ1 r; tð Þ
����

1
n

(A9)

@w r; tð Þ
@t

þ 1

2pr

@q r; tð Þ
@r

¼ 0 (A10)

Appendix B: Single Integral-Based Solution for z 5 0

The iterated integral-based solution can be reduced to single
integral based solution by changing the order of integration. There
are, for 0< r< l

ur r; 0þ

 �

¼ � 1� 2�

2lr

ðr

0

fp fð Þdfþ 2 1� �ð Þ
pl

ðr

0

KT10 f; rð Þs fð Þdf

(B1)

uz r; 0þ

 �

¼ 2 1� �ð Þ
pl

ðl

0

KP00 f; rð Þp sð Þdsþ 1� 2�

2l

ðl

r

s fð Þdf (B2)

rrr r;0þ

 �

¼�p rð Þþ1�2�

r2

ðr

0

fp fð Þdf

þ 4

pr

ð1

0

KT11 f;rð Þs fð Þdf�4 1��ð Þ
pr

ðl

0

KT10 f;rð Þs fð Þdf

(B3)

and for r> l

ur r; 0ð Þ ¼ 1� 2�

plr

ðl

0

arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � l2

l2 � f2

s
� p

2

0
@

1
Afp fð Þdf

þ 2 1� �ð Þ
p

ðr

0

KT10 f; rð Þs fð Þdf (B4)

rrr r; 0ð Þ ¼ 2

p
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � l2
p

ðl

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � f2

p
r2 � f2

fp fð Þdf

þ 2 1� 2�ð Þ
pr2

ðl

0

p
2
� arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � l2

l2 � f2

s0
@

1
Afp fð Þdf

þ 4

pr

ð1

0

KT11 f; rð Þs fð Þdf� 4 1� �ð Þ
pr

ðl

0

KT10 f; rð Þs fð Þdf

(B5)

rzz r; 0ð Þ ¼ 2

p
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � l2
p

ðl

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � f2

p
r2 � f2

fp fð Þdf (B6)

where the kernel functions

KP00 f; rð Þ ¼

f
r

F arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � r2

l2 � f2

s
;
f2

r2

0
@

1
A; f 2 0; rð Þ

F arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � f2

l2 � r2

r
;
r2

f2

 !
; f 2 r; lð Þ

8>>>>>>><
>>>>>>>:
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KT10 f; rð Þ ¼
E

f2

r2

� �
�K

f2

r2

� �
; f 2 0; rð Þ

f
r

E
r2

f2

 !
�K

r2

f2

 !" #
; f 2 r; lð Þ

8>>>>><
>>>>>:

(B8)

KT11 f; rð Þ ¼

r2

r2 � f2
E

f2

r2

� �
�K

f2

r2

� �
; f 2 0; rð Þ

rf

r2 � f2
E

r2

f2

 !
; f 2 r; lð Þ

8>>>>><
>>>>>:

(B9)

are the finite integrals obtained by changing the order of IPij and
ITij. Fð�; �Þ, Eð�Þ, and Kð�Þ are the incomplete elliptic integral of
the first kind, the complete elliptic integral of the first kind and the
incomplete elliptic integral of the second kind, respectively. Note
that stress singularities may exist at the crack tip and crack center.
Thus, the solutions at the two points are obtained with, for dis-
placement, r ! 0þ and r ! l�, and for stress, r ! 0þ and
r ! lþ.

References
[1] Spence, D. A., and Sharp, P., 1985, “Self-Similar Solutions for Elastohydrody-

namic Cavity Flow,” Proc. R. Soc. London, Ser. A, 400(1819), pp. 289–313.
[2] Tsai, V. C., and Rice, J. R., 2010, “A Model for Turbulent Hydraulic Fracture

and Application to Crack Propagation at Glacier Beds,” J. Geophys. Res. Earth
Surf., 115(F3), p. F03007.

[3] Lister, J. R., and Ross, C. K., 1991, “Fluid-Mechanical Models of Crack Propa-
gation and Their Application to Magma Transport in Dykes,” J. Geophys. Res.
Solid Earth, 96(6), pp. 10049–10077.

[4] Yang, F. Q., and Zhao, Y. P., 2016, “The Effect of a Capillary Bridge on the
Crack Opening of a Penny Crack,” Soft Matter, 12(5), pp. 1586–1592.

[5] Verdon, J. P., Kendall, J. M., Stork, A. L., Chadwick, R. A., White, D. J., and
Bissell, R. C., 2013, “Comparison of Geomechanical Deformation Induced by
Megatonne-Scale CO2 Storage at Sleipner, Weyburn, and in Salah,” Proc. Natl.
Acad. Sci. U. S. A., 110(30), pp. 2762–2771.

[6] Vasco, D., Rucci, A., Ferretti, A., Novali, F., Bissell, R., Ringrose, P., Mathie-
son, A., and Wright, I., 2010, “Satellite-Based Measurements of Surface

Journal of Applied Mechanics MARCH 2018, Vol. 85 / 031003-9

Downloaded From: https://appliedmechanics.asmedigitalcollection.asme.org on 04/10/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

http://dx.doi.org/10.1098/rspa.1985.0081
http://dx.doi.org/10.1029/2009JF001474
http://dx.doi.org/10.1029/2009JF001474
http://dx.doi.org/10.1029/91JB00600
http://dx.doi.org/10.1029/91JB00600
http://dx.doi.org/10.1039/C5SM02643A
http://dx.doi.org/10.1073/pnas.1302156110
http://dx.doi.org/10.1073/pnas.1302156110


Deformation Reveal Fluid Flow Associated With the Geological Storage of
Carbon Dioxide,” Geophys. Res. Lett., 37(3), p. L03303.

[7] Abe, H., Mura, T., and Keer, L. M., 1976, “Growth-Rate of a Penny-Shaped
Crack in Hydraulic Fracturing of Rocks,” J. Geophys. Res., 81(29), pp.
5335–5340.

[8] Dong, X., Zhang, G., Gao, D., and Duan, Z., 2017, “Toughness-Dominated
Hydraulic Fracture in Permeable Rocks,” ASME J. Appl. Mech., 84(7), p. 071001.

[9] Mishuris, G., Wrobel, M., and Linkov, A., 2012, “On Modeling Hydraulic Frac-
ture in Proper Variables: Stiffness, Accuracy, Sensitivity,” Int. J. Eng. Sci., 61,
pp. 10–23.

[10] Shen, W. H., and Zhao, Y. P., 2017, “Quasi-Static Crack Growth Under Sym-
metrical Loads in Hydraulic Fracturing,” ASME J. Appl. Mech., 84(8),
p. 081009.

[11] Geertsma, J., and de Klerk, F., 1969, “A Rapid Method of Predicting Width and
Extent of Hydraulically Induced Fractures,” J. Pet. Technol., 21(12), pp.
1571–1581.

[12] Savitski, A. A., and Detournay, E., 2002, “Propagation of a Penny-Shaped
Fluid-Driven Fracture in an Impermeable Rock: Asymptotic Solutions,” Int. J.
Solids Struct., 39(26), pp. 6311–6337.

[13] Bunger, A. P., and Detournay, E., 2007, “Early-Time Solution for a Radial
Hydraulic Fracture,” J. Eng. Mech., 133(5), pp. 534–540.

[14] Garagash, D. I., and Detournay, E., 2000, “The Tip Region of a Fluid-Driven
Fracture in an Elastic Medium,” ASME J. Appl. Mech., 67(1), pp. 183–192.

[15] Garagash, D. I., Detournay, E., and Adachi, J. I., 2011, “Multiscale Tip
Asymptotics in Hydraulic Fracture With Leak-Off,” J. Fluid Mech., 669, pp.
260–297.

[16] Lawn, B., 1993, Fracture of Brittle Solids, Cambridge University Press, Cam-
bridge, UK.

[17] Zhao, Y. P., 2016, Modern Continuum Mechanics, Science Press, Beijing,
China (in Chinese).

[18] Detournay, E., 2004, “Propagation Regimes of Fluid-Driven Fractures in Imper-
meable Rocks,” Int. J. Geomech., 4(1), pp. 35–45.

[19] Detournay, E., 2016, “Mechanics of Hydraulic Fractures,” Annu. Rev. Fluid
Mech., 48, pp. 311–339.

[20] Sneddon, I. N., and Lowengrub, M., 1969, Crack Problems in the Classical
Theory of Elasticity, Wiley, New York.

[22] Yang, F., 1998, “Indentation of an Incompressible Elastic Film,” Mech. Mater.,
30(4), pp. 275–286.

[21] Bunger, A. P., and Detournay, E., 2008, “Experimental Validation of the Tip
Asymptotics for a Fluid-Driven Crack,” J. Mech. Phys. Solids, 56(11), pp.
3101–3115.

[23] Lai, C. Y., Zheng, Z., Dressaire, E., Ramon, G. Z., Huppert, H. E., and Stone,
H. A., 2016, “Elastic Relaxation of Fluid-Driven Cracks and the Resulting
Backflow,” Phys. Rev. Lett., 117(26), p. 268001.

[24] Lai, C. Y., Zheng, Z., Dressaire, E., Wexler, J. S., and Stone, H. A., 2015,
“Experimental Study on Penny-Shaped Fluid-Driven Cracks in an Elastic
Matrix,” Proc. R. Soc. A., 471(2182), p. 20150255.

[25] Lecampion, B., Desroches, J., Jeffrey, R. G., and Bunger, A. P., 2017,
“Experiments Versus Theory for the Initiation and Propagation of Radial
Hydraulic Fractures in Low-Permeability Materials,” J. Geophys. Res: Solid
Earth, 122(2), pp. 1239–1263.

[26] Zhao, Y. P., 2014, Nano and Mesoscopic Mechanics, Science Press, Beijing,
China (in Chinese).

[27] Bui, H. D., 1977, “An Integral Equations Method for Solving the
Problem of a Plane Crack of Arbitrary Shape,” J. Mech. Phys. Solids, 25(1), pp.
29–39.

031003-10 / Vol. 85, MARCH 2018 Transactions of the ASME

Downloaded From: https://appliedmechanics.asmedigitalcollection.asme.org on 04/10/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

http://dx.doi.org/10.1029/2009GL041544
http://dx.doi.org/10.1029/JB081i029p05335
http://dx.doi.org/10.1115/1.4036475
http://dx.doi.org/10.1016/j.ijengsci.2012.06.005
http://dx.doi.org/10.1115/1.4036988
http://dx.doi.org/10.2118/2458-PA
http://dx.doi.org/10.1016/S0020-7683(02)00492-4
http://dx.doi.org/10.1016/S0020-7683(02)00492-4
http://dx.doi.org/10.1061/(ASCE)0733-9399(2007)133:5(534)
http://dx.doi.org/10.1115/1.321162
http://dx.doi.org/10.1017/S002211201000501X
http://dx.doi.org/10.1061/(ASCE)1532-3641(2004)4:1(35)
http://dx.doi.org/10.1146/annurev-fluid-010814-014736
http://dx.doi.org/10.1146/annurev-fluid-010814-014736
http://dx.doi.org/10.1016/S0167-6636(98)00035-0
http://dx.doi.org/10.1016/j.jmps.2008.08.006
http://dx.doi.org/10.1103/PhysRevLett.117.268001
http://dx.doi.org/10.1098/rspa.2015.0255
http://dx.doi.org/10.1002/2016JB013183
http://dx.doi.org/10.1002/2016JB013183
http://dx.doi.org/10.1016/0022-5096(77)90018-7

	s1
	aff1
	l
	s2
	s2A
	FD1
	FD2
	FD3
	FD4
	FD5
	FD6
	s2B
	FD7
	FD8
	FD9
	FD10
	FD11
	FD12
	s2C
	FD13
	FD14
	FD15
	1
	FD16
	FD17
	FD18
	FD19
	FD20
	FD21
	FD22
	FD23
	FD24
	FD25
	1
	2
	s3
	FD26
	FD27
	FD28
	FD29
	FD30
	FD31
	FD32
	s4
	FD33
	FD34
	FD35
	FD36
	FD37
	FD38
	FD39
	FD40
	FD41
	FD42
	FD43
	FD44
	s5
	FD45
	FD46
	3
	4
	FD47
	FD48
	5
	6
	FD49
	s6
	APP1
	FDA1
	FDA2
	FDA3
	FDA4
	FDA5
	FDA6
	FDA7
	FDA8
	FDA9
	FDA10
	APP2
	FDB1
	FDB2
	FDB3
	FDB4
	FDB5
	FDB6
	FDB7
	FDB8
	FDB9
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27

