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Thermocapillary convection appears in many polymer processing operations. In order to understand the
effect of gravity for its stability, three-dimensional linear stability analysis is performed for a viscoelastic
fluid. The critical Marangoni number is derived as a function of Bond number, Prandtl number and elas-
ticity. When the Prandtl number is large, the increasing of gravity effect often makes the flow more
stable, and the coupling of gravity to elasticity and thermocapillary force excites many different kinds
of preferred modes. For small Prandtl number, the flow is always destabilized by gravity effect. The work
done by gravity becomes a new energy source for perturbation. However, it can be either positive or neg-
ative, which is not directly related to the variation of critical Marangoni number with gravity. The effect
of gravity on the instability mechanism and the properties of preferred modes are demonstrated for dif-
ferent elasticity.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Thermocapillary flow refers to the surface-tension-driven con-
vection in the fluid layer submitted to a horizontal temperature
gradient. It has been an active topic of research for its great prac-
tical importance in many industrial applications, such as fusion
welding [1] and crystal growth techniques [2]. In the theoretical
studies, the model proposed by Smith &Davis [3] has been widely
used, where the fluid layer above an infinite flat plane is set in
motion by the a horizontal temperature gradient on the surface.
The oblique hydrothermal waves predicted in their work have
been observed both in the experiment [4] and numerical simula-
tion [5].

This model has also been used in the study of thermocapillary
flow in the presence of gravity. Garr-Peters [6] has performed lin-
ear stability analysis for surface-tension driven fluid layer subject
to buoyant forces. The free surface is facing either upward or
downward while the Prandtl numbers considered include
0:01 6 Pr 6 10. It was shown that the gravity destabilizes the flow
for small Prandtl numbers. Parmentier et al. [7] have examined the
stability of coupled buoyancy and thermocapillary driven convec-
tion in thin fluid layers for 0:01 6 Pr 6 7. The presence of travelling
rolls is exhibited. Mercier and Normand [8] have studied the linear
stability of buoyant-thermocapillary liquid layers for Pr ¼ 7. The
transition between stationary and oscillatory modes found in the
experiment of Daviaud and Vince [9] is observed when the heat
transfer at the free surface is introduced. Chan and Chen [10] have
carried out linear stability analysis of the thermocapillary fluid
layer with the effect of gravity included for Pr ¼ 13:9. The results
compare favorably with the experiment conducted by Riley and
Neitzel [4]. The critical Marangoni number increases with Grashof
number (a measure of gravity) while the preferred mode changes
from oblique wave to transverse wave.

It should be noted that the model used above is very different
from the Benard-Marangoni convection [11] although gravity and
thermocapillary forces exist in both of them. For the latter, the
fluid layer is heated from below. However, for the former, the bot-
tom has zero heat flux. A horizontal temperature gradient is
imposed on the fluid surface, and there is an inclined temperature
gradient with both a horizontal and a vertical component in the
fluid layer.

The thermocapillary flows for polymer liquids have also
received much attention for its applications in film coating
[12], drying of polymer solution [13,14], dewetting [15] and
polymer processing [16,17]. It is worth noting that polymer
liquids are often viscoelastic fluids, whose flow properties are
very different from those of Newtonian fluids. The effect of
elasticity should be considered in the study of thermocapillary
flows for polymer liquids.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2018.02.088&domain=pdf
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A few investigations have been undertaken to study the stabil-
ity of viscoelastic thermocapillary liquid layers. The influence of
thermocapillary forces on the buoyancy-driven viscoelastic fluid
layer has been demonstrated by Kaloni & Lou with Prandtl num-
bers 10 and 100 [18]. The thermocapillary force is far less than
the buoyancy force and the perturbations they considered are
mainly transverse and longitudinal modes. Davalos-Orozco & Cha-
vez [19] have performed two-dimensional linear stability analysis
in small wave number approximation for thermocapillary convec-
tion in a viscoelastic fluid layer under a horizontal temperature
gradient. Tong et al. [20] have investigated the thermocapillar
instability of a two-dimensional viscoelastic planar liquid sheet
in surrounding gas. Hernández and Dávalos-Orozco [21] have
examined the linear viscoelastic thermal Marangoni convection.
Gravity has been neglected and the system is heated from the
lower wall. The competition between stationary and oscillatory
convection is shown. Hu et al. [22] have studied the instability of
thermocapillary liquid layers for Oldroyd-B fluid. Three kinds of
preferred modes are found in different elasticity: oblique wave,
streamwise wave and spanwise stationary mode. For the first,
the flow is stabilized by elasticity. The second has several fluctua-
tions in vertical direction. The last becomes the preferred mode
when the elasticity is high enough.

The impact of elasticity on flow stability has been demonstrated
in the above works. However, the ground experiment and process-
ing of polymer liquids are often in a normal gravity environment.
The works for thermocapillary convection of Newtonian fluid sug-
gest that the gravity has a significant impact on the flow stability
[4,10]. Thus, the clarification of gravity effect in viscoelastic ther-
mocapillary convection is also needed, which is the purpose of this
paper.

In the present work, the study of gravity effect on the stability
of thermocapillary convection has been extended from Newtonian
fluid [10] to viscoelastic fluid. The Oldroyd-B fluid is applied, which
is a viscoelastic model widely used for dilute solutions of macro-
molecules. In order to show the coupling effect of gravity, elasticity
and thermocapillary force, the flow at several Bond numbers, elas-
tic numbers and Prandtl numbers are examined. The comparisons
are made with the case without gravity [22] and the effect of grav-
ity on the instability mechanism is discussed.
2. Problem formulation

We consider the model of thermocapillary liquid layers pre-
sented by Smith and Davis [3], where the fluid on an infinite wall
is set in motion by the temperature gradient on the free surface.
The liquid is in contact with an inviscid atmosphere, and the
gravity is imposed in the vertical direction, see Fig. 1. Here a hor-
izontal temperature gradient is imposed on the surface of liquid
layer and the bottom has zero heat flux. Due to heat transfer,
there is also a vertical temperature gradient in the layer. We sup-
pose that the temperature of basic flow T0 is linear in x as
Fig. 1. Schematic of thermocapillary liquid layers in the gravity field.
imposed plus a vertical distribution Tb. The basic flow is assumed
to be parallel and u0 is the velocity. Here, d is the depth of the
layer, x is the streamwise direction, and z is the wall-normal
direction. For simplicity, we only consider the case related with
Ref. [3], where the surface tension is big enough so that the liquid
surface is non-deformable.

This is an approximate model for the convection in a fluid layer
with an upper free surface in a long tank, and a temperature differ-
ence is maintained between the two endwalls [10]. The relative
change of temperature in the liquid layer is assumed to be small.
This is true in Ref. [4] for the experiment of silicone oil, where
the temperature difference between the two endwalls is less than
10 �C while the reference temperature of the experiment is about
25 �C. Therefore, the relative changes of density, surface tension,
and dynamic viscosity are also small. The variation of density with
temperature leads to the buoyancy effect in the presence of grav-
ity, and can be measured by Bond number. The variation of surface
tension with temperature leads to the thermocapillary effect and
can be measured by Marangoni number. These two dimensionless
parameters are considered during the numerical process in the fol-
lowing. However, the variation of dynamic viscosity with temper-
ature is neglected.

2.1. Governing equations

In Ref. [10], the surface tension and density of a Newtonian fluid
in the gravity field are both assumed to vary linearly with the tem-
perature. The critical parameters of buoyant-thermocapillary flow
predicted by linear stability analysis in Ref. [10] are comparable
with the experiment [4]. This suggests that the linear relation
between the surface tension and temperature is still appropriate
for the flow in the presence of gravity. For viscoelastic fluid, it
has been observed in the experiments that the surface tension
for polymer liquid is also linear with the temperature over limited
temperature domains [23]. Therefore, we assume that the surface
tension ~r is related to the temperature ~T as ~r ¼ ~r0 � cð~T � ~T0Þ,
where c is the negative rate of change of surface tension with tem-
perature. The Reynolds number R is defined as R ¼ qUd

l , where q;l
are the fluid density, and viscosity, respectively. U is the character-
istic velocity defined as U ¼ bcd=l, b is the temperature gradient
on the surface. The characteristic temperature is bd. The Marangoni

number is defined as Ma ¼ bcd2
=lv, v is the thermal diffusivity.

There is a relation between Ma and R: Ma ¼ R � Pr, where Pr ¼ l
qv

is the Prandtl number. The fluid density depends on temperature
with the form q ¼ q0½1� að~T � ~T0Þ�, where a is the thermal expan-
sion coefficient. The gravity effect is measured by the dynamic

Bond number Bo ¼ qgad2

c , and g is the gravitational acceleration.

These definitions are the same as those in Ref. [4].
In the presence of gravity, the distribution of fluid density will

induce the buoyancy force in the vertical direction. Within Boussi-
nesq’s approximation, the dimensionless governing equations are
given below [6], which are the continuity equation, the momentum
equation and the energy equation, respectively.

r � u ¼ 0; ð2:1Þ

R
@u
@t

þ u � ru
� �

¼ �rpþr � Q þ Bo � Tez; ð2:2Þ

@T
@t

þ u � rT ¼ 1
Ma

r2T: ð2:3Þ

Here u;p; T are the velocity, pressure and temperature, respectively.
For simplicity, the variation of dynamic viscosity with temper-

ature is neglected in (2.2), which is similar to the previous works
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for Newtonian fluid. Generally, the dynamic viscosity of polymer
liquid decreases with the temperature and dissipates the perturba-
tion. If we use the viscosity at the lowest temperature in the fluid
layer for the characteristic viscosity, then the critical Marangoni
number determined in the following is a little higher than the real
one.

The constitutive equation for Oldroyd-B fluid [24] is

1þ k
d
dt

� �
Q ¼ 1þ k~b

d
dt

� �
S: ð2:4Þ

S is the strain-rate tensor,

S ¼ ruþ ur; ð2:5Þ
d
dt is the upper convected derivative with the expression of

dQ
dt

¼ @Q
@t

þ u � rQ � ðurÞ � Q � Q � ðruÞ: ð2:6Þ

k is the Weissenberg number, which is defined as k ¼ l
~G

U
d,

~G is the

elastic modulus. ~b is the ratio of solvent to the total viscosity [25].
Oldroyd-B fluid recovers Newtonian fluid at ~b ¼ 1 or k ¼ 0.

Here we use the stress tensor Q instead of the extra-stress ten-
sor ~T [25] as the former makes the analysis simpler. Indeed, they
have the relation Q ¼ ð1� ~bÞ~Tþ ~bS. The elastic number

e ¼ k=R ¼ l2

q~Gd2
is used to measure the elasticity as it only depends

on the properties of the fluid and the flow geometry [25]. Physi-
cally, when we only increase the temperature gradient on the free
surface b, the Weissenberg number and the Reynolds number
increase together as they are both proportional to b, however,
the elastic number is kept constant.

The boundary conditions are set as follows. On the rigid plane,
there is no slip and zero heat flux:

u ¼ ðu;v ;wÞ ¼ 0;
@T
@z

¼ 0; z ¼ 0; ð2:7Þ

On the free surface,

Q13 þ
@T
@x

¼ 0; Q23 þ
@T
@y

¼ 0; w ¼ 0;

� @T
@z

¼ Bi � ðT � T1Þ þ ~Q ; z ¼ 1: ð2:8Þ

Here, the first two equations stand for the relation between the
temperature gradient and stress caused by thermocapillary effect.
Qij is the component of the stress tensor Q , and the subscripts 1,
2, 3 in Qij stand for the x; y; z directions, respectively. For the basic
flow, a horizontal temperature gradient is imposed on the surface
in x direction, so @T

@x ¼ �1; @T
@y ¼ 0 at z ¼ 1. The temperature in basic

flow T0 is assumed to be

T0ðx; zÞ ¼ �xþ TbðzÞ: ð2:9Þ
When a perturbation appears in the flow, there can be a tem-

perature gradient in both x and y directions. T1 is the temperature
of the bounding gas far from the surface. Bi is the Biot number. As
the Biot number always makes the flow more stable [3], for sim-

plicity, we set it as zero as those in Refs. [10,22]. ~Q is the imposed
heat flux to the environment, which can be determined by the form

of basic flow [3]. In the following solution, ~Q ¼ 0.
Here, we consider the case when the liquid layer is an approx-

imate model for the convection in a rectangular slot whose length
and width are far larger than its depth [4,10]. Therefore, it can be
inferred from the conservation of mass that the flow has zero mass
flux through any vertical section.

Then the solutions of the basic flow can be derived from the
governing equations as follows [6].
u0ðzÞ ¼ 3
4
z2 � 1

2
z

� �
þ Bo �1

6
z3 þ 5

16
z2 � 1

8
z

� �
; v0 ¼ w0 ¼ 0;

ð2:10Þ

TbðzÞ ¼ Ma � 1
16

z4 þ 1
12

z3 � 1
48

� �
þ Bo

1
120

z5 � 5
192

z4 þ 1
48

z3 � 1
320

� �� �
:

ð2:11Þ

We can see that expression of the basic flow consists of two
parts. The first part is the same as the return flow in Ref. [3],
while the second part is induced by gravity, and proportional to
Bo. The distributions of u0; Tb are displayed in Fig. 1. It is observed
that the temperature at the bottom is lower than that on the sur-
face, which is opposite to Benard convection and Marangoni
convection.

2.2. Perturbation equations

Suppose an infinitesimal normal-mode perturbation is added to
the basic flow [18],

ðu; T; P;Q Þ ¼ ðu0; T0; P0;Q 0Þ þ ðu_; T
_

; P
_

;Q
_

Þ exp½rt þ iðaxþ byÞ�;
ð2:12aÞ

Q 0 ¼ u0
0ðzÞ

2kð1� ~bÞu0
0ðzÞ 0 1

0 0 0

1 0 0

2
64

3
75; u

_ ¼ ðu_;v_;w_Þ;

Q
_

¼
Q̂11 Q̂12 Q̂13

Q̂12 Q̂22 Q̂23

Q̂13 Q̂23 Q̂33

2
64

3
75: ð2:12bÞ

Here the subscript 0 stands for the basic flow and the variables
without subscript 0 stand for the perturbation in the following.
There is a normal stress in Q 0, which is caused by the elasticity of
polymer. r ¼ rr þ iri, rr and ri are the growth rate and frequency
of small perturbation, respectively, a; b denote the wave number in

the x and y directions, respectively. In the following, k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
,

/ ¼ tan�1ðb=aÞ, which are the wave number and the direction of
wave propagation, respectively. We restrict our attention to the
case / 2 ½0�;180�� due to symmetry. This is a little different from
the case in Refs. [26–28], where the calculations are performed only
for the range / 2 ½0�;90��. As the basic flow of the latter is antisym-
metric with respect to the x-axis, the property of the wave propa-
gating in the direction of / is the same as that of a wave
propagating in the direction of 180� � /. So considering the case
/ 2 ½0�;90�� is enough. However, the waves propagating in the
directions of / and 180� � / are completely different in this paper.
Therefore, we must consider the range / 2 ½0�;180�� in the follow-
ing, where the case / < 90� (/ > 90�) corresponds to the wave
propagating in a direction with a component in the direction of pos-
itive (negative) x axis.

Upon linearizing, we can get the equations for perturbation
flows by substituting (2.12a) and (2.12b) into the governing equa-
tions. The boundary conditions for the perturbation flow are set as
follows.

u
_ ¼ v

_ ¼ w
_ ¼ @ T

_

@z
¼ 0; z ¼ 0; ð2:13aÞ

Q̂13 þ ia T
_

¼ 0; Q̂23 þ ib T
_

¼ 0; w
_ ¼ 0;

@ T
_

@z
¼ 0; z ¼ 1:

ð2:13bÞ
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The perturbation equations are solved by the Chebyshev-
collocation method and the details are described in the
Appendix A.

2.3. Code validation

The code we used is based on our previous work for the prob-
lem without gravity [22]. In order to validate our code, we solve
the same problems in previous works for Newtonian fluid by set-
ting ~b ¼ 1. The critical values of thermocapillary-buoyancy convec-
tion are displayed in Table 1. The values given by Riley and Neitzel
[4] are obtained by experiment while the results of Chan and Chen
[10] and present work are derived by linear stability analysis. It can
be seen that our results are very close to those of Chan and Chen
[10] and the theoretical results compare favorably with the exper-
imental values.
Fig. 2. The variation of Mac with Bo at Pr ¼ 100; e 6 0:1. The modes at different
elastic numbers are (1) e ¼ 0: (a) oblique wave, (b) streamwise wave; (2) e ¼ 0:025:
(j) oblique wave, (k) streamwise wave, (l) streamwise wave, (m) oblique wave, (n)
oblique wave; (3) e ¼ 0:05: (c) oblique wave, (d) streamwise wave, (e) oblique
wave; (4) e ¼ 0:075: (o) oblique wave, (p) streamwise wave; (q) oblique wave, (r)
oblique wave; (5) e ¼ 0:1: (f) oblique wave, (g) streamwise wave, (h) oblique wave,
(i) spanwise stationary mode.
3. Numerical results

In the following, we will compute the Marangoni number for
the neutral modes MaN and find the critical Marangoni number
Mac which is defined as follows

Mac ¼ min
a;b

MaNðPr; e;Bo; ~bÞ: ð3:1Þ

In order to compare with the case without gravity [22], we
restrict our attention to the case for Pr ¼ 100 and Pr ¼ 0:02,
~b ¼ 0:1. As the property of preferred mode depends on elasticity,
the flow stability is examined at different elastic numbers. The
results for Pr ¼ 100 and Pr ¼ 0:02 are presented in Sections 3.1
and 3.2, respectively. The perturbation field is displayed in Sec-
tion 3.3 while the energy mechanism is analyzed in Section 3.4.

3.1. Pr ¼ 100

The variation of critical Marangoni number Mac with Bo at
Pr ¼ 100; e 6 0:1 is displayed in Fig. 2. For Newtonian fluid
(e ¼ 0), Mac increases with Bo and the preferred mode changes
from oblique wave (/ – 0�;90�) to streamwise wave (/ ¼ 0�) when
Bo > 0:1. This trend is the same as that reported for Pr ¼ 13:9 [10].
For e ¼ 0:05, Mac still increases with Bo. The preferred mode
changes from oblique wave to streamwise wave when
Bo > 0:184 and changes to oblique wave again when Bo > 0:823.
For e ¼ 0:1, Mac increases with Bo at first and the variation of pre-
ferred mode is similar to the case for e ¼ 0:05. However, when
Bo > 2:064,Mac decreases with Bo and the preferred mode changes
to the spanwise stationary mode (/ ¼ 90�, ri ¼ 0).

Generally, when Bo increases, the preferred mode changes from
oblique wave to streamwise wave and back to oblique wave. Many
different kinds of modes are excited. For example the streamwise
Table 1
The critical parameters for the hydrothermal waves at Pr ¼ 13:9, Bo ¼ 0:142.
Comparison with reference values by experiment. The definitions of Marangoni
number and angle of propagation are the same as those in the work of Chan and Chen
[10].

Experiment Linear stability analysis

Riley and
Neitzel

Chan and
Chen

Present
work

Ma 26.91 24.70 24.72
Angle of propagation 23:2� 21:7� 21:9�

Wavelength 2.58 2.48 2.47
Dimensionless frequency 0.0217 0.0237 0.0234
Dimensionless phase

speed
0.0561 0.0583 0.0579
wave, which is not found for Pr ¼ 100 in the absence of gravity
[22]. This can only be due to the effect of gravity. Additionally,
there are two different kinds of streamwise wave for e ¼ 0:025
while both the upstream and downstream oblique waves are found
for e ¼ 0:025—0:1. The spanwise stationary mode is also excited by
gravity while it can only be the preferred mode at e > 0:3 in the
flow without gravity [22].

The wave number corresponding to the mode in Fig. 2 is dis-
played in Fig. 3. Although the variation of preferred mode for dif-
ferent e is similar, the variation of the corresponding wave
number differs from each other. For streamwise wave, the wave
numbers for (b), (l) increase with Bo, whereas the reverse is the
case for (d), (p) and (g). The variation for (k) is not monotonous.
Fig. 3. The wave number corresponding to the mode in Fig. 2.



Fig. 5. The wave speed corresponding to the mode in Fig. 2.
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For oblique wave, the wave numbers for (c), (h) and (o) decrease
gradually with Bo while the opposite happens for (e), (f), (m), (n),
(q) and (r). The wave number for (a) has little change. Meanwhile,
the corresponding wave number for (i) (spanwise stationary mode)
is larger than zero. In contrast, the wave number of spanwise sta-
tionary mode tends to zero in the flow without gravity [22].

The wave propagation angle corresponding to the oblique wave
in Fig. 2 is displayed in Fig. 4. It can be found that the oblique
waves for (a), (c), (j), (o) and (n) are upstream while those for (e),
(f), (m) are downstream. The waves (q) and (r) change from
upstream to downstream while the mode (h) is nearly spanwise.

The wave speed C ¼ jrij=k corresponding to the mode in Fig. 2 is
displayed in Fig. 5. Most of the wave speeds have gentle variations.
It can be seen that the wave speeds of (a), (j), (c), (o) are nearly the
same when Bo 6 0:1, although their critical Marangoni numbers
differ from each other. For the spanwise stationary mode (i), its
wave speed is zero.

The variation of Mac with Bo at Pr ¼ 100; e ¼ 0:3;0:4 is dis-
played in Fig. 6. It can be seen that Mac always increases with Bo.
The preferred mode consists of spanwise stationary mode (a), (c),
(d), (e) and oblique wave (b). However, the corresponding wave
numbers for curves (a) and (d) tend to zero, which is the same as
the case without gravity [22], while those for curve (c) and (e)
are obviously larger than zero (see Fig. 7).

The propagation angle and wave speed corresponding to the
oblique wave in Fig. 6 are displayed in Figs. 8 and 9, respectively.
When Bo < 2, there is a slight reduction for the propagation angle.
After that, the propagation angle tends to 90� while the wave speed
tends to zero, which means that the oblique wave tends to the
spanwise stationary mode. The variation of wave speed with Bo
is just opposite to that of the propagation angle. For the spanwise
stationary mode (a), (c), (d), (e), the propagation angle is 90� while
the wave speed is zero.

3.2. Pr ¼ 0:02

The variation of Mac with Bo at Pr ¼ 0:02 is displayed in Fig. 10.
It can be seen that Mac always decreases with Bo. The preferred
mode for Newtonian fluid (e ¼ 0) is the oblique wave. When Bo
increases, the propagation angle decreases with Bo, and the wave
changes from upstream to downstream. This trend is similar to
that reported for small Prandtl numbers [6]. For e ¼ 0:012, it
Fig. 4. The wave propagation angle corresponding to the mode in Fig. 2.

Fig. 6. The variation of Mac with Bo at Pr ¼ 100; e ¼ 0:3;0:4. The modes at different
elastic numbers are (1) e ¼ 0:3: (a) spanwise stationary mode, (b) oblique wave, (c)
spanwise stationary mode; (2) e ¼ 0:4: (d) spanwise stationary mode, (e) spanwise
stationary mode.
changes to the streamwise wave. For e ¼ 0:03, the preferred mode
changes from spanwise stationary mode to streamwise wave when
Bo > 2:76. For e ¼ 0:07, the preferred mode is always the spanwise
stationary mode.

The wave number and wave speed corresponding to the mode
in Fig. 10 are displayed in Figs. 11 and 12, respectively. It is
observed that the wave numbers have gentle variations for most
of the modes. Especially for (a), the wave number nearly keeps
the same although the corresponding critical Marangoni number
decreases a lot. The variations of wave number for the streamwise
wave (b), (e) and (c) are opposite. For (a), (b), (c), (e), the wave
speed increases with Bo obviously.

For spanwise stationary mode (d) and (f), the wave speed is
zero, and the wave number tends to zero, which is the same as that
in the flow without gravity [22]. It seems that for Pr ¼ 0:02, the



Fig. 7. The wave number corresponding to the mode in Fig. 6.

Fig. 8. The wave propagation angle corresponding to the oblique wave in Fig. 6.

Fig. 9. The wave speed corresponding to the oblique wave in Fig. 6.

Fig. 10. The variation of Mac with Bo at Pr ¼ 0:02; e 6 0:07. The modes at different
elastic numbers are (1) e ¼ 0: (a) oblique wave; (2) e ¼ 0:012: (b) streamwise wave,
(c) streamwise wave; (3) e ¼ 0:03: (d) spanwise stationary mode, (e) streamwise
wave; (4) e ¼ 0:07: (f) spanwise stationary mode.
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gravity cannot excite the spanwise stationary mode with kc > 0 as
that that for Pr ¼ 100.
3.3. The perturbation flow field

The perturbation flow field is studied in this section. It is found
that the influence of gravity for perturbation mode mainly appears
in the spanwise stationary mode at Pr ¼ 100. In Fig. 13, the stream-
lines and isothermals are plotted in the direction of the wave vec-
tor. We can find the rolls which are periodically arranged in the
perturbation velocity field. However, comparing with those in
the flow without gravity [22], the cores of rolls are closer to the
free surface. The temperature fluctuates in the vertical direction.
This is in contrast to the former case where the isothermals for
spanwise stationary modes are all vertical lines.
The mechanism can be explained as follows. We pay attention
to the temperature distribution in the vertical direction. The gradi-
ent of vertical temperature for basic flow increases with Bo. As the
heat convection is more significant than the heat conduction for

Pr ¼ 100, the convective cooling w
_ @T0

@z

��� ��� below the hot spot on the

surface also increases. However, the vertical velocity w
_

is small
near the upper and lower boundaries, the cooling effect reaches a
maximum in the middle region (z � 0:7), then a cold spot appears.
In contrast, this change does not happen at Pr ¼ 0:02. The reason is
that the relative importance of heat convection and heat conduc-
tion at Pr ¼ 0:02 is opposite to the case at Pr ¼ 100. Thus the con-
vective cooling in vertical direction has little influence on the
temperature distribution.



Fig. 11. The wave number corresponding to the mode in Fig. 10.

Fig. 12. The wave speed corresponding to the mode in Fig. 10.

Fig. 13. The perturbation flow field of the spanwise stationary
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Another obvious change of perturbation field is that the gravity
excites some preferred modes with high wave numbers OðkcÞ ¼ 10
(Fig. 3). Although the increasing of wave number often leads to
high dissipation, the relative scale of vertical velocity also
increases, which adds the vertical heat convection at Pr ¼ 100.
Then the temperature fluctuation is enhanced and the temperature
gradient on the surface increases. Thus, the work done by the Mar-
angoni force can counteract the dissipation. This effect is more
prominent when Bo increases, as the gravity increases the gradient
of vertical temperature for basic flow as well as the vertical heat
convection.

3.4. Energy analysis

Then we study the energy mechanism in this section. The rate of
change for perturbation energy can be derived as follows [29–31]

@Ekin

@t
¼ � 1

2R

Z
ðQ : SÞd3r þ 1

R

Z
u � Q � nd2r

�
Z

u � ððu � rÞu0Þd3r þ
Z

Bo
R

Tez � u
� �

d3r

¼ �N þM þ I þ G; ð3:2Þ

where N is the work done by the perturbation stress, M is the work
done by Marangoni forces on the free surface, I is the interaction
between the perturbation flow and the basic flow, G is the work
done by gravity, respectively.

We also consider the cases when Bo is large enough to show the
gravity effect. Table 2 shows the four terms in (3.2) for streamwise
and oblique waves. Here, the perturbation is normalized as
follows:
Z

u2d3r ¼ 1: ð3:3Þ

For Pr ¼ 100, G is always negative for streamwise and oblique
waves, which means that the gravity does negative work for these
two modes. Comparing with the case without gravity (N, M are
both positive, I is negligible), although N and M are still the major
terms, I and G are not negligible anymore. The growing importance
of I is due the gravity as u0

0 increases with Bo.
For Pr ¼ 0:02, G is always positive for oblique wave and can

even be larger than M and I when Bo ¼ 20, which suggests that
the energy mechanism has changed by the gravity significantly.
This can be explained from (3.2). As there is no obvious change
for the shape of oblique wave when Bo increases, the relative
importance of G and N is approximately proportional to Bo.
Therefore, G can be the most important energy source for the
mode at Pr ¼ 100; Bo ¼ 20; e ¼ 0:4; Ma ¼ 321:3; k ¼ 0:98.



Table 2
The terms of perturbation energy growth for the streamwise and oblique waves. Here, SW stands for streamwise wave while OW stands for oblique wave.

�N M I G

Pr ¼ 100
SW: e ¼ 0, Bo = 2, Ma = 1707 �25.195293 27.542466 0.004167 �2.351477
OW: e ¼ 0:05, Bo = 1.5, Ma = 4992 �0.526221 0.476968 0.052677 �0.003435
OW: e ¼ 0:1, Bo = 1, Ma = 2863 �0.058735 0.078221 �0.011770 �0.006863
OW: e ¼ 0:3, Bo = 8, Ma = 488.6 �0.748298 0.947723 �0.033867 �0.165494

Pr ¼ 0:02
OW: e ¼ 0, Bo = 3, Ma = 6.82 �0.036665 0.024213 0.006566 0.005898
OW: e ¼ 0:005, Bo = 20, Ma = 3.15 �0.076925 0.016115 0.022756 0.038123
SW: e ¼ 0:012, Bo = 20, Ma = 2.54 �0.113164 �0.004795 0.128285 �0.010239
SW: e ¼ 0:03, Bo = 5, Ma = 2.33 0.023140 �0.001677 �0.020824 �0.000374

Fig. 14. The ratios of four terms in (3.2) for the spanwise stationary mode at
Pr ¼ 100; e ¼ 0:4.

Fig. 15. The ratios of four terms in (3.2) for the spanwise stationary mode at
Pr ¼ 0:02; e ¼ 0:07.
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perturbation when Bo is large enough. However, for streamwise
wave, N, M, I can still change sign in different parameters, just as
the case without gravity [22]. This suggests that its energy mech-
anism mainly depends on elasticity.

For spanwise stationary mode, we plot the ratios of four terms
in Figs. 14 and 15. In these cases, N is always positive, which means
that the perturbation stress dissipates the energy. For Pr ¼ 100, I is
negligible in most cases. G can be positive in the mode of (d) and
(e), which contrasts to the other cases at Pr ¼ 100. G/N increases
with Bo for (d) while its variation for (e) is not monotonous. How-
ever, even when the gravity does positive work for the perturba-
tion, Mac still keeps increasing with Bo in Fig. 6. For Pr ¼ 0:02, I
is also negligible. M and G are the main energy source. G/N keeps
increasing with Bo and exceeds 50% when Bo > 9.
4. Discussion

In this section, we will discuss the effect of gravity on the insta-
bility mechanism and the properties of preferred modes.

The gravity can influence the flow stability in two ways. First,
the basic flow which appears in the perturbation equation depends
on the gravity. The eigenvalue is determined as a function of Bo.
The increasing of Bo leads to the variation of Mac. The type of pre-
ferred mode can also be changed at some critical value of Bo. Sec-
ond, the energy analysis shows that the gravity can do work for the
perturbation. The work can either be positive or negative, which
depends on the mode and parameters. These two effects change
the instability mechanism significantly. The cases for three kinds
of modes are discussed respectively in the following.

(1) Spanwise stationary mode

For spanwise stationary mode, the energy analysis shows that
the major terms N, M are both positive, while I is negligible. Thus,
the thermocapillary force is the driving force while the perturba-
tion stress causes damping.

For Pr ¼ 100, Mac increases with Bo when Bo is small. This can
be explained in the view of temperature. In these cases,

u
_ @T0

@x

��� ���; w
_ @T0

@z

��� ��� have the same order of magnitude, which means

the horizontal convection and vertical convection are both impor-
tant in the temperature field. The vertical velocity w > 0 when
underneath the hot spot on the surface, which produces a vertical
convective cooling. When Bo increases, the gradient of vertical
temperature for basic flow @T0

@z becomes larger. The convective cool-

ing w
_ @T0

@z

��� ��� also increases, which leads to the decreasing of the tem-

perature for the hot spot. Thus, the flow becomes more stable, and
Mac increases with Bo.

However, when Bo becomes larger, the effect of gravity is dee-
ply coupled with elasticity and thermocapillary force. The critical
wave number for spanwise stationary mode becomes larger than
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zero, and the flow field is also very different from the case when Bo
is small. Mac can decrease with Bo for the curve (i) in Fig. 2. Mean-
while, the work done by gravity is not directly related to the vari-
ation of Mac with Bo. G can be positive when Mac increases with Bo
(curve (a),(d) in Fig. 6) while G can be negative whenMac decreases
with Bo (curve (i) in Fig. 2).

For Pr ¼ 0:02, the case is similar to that without gravity. The

computation shows that u
_ @T0

@x

��� ��� � w
_ @T0

@z

��� ��� for z > 0. The horizontal

convection is dominant in the temperature field. Then, the varia-
tion of @T0

@z with Bo has little effect on the temperature distribution.
The streamwise velocity u > 0 when underneath the hot spot on
the surface, which produces a horizontal convective heating. As
the point moving towards the hot spot on the surface has a higher
temperature than that on the surface, the gravity does positive
work for this convection. Mac also decreases with Bo.

The spanwise stationary mode does not appear in return flow
for Newtonian fluid. The vertical temperature distribution in
return flow corresponds to the layer being cooled from below,
which is in contrast to the classical Marangoni instability for the
layer being heated from below [3]. The presence of gravity even
increases the vertical temperature gradient. Therefore, the station-
ary instability cannot be found for Newtonian fluid. However, for
viscoelastic fluid, due to the normal stress in basic flow, the vertical
convection can lead to a stress in the streamwise direction. It
makes a streamwise flow, which produce a convective heating
and destabilize the flow. This is the reason why spanwise station-
ary mode appears in Oldroyd-B fluid.

(2) Oblique wave

For the oblique waves at Pr ¼ 100; e 6 0:1, the vertical convec-
tion is dominant for the temperature field. The waves can be
divided into two types: curve (a), (c), (j), (o), and curve (e), (f),
(h), (m), (n), (n) (r) in Fig. 2. The former is close to streamwise.
The phase difference between the perturbation temperature and
the vertical velocity is nearly 180�, and gravity does negative work
for the perturbation. The latter is close to spanwise. Its correspond-
ing phase difference is nearly 90�, and the work done by gravity is
almost zero.

For Pr ¼ 100; e ¼ 0:3 (curve (b) in Fig. 6), the corresponding
phase difference is larger than 90� and G is negative, while for
Pr ¼ 0:02; e ¼ 0 (curve (a) in Fig. 10), the corresponding phase dif-
ference is close to zero and G is positive. However, both of them are
nearly spanwise and their frequencies are small. In some extent,
their mechanisms are similar to those for spanwise stationary
mode.

For Newtonian fluid, the gravity does not change the instability
of oblique wave qualitatively (see Figs. 2 and 10). However, the
case for Oldroyd-B fluid is more complicated. When both gravity
and elasticity are small, the elasticity leads to a phase difference
between the Marangoni force and velocity on the free surface,
which makes a decreasing of the work done by Marangoni force.
The flow is stabilized by the elasticity. When the gravity is deeply
coupled to elasticity, more kinds of oblique waves are excited (see
Figs. 2 and 6).

(3) Streamwise wave

The streamwise wave is not the preferred mode for Pr ¼ 100 in
the flow without gravity [22]. In contrast, it becomes the preferred
mode at Pr ¼ 100; e 6 0:1 (curve (b),(d),(g), (k), (l), (p) in Fig. 2) in
this work. They can also be divided into two types. The properties
of Curve (b) and (k) are similar to those for the obliquewaves (curve
(a), (c) in Fig. 2), while for Curve (d), (g), (l) and (p), the correspond-
ing phase difference is nearly 90�, which makes G almost zero.
For the streamwise wave at Pr ¼ 0:02 (curve (b), (c),(e) in
Fig. 10), the energy analysis shows that all of N, M, I can change
sign in different parameters, which is the same as the case in the
flow without gravity [22]. Comparing with N and I, M and G are
not the main terms. The elasticity is the most important factor
for the instability mechanism. The streamwise velocity fluctuates
several times in the vertical direction, which is distinct from all
of the previous modes.

Although streamwise wave appears in both Newtonian fluid
and Oldroyd-B fluid, there are many differences between them.
For Pr ¼ 100, the wave number of streamwise wave for Newtonian
fluid is increased by gravity significantly when Bo is order 1, which
is opposite to the case for Oldroyd-B fluid. For Pr ¼ 0:02, there is no
streamwise wave for Newtonian fluid, while the elasticity excites
the streamwise wave with vertical fluctuations for Oldroyd-B.

Then, we summarize the variation of critical Marangoni number
and preferred mode with gravity. Mac increases with Bo for
Pr ¼ 100 except the curve (i) in Fig. 2 while it always decreases
with Bo for Pr ¼ 0:02. The variation of Mac is very obvious when
OðBoÞ ¼ 1 for Pr ¼ 100; e 6 0:1, while in other cases we studied,
the corresponding Bond number has OðBoÞ ¼ 10. There may be
two reasons for this difference. First, we confine ourselves to the
governing equation of temperature perturbation. When Pr ¼ 100,
the heat convection is more significant than the heat conduction
for the temperature variation, while the case for Pr ¼ 0:02 is the
opposite. Thus, the variation of vertical convection with Bo will
have a more important influence on the temperature field for the
former than for the latter, and the eigenvalue for the former is
more sensitive to the change of Bo. Second, as the instability mech-
anism is deeply affected by elasticity for Pr ¼ 100; e ¼ 0:3;0:7, the
effect of gravity is more obvious when e 6 0:1.

The type of preferred mode changes several times for Pr ¼ 100,
especially when e 6 0:1. However, there are fewer changes for
Pr ¼ 0:02. This may be due to the increasing of Mac for the former.
The Weissenberg number k of the preferred mode also increases a
lot with Bo for Pr ¼ 100. Therefore, there are remarkable growths
for the gravity, elasticity and thermocapillary forces together.
These forces are deeply coupled and more kinds of modes are
excited in the flow. As a result, the opportunity for the change of
preferred mode also increases. In contrast,Mac and k decrease with
Bo for the latter, and the properties of its preferred modes have lit-
tle changes.

Comparing with the case without gravity [22], the presence of
gravity not only changes the critical Marangoni number, but also
makes the instability mechanism more complex. Besides three
kinds of modes in Ref. [22], the coupling of gravity to elasticity
and thermocapillary force excites more kinds of preferred modes
for Pr ¼ 100, especially the streamwise wave and the spanwise sta-
tionary mode with k > 0, which cannot be found in the absence of
gravity [22]. Meanwhile, the work done by gravity becomes a new
energy source for perturbation. It can even be the most important
source for Pr ¼ 0:02 when Bo is large enough (see Table 2 and
Fig. 15) although there is little change for its mode property. The
gravity also increases the importance of I in the energy mechanism
at Pr ¼ 100. Finally, the gravity increases the gradient of vertical
temperature for basic flow. The temperature distribution of span-
wise stationary mode is highly affected by the vertical convective
cooling for Pr ¼ 100 (see Fig. 13), and some modes with high wave
numbers are excited.

Although the variation of critical Marangoni number with
gravity in this work seems similar to that in the buoyant-
thermocapillary convection of Newtonian fluid, the instability
mechanism here strongly depends on the elasticity. The appear-
ance of spanwise stationary mode in return flow and the stream-
wise wave with vertical fluctuation can only be attributed to the
elasticity, as they are not found in Newtonian fluid. For small
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elastic numbers, the change of preferred mode occurs more fre-
quently than the case of Newtonian fluid [10] (see Figs. 2 and 3).
When the elastic number is large enough, the preferred mode
becomes the spanwise stationary mode. Mac decreases with e sig-
nificantly (OðMacÞ ¼ 100;OðRÞ ¼ 1 for e ¼ 0:4 in Fig. 6). Therefore,
we cannot find the preferred mode with OðkcÞ ¼ 10 as the case at
small elasticity, which may be due to its large dissipation.

As the fluid layer in this paper has an inclined temperature gra-
dient, we can make a comparison with the pure natural convection
with inclined temperature gradient of Newtonian fluid [26–28]. In
the vertical direction, the temperature at the upper boundary is
larger than that at the bottom in Ref. [28] and our work (see
Fig. 1), which is opposite to the those in Refs. [26,27]. The liquid
layer is inside two rigid walls in Refs. [26–28]. The symmetry of
boundary conditions lead to the symmetry and antisymmetry in
the basic flow and perturbation mode. However, the liquid layer
has a free surface in this paper. There are no symmetry properties
in the basic flow or perturbation mode. Meanwhile, although many
modes are excited in the presence of gravity in our paper, the mode
in the spanwise direction is stationary while the mode in the
streamwise direction is oscillatory. In contrast, there are both oscil-
latory and stationary modes in streamwise and spanwise direc-
tions in Refs. [26–28]. The effect of gravity is different for the
natural convection and the thermocapillary convection. It is the
driving force for the former. However, the latter is driven by the
thermocapillary force, while the effect of gravity is coupled with
elasticity and thermocapillary force. Physically, the free surface
reduces the constraint for the perturbation and the thermocapil-
lary force becomes an important energy source. These lead to the
difference of instability between the thermocapillary convection
and natural convection.

We compare the results with the parameters in the experiment
of drying of a polymer solution [14], where the polymer/solvent
solution used is polyisobutylene/toluene. As the thermophysical
properties of polymer solution depend on the polymer concentra-
tion, we estimate the parameters as follows. The Prandtl number
OðPrÞ can change from 10 to 103, the density OðqÞ ¼ 103 kg=m3,
the negative rate of change of surface tension with temperature
OðcÞ ¼ 10�4 N=m � =K, the thermal expansion OðaÞ ¼ 10�3 K, the
thermal diffusivity OðvÞ ¼ 10�7=m2 � s. If we set the temperature
gradient on the surface OðbÞ ¼ 1 K=m and the depth of the layer
OðdÞ ¼ 10�2 m, the relative change of density in the vertical direc-
tion is order 10�5, so the condition for Boussinesq’s approximation
is satisfied. Then the Bond number OðBoÞ ¼ 1 and the Marangoni
number OðMaÞ ¼ 103, which are close to the results in Fig. 2.
5. Conclusion

Comparing with the flow without gravity, we can see that the
gravity always destabilizes the flow for Pr ¼ 0:02 while it often
makes the flow more stable for Pr ¼ 100. The variation of critical
Marangoni number is obvious when OðBoÞ ¼ 1 for Pr ¼ 100;
e 6 0:1, while in other cases we studied, the corresponding Bond
number has OðBoÞ ¼ 10. When the Bond number increases, the
coupling of gravity to elasticity and thermocapillary force excites
many different kinds of preferred modes for Pr ¼ 100. However,
the changes of preferred mode for Pr ¼ 0:02 are far less than those
for Pr ¼ 100.

The influence of gravity for the perturbation field mainly lies in
the case of spanwise stationary mode at Pr ¼ 100 with large Bo. Its
critical wave number is larger than zero and its temperature fluc-
tuates in the vertical direction.

Energy analysis shows that the gravity becomes a new energy
source for perturbation. For Pr ¼ 100, the work done by gravity G
can be either positive or negative. The sign of G is not directly
related to the variation of Mac with Bo, as G can be positive (nega-
tive) when Mac increases (decreases) with Bo, and can even be
close to zero when OðBoÞ ¼ 1. For Pr ¼ 0:02, G is always positive
for oblique wave and spanwise stationary mode, while the energy
mechanism for the streamwise wave is dominant by elasticity.
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Appendix A. The perturbation equations and the Chebyshev-
collocation method

The linearized perturbation equations can be derived as follows.
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Here, g ¼ k~b, u0
0;u

00
0 are the first and second derivatives of u0 with

respect to z, respectively. In (A.2)–(A.4), p
_

can be eliminated and
the following equations are derived.
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The normal-mode perturbation is assumed to vary with time in the
form expðrtÞ. The eigenvalue r can be determined by the governing
Eqs. (A.1), (A.5)–(A.13) and the boundaries conditions (2.13). So
there is no need for initial condition.

We use Chebyshev-collocation method [32] to obtain
the perturbations. Nc Chebyshev-collocation points z ¼
1� cos jp

Ncþ1

� 	� 	.
2; j ¼ 1—Nc are set in the flow region for the

governing Eqs. (A.1), (A.5)–(A.13) while 2 points z ¼ 0;1 are
set on the boundaries for Eqs. (2.13). The perturbation quantities

are expanded in Chebyshev polynomials. For example, u
_

is
expanded as

u
_ ¼

XNcþ1

k¼1

akHk�1ðz
_Þ: ðA:14Þ

Here z
_ ¼ 1� 2z, Hk�1ðz

_Þ ¼ cosððk� 1Þ cos�1ðz_ÞÞ is the ðk� 1Þ-th
Chebyshev polynomial and ak is the coefficient. The general eigen-
value problem can be derived in the form of Wg ¼ rZg, where
W;Z are two matrices, g is the eigenvector. Then the eigenvalues
can be obtained by using the QZ algorithm available in the
Matlab-software package [32] and Nc ¼ 70—90 Chebyshev nodes
are used to ensure the accuracy.
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