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The linear stability of thermocapillary liquid layer of a Bingham-plastic fluid is studied. Due to the yield
stress of Bingham fluid, there is a plug region in the flow, which divides the yielded flow into two regions.
When the flow is subjected to a small perturbation, the velocity perturbation below the upper surface of
plug region is negligible, while the temperature perturbation can be found in all flow regions at moderate
and small Prandtl numbers (Pr). The perturbation amplitude of the upper surface of plug region decreases
rapidly with the increase of Pr. The preferred modes are the upstream oblique wave and the downstream
streamwise wave at small and large Pr, respectively. The effects of the yield stress, gravity and the inter-
facial heat transfer on the flow stability are discussed. The perturbation amplitude only appears above the
plug region, which differs from the cases in the plane Bingham–Poiseuille flow and the thermocapillary
liquid layer of a Carreau fluid.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

A liquid layer will be set in motion by a temperature-induced
surface tension gradient when a horizontal temperature gradient
is imposed on its surface. This flow is called the thermocapillary
convection. Due to its important role in crystal growth [1], the
thermocapillary convection has been studied extensively [2].
Recently, the thermocapillary flows of non-Newtonian fluids have
also received much attention for its great practical importance in
film coating [3], film drying [4], dewetting [5], lithography [6],
inkjet printing [7] and polymer processing in microgravity [8].
The non-Newtonian effect makes the flow property vary consider-
ably from that of a Newtonian fluid.

The viscoelastic thermocapillary liquid layers have been inves-
tigated by many authors [9–12]. It is found that although the elas-
ticity does not change the velocity and temperature distributions
in the basic flow, due to the normal stress, the flow stability is
affected by the elasticity significantly. There are also a few papers
devoted to the study of thermocapillary flows of shear-thinning
fluids [13–15]. For linear flow, the shear-thinning effect does not
change the basic flow, however, it is destabilizing at small and
moderate Pr but increases the stability slightly at large Pr. For
return flow, the shear-thinning effect leads to a viscosity
stratification in the basic flow, the streamwise wave is excited at
large Pr, and a new mechanism is found at moderate Pr, where
the hot spots appear at the bottom of the layer [15]. However, to
the best of our knowledge, the thermocapillary liquid layer of vis-
coplastic fluids has not been investigated.

Viscoplastic fluids appear in many industrial applications and
nature environment, such as drilling muds [16], polymers [17],
mucus [18] and lava [19]. The main feature of a viscoplastic fluid
is its yield stress: it exhibits liquid-like behaviour when it is suffi-
ciently stressed, and solid-like behaviour when the stress is low.
Due to the special property and wide applications, there are many
works devoted to the study of viscoplastic fluids. The recent devel-
opments have been reviewed by Balmforth, Frigaard & Ovarlez
[18].

One of the ideal models for viscoplastic fluids is the Bingham
fluid, which exhibits a yield stress and a plastic viscosity [20].
The Bingham fluid has been widely used in theoretical studies for
its simplicity [21]. In many Bingham fluid flows, there can be a
region where the shear stress is less than the yield stress. It
behaves as a rigid body and is called the plug region or unyielded
region. The inclusion of a plug region makes the flow stability of a
Bingham fluid quite different from those of other fluids.

The shear flow stabilities of Bingham fluids have been studied in
many works, which indicate that the flow is stabilized by the effect
of the yield stress. Frigaard, Howison & Sobey [16] have examined
the stability of plane Poiseuille flow of a Bingham fluid, and found
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Nomenclature

â thermal expansion coefficient
b temperature gradient on the surface
B ¼ s0d=l0Û0 Bingham number

Bi ¼ ĥd=k̂ Biot number
Bo ¼ qgâd2=c dynamic Bond number
c ¼ �ri=k wave speed
d depth of the layer
g gravitational acceleration
h0 length of the plug region
h� perturbations of the yield surface
ĥ surface heat transfer coefficient
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
wave number of wave propagation

k̂ thermal conductivity
Ma ¼ bcd2=l0v Marangoni number
Pr ¼ l0=qv Prandtl number
~Q imposed heat flux to the environment
R ¼ qbU0d=l0 Reynolds number
ðu; T; P; sÞ velocity, pressure, temperature and stress

bU0 ¼ bcd=l0 characteristic velocity
z0 length of the yielded region
a; b wave number in the x and y directions
c negative rate of change of surface tension with

temperature
_c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_cij _cij=2

q
second invariant of _c

_c strain-rate tensor
d=dt upper convected derivative
l dimensionless effective viscosity
l0 plastic viscosity
q fluid density
~r surface tension
rr ;ri growth rate and frequency of small perturbation
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_sij _sij=2

q
second invariant of s

s0 yield stress
/ propagation angle
v thermal diffusivity
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that the critical Reynolds number increases almost linearly with
increasing Bingham number. The nonlinear stability analysis has
been performed by Nouar & Frigaard [22]. The results showed that
the critical Reynolds number R increases like R ¼ OðB1=2Þ when the
Bingham number B ! 1. On the other hand, the three-
dimensional linear stability analysis performed by Frigaard and
Nouar [23] suggested that when B ! 1, a critical Reynolds number
R ¼ OðB3=4Þ is bounded for all wavelengths. The receptivity prob-
lem of plane Bingham–Poiseuille flow with respect to weak pertur-
bations has been investigated using modal and non-modal
approaches by Nouar et al. [24]. It has been reported that when
B � 1, the optimal disturbance consists of almost streamwise vor-
tices, whereas at moderate or large B, the optimal disturbance
becomes oblique. Nouar & Bottaro [25] have revisited the problem
for the case in which the idealized base flow is slightly perturbed.
The results suggested that very weak defects are indeed capable to
excite exponentially amplified streamwise travelling waves. The
study of the stability of Bingham fluid flows has been extended
to the spiral Couette flow [26] and Taylor-Couette flow [27].

The purpose of this paper is to examine the thermocapillary
convection of a Bingham fluid in an infinite liquid layer and its sta-
bility, which have not been studied before. The works of Bingham
fluid have demonstrated that the flow stability depends on the
Bingham number obviously. So we have reasons to believe that
there can be something new in the thermocapillary convection of
a Bingham fluid, which are different from those in other fluids.

The paper is organized as follows. In Section 2, the physical
model and numerical descriptions of the problem are presented.
The basic flow solutions and perturbation equations are derived.
Then in Section 3, critical parameters at different Bingham number,
Bond number and Biot number are obtained; the perturbations of
the velocity, temperature and yield surface are displayed and the
energy mechanism is studied; the instability is discussed and com-
parisons are made with other fluids and flows. Finally, our conclu-
sions are presented in Section 4.
Fig. 1. The schematic of the thermocapillary liquid layer for a Bingham fluid. Here, I
and II are yielded regions, III is the plug region, d is the depth of the layer, z0 is the
length of the yielded region II, h0 is the length of the plug region, U0 is the velocity
field.
2. Problem formulation

The model of thermocapillary liquid layer [28] is applied in the
present work, where a fluid layer on an infinite rigid plane is sub-
jected to a temperature gradient on the free surface. The instability
behaviours predicted by this model have been observed in both
experiment [29] and numerical simulation [30]. In Fig. 1, d is the
depth of the layer, U0 is the velocity, x; y; z are the streamwise,
spanwise and wall-normal directions, respectively. As the shear
rate in the interior of the layer is smaller than that near the surface
and wall, there will be a plug region in the middle of the layer. The
flow consists of three regions: I and II are yielded regions where
the shear stress is larger than the yield stress, while III is the
unyielded or plug region. The ranges of I, II and III are ½0; z0�,
½z0 þ h0;1�, and ðz0; z0 þ h0Þ, respectively. Here, 0 < z0 < z0 þ h0 < 1.

2.1. Governing equations

The scaled constitutive equation of a Bingham fluid can be writ-
ten as follows [24],

s ¼ l _c () s >
B
R
; ð2:1Þ

_c ¼ 0 () s 6 B
R
; ð2:2Þ

l ¼ 1
R

1þ B
_c

� �
; ð2:3Þ

where s is the stress tensor, l is the dimensionless effective viscos-
ity, _c is the strain-rate tensor with the form _c ¼ ruþ ðruÞT;
u ¼ ðu; v;wÞ is the velocity, s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_sij _sij=2
p

and _c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_cij _cij=2

p
are the
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second invariant of s and _c, respectively. R and B are the Reynolds
and Bingham numbers, respectively, which are defined as

R ¼ qÛ0d=l0;B ¼ s0d=ðl0Û0Þ: ð2:4Þ

Here, d is the depth of the layer, q is the fluid density, l0 is the plas-

tic viscosity, s0 is the yield stress, Û0 is the characteristic velocity

with the expression Û0 ¼ bcd=l0, where b is the temperature gradi-
ent on the surface and c is the negative rate of change of surface
tension with temperature. For many viscoplastic polymer melts,
such as polyethylene, polystyrene and polyisobutylene [31], the
surface tension is linearly dependent on the temperature [32]. So
c can be seen as a constant, which is similar to the case in Newto-
nian fluid [28].

In the presence of gravity, we use the Boussinesq approxima-
tion. The gravity effect can be quantified in terms of the dynamic

Bond number Bo ¼ qgâd2
=c, where â is the thermal expansion

coefficient, and g is the gravitational acceleration[29].
Fig. 2. The velocity distributions in the return flow.

Fig. 3. The temperature distributions at Ma ¼ 200 in the return flow.
For the thermocapillary liquid layer, the dimensionless forms of
governing equations are

r � u ¼ 0; ð2:5Þ

@u
@t

þ u � ru ¼ �rpþr � sþ Bo
R

� Te3; ð2:6Þ

@T
@t

þ u � rT ¼ 1
Ma

r2T; ð2:7Þ

which are the continuity equation, momentum equation [33] and
energy equation [28], respectively. The momentum Eq. (2.6) is used
for Bingham fluid, where the relation between s and _c in ((2.1)–
(2.3)) is far more complex than that for Newtonian fluid (s / _c) in

Refs. [28,33]. Here, Ma ¼ bcd2
=ðl0vÞ is the Marangoni number, v

is the thermal diffusivity. The relation between Ma and R is
Ma ¼ R � Pr, where Pr ¼ l0=ðqvÞ is the Prandtl number. p and T
stand for the pressure and temperature, respectively. The boundary
conditions are

u ¼ v ¼ w ¼ 0;
@T
@z

¼ 0; z ¼ 0; ð2:8Þ

s13 þ 1
R
@T
@x

¼ 0; s23 þ 1
R
@T
@y

¼ 0;w ¼ 0;

� @T
@z

¼ Bi � ðT � T1Þ þ ~Q ; z ¼ 1: ð2:9Þ

Here, Bi ¼ ĥd=k̂ is the Biot number, where ĥ and k̂ are the surface
heat transfer coefficient and the thermal conductivity, respectively.

T1 is the temperature of the bounding gas far from the surface. ~Q is
Table 1
The critical parameters in the thermocapillary liquid layer of a Newtonian fluid at
Pr ¼ 13:9;Bo ¼ 0:142. Here, the definition of Marangoni number is the same as that in
Ref. [33], and w ¼ 1800 � /.

Experiment Linear stability analysis

Riley and Neitzel [29] Chan and Chen [33] Present work

Ma 26.91 24.70 24.72
w 23.2� 21.7� 21.9�
k 2.58 2.48 2.47
jrij 0.0217 0.0237 0.0234
c 0.0561 0.0583 0.0579

Fig. 4. The variation of Mac with Pr at Bo ¼ 0, Bi ¼ 0. The curves correspond to
oblique waves: (a), (c), (e), (g), and streamwise waves: (b), (d), (f).



Fig. 5. The (I) wave number, (II) wave propagation angle and (III) wave speed corresponding to the waves in Fig. 4.
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the heat flux to the environment, which is introduced for the energy
balance on the surface.

We consider the case when the basic flow is parallel and its
temperature is linear in x as imposed plus a distribution in z:

u ¼ ðU0ðzÞ;0;0Þ; T0ðx; zÞ ¼ �xþ TbðzÞ; ð2:10Þ
where Tbð1Þ ¼ 0. T1 has the form T1 ¼ �x [28].

The linear flow (U0ðzÞ ¼ z) of a Bingham fluid is similar to that of
a Carreau fluid [15], so we do not discuss it separately and restrict
our attention to the case of return flow, which has zero mass flux in
the vertical section,Z 1

0
U0ðzÞdz ¼ 0: ð2:11Þ

Then, the heat flux ~Q can be determined by the basic flow solution:
~Q ¼ � @T0

@z

���
z¼1

� Bi � ðT0jz¼1 � T1Þ, where @T0
@z

��
z¼1 ¼ @T0

@z

��
z¼0 þ

R 1
0

@2T0
@z2 dz ¼

�Ma
R 1
0 uðzÞdz. As T0jz¼1 ¼ T1 ¼ �x, ~Q ¼ 0 for return flow.
The solution of the return flow can be derived numerically,
where the details are described in Appendix A. The distributions
of velocity and temperature are displayed in Figs. 2 and 3, respec-
tively. The length of the plug region increases with B, whereas both
the surface velocity and the vertical temperature gradient decrease
with B. However, Bo and B have the opposite effects on the velocity
and temperature.

2.2. Linear stability analysis

Considering an infinitesimal perturbation added to the basic
flow,

ðu; T; P; sÞ ¼ ðu0; T0; P0; s0Þ þ eðu0; T 0; P0; s0Þ; ð2:12Þ
with e� 1. The yield surface positions z�Y will also be perturbed
from their initial positions,

z�Y ¼ z0 � eh�
; zþY ¼ z0 þ h0 þ ehþ

: ð2:13Þ



Fig. 6. The variation of Mac with Pr at B ¼ 0:4. The curves correspond to oblique
waves: (a), (c), (e), (h), and streamwise waves: (b),(d), (f),(g),(i).
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The relation between u and h� is [23]:

Du ¼ �h�D2U0ðzÞ; z ¼ z0;

�hþD2U0ðzÞ; z ¼ z0 þ h0:

(
ð2:14Þ

The perturbation is assumed to vary periodically along the stream-
wise and spanwise directions,

ðu0; T 0; P0; s0;h�Þ ¼ ðu_;v_;w_; T
_

; P
_

; s
_
; h
_

�Þ exp½rt þ iðaxþ byÞ�; ð2:15Þ
where r ¼ rr þ iri, rr and ri are the growth rate and frequency,
respectively. a and b are the wave number in the x and y directions,
respectively. The wave number, the propagation angle and wave

speed are defined as k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
, / ¼ tan�1ðb=aÞ, c ¼ �ri=k,

respectively. In the above equations, the subscript 0 stands for the
basic flow. Hereafter, the variables without the subscript 0 are
perturbations.

Then the perturbation equations are derived, whose details are
described in Appendix B. They can be solved by the Chebyshev-
collocation method [34], and the eigenvalues r are obtained by
using the QZ algorithm available in the Matlab-software package.
In our work, the results are sufficiently accurate when the number
of Chebyshev nodes is about 90� 120.

2.3. Code validation

The code for the perturbation Eqs. (B.1-B.10) is rewritten on the
basis of the Matlab code for hydrodynamic stability calculations in
the Appendix of Ref. [34]. If we set B ¼ 0 and delete the constraint
in the plug region (B.4) in the code, then the case of Newtonian
fluid is recovered. Thus, the code can be validated by solving the
same problems of Newtonian fluid in Ref. [33]. In Table 1, compar-
isons are made with the experiment and the computation, which
shows that our results agree with the values in previous works.

3. Numerical results

We compute the Marangoni number MaN of neutral modes
(rr ¼ 0) and determine the critical Marangoni number Mac , which
is defined as follows,

Mac ¼ min
a;b

MaNðPr;B;Bo;BiÞ: ð3:1Þ
3.1. Critical parameters

The variation of Mac with Pr at Bo ¼ 0, Bi ¼ 0 is displayed in
Fig. 4. It can be seen that Mac increases with B and Pr significantly.
Physically, B increases with the yield stress, which can stabilize the
flow. When Pr is large enough, the preferred mode changes from
the oblique wave (/ 2 ð0�;90�Þ) to the two-dimensional stream-
wise wave (/ ¼ 0�).

The wave number, propagation angle and wave speed corre-
sponding to the modes in Fig. 4 are displayed in Fig. 5. The wave
number increases with B, especially when Pr is large. In contrast,
the wave propagation angle decreases with B. The wave speed
increases with B, and changes from negative (upstream wave) to
positive (downstream wave) when Pr is large enough. jcj in the
Bingham fluid (B > 0) is far less than that in the Newtonian fluid
(B ¼ 0).

Then we study the effects of Bo and Bi. The variations of Mac
with Pr for several values of Bo and Bi are displayed in Fig. 6. The
flow is destabilized by Bo at small Pr, but stabilized at large Pr.
When Bo ¼ 3, another kind of streamwise wave is excited at large
Pr. Mac always increases with Bi, and the relative change is more
obvious at small Pr. The computation shows that the variation of
Mac with Bi is obvious when Bi P 3. For simplicity, we restrict
our attention to the case at Bi ¼ 3.

The wave number, propagation angle and wave speed corre-
sponding to the modes in Fig. 6 are displayed in Fig. 7. The effect
of Bo for kc is similar to that for Mac . When Bo ¼ 1, the variation
of /c with Bo is rather small. When Bo ¼ 3, /c increases a little at
Pr 6 2, but decreases at Pr > 2. When Pr is small, both the wave
number and the propagation angle increases with Bi significantly.
The effects of Bo and Bi for the wave speed are similar to those
for Mac .

3.2. Energy analysis

The energy mechanism of the instability can be seen from the
perturbation energy growth, which is derived as follows,

@Ekin

@t
¼ �1

2

Z
ðs : _cÞd3r þ

Z
u � s � nd2r �

Z
u � ððu � rÞu0Þd3r

þ
Z

Bo
R

� Te3 � u
� �

d3r ¼ �N þM þ I þ G;

ð3:2Þ
where N is the work done by the perturbation stress, M is the work
done by Marangoni forces on the surface, I is the energy from the
basic flow, and G is the work done by gravity, respectively.

When Bo ¼ 0,M and I are the energy source for the perturbation
while N is the viscous dissipation. I=N decreases with B. The reason
is that the perturbation can only absorb energy from the basic flow
in the yielded region I. When B increases, both the length of region
I and the vertical velocity gradient derease, which will reduce the
energy from the basic flow.

The ratios I=N and G=N for the neutral mode at B ¼ 0:4 are dis-
played in Fig. 8. It can be seen that I=N increases with Bi signifi-
cantly when Pr is small. I becomes the largest energy source at
Bi ¼ 3; Pr ¼ 0:01. G=N decreases slightly with Bi. The variation of
I=N with Bo is not obvious. G=N decreases with Pr at Bo ¼ 1. How-
ever, when Bo ¼ 3, G=N reaches a minimum at Pr � 3.

3.3. The perturbation of the flow field

The perturbations of the flow field are displayed in Figs. 9–13.
Here, the amplitude of temperature perturbation is normalized. It
can be seen that most of the velocity perturbation is in the yielded



Fig. 7. The (I) wave number, (II) wave propagation angle and (III) wave speed corresponding to the waves in Fig. 6. As the wave speed of (g) is far larger than others, we show
c=10 for (g) in (III).
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region I. However, the distribution of the temperature perturbation
depends on Pr. For large Pr, the temperature perturbation is con-
centrated in the yielded region I, whereas for moderate and small
Pr, we can see the temperature perturbation is below the upper
surface of plug region. The perturbation amplitude of the upper
surface of plug region decreases rapidly with Pr.

In Fig. 12, the streamlines near the hot spot are clockwise, and
almost coincide with the isothermals. In contrast, in Figs. 9–11 and
13, the corresponding streamlines are counterclockwise. This phe-
nomenon is similar to the case at Bo ¼ 3 in a Carreau fluid. It can be
seen by comparing Figs. 9 and 12 that the perturbation amplitude
of the upper surface of plug region in Fig. 12 is an order of magni-
tude larger that in Fig. 9, which indicates that the gravity can obvi-
ously increase the perturbation of the upper surface of plug region
at large Pr. However, the effect of gravity for hþ at moderate and
small Pr is not obvious.

It can be seen by comparing Figs. 11 and 13 that the Biot num-
ber can decrease the temperature perturbation near the surface
significantly. Meanwhile, the perturbation amplitude of the upper
surface of plug region in Fig. 13 is larger than that in Fig. 11,
although they have the same order. Suppose a perturbation in
Fig. 11 is added to the flow at Bi ¼ 3, then due to the heat transfer
to the gas, the temperature perturbation decreases. A larger veloc-
ity perturbation is needed to maintain the amplitude of tempera-
ture perturbation. Then the velocity gradient on the upper
surface of plug region increases.



Fig. 8. The ratios I=N and G=N for the neutral mode at B ¼ 0:4.

Fig. 9. The perturbation flow field of the neutral mode at Pr ¼ 30; B ¼ 0:4; Bo ¼ 1,
Bi ¼ 0: (I) the perturbation of the upper surface of plug region; (II) the streamlines
and isothermals. The dashed line is the upper surface of plug region. t-T.

Fig. 10. The perturbation flow field of the neutral mode at Pr ¼ 1; B ¼ 0:4; Bo ¼ 1,
Bi ¼ 0: (I) the perturbation of the upper surface of plug region; (II) the streamlines
and isothermals.
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3.4. Discussion

For large Pr, all the perturbations are restricted in the yielded
region I. The upper surface of plug region is the same as a solid
wall. Thus, the instability that appears in the yielded region I is
similar to that in the return flow of a shear-thinning fluid [15].
The difference between them is that the mass flux in the yielded
region I is larger than that of the return flow. Therefore, in the
return flow without gravity, there can be downstream waves in a
Bingham fluid while the perturbations waves are always upstream
in a shear-thinning fluid [15]. For small Pr, the wave speed
increases obviously with B (see Fig. 5). However, the waves are still
upstream. The perturbations at small Pr are nearly spanwise, so the
increase of the mass flux in streamwise direction does not change
/c obviously.

The reason why the distribution of the temperature perturba-
tion depends on Pr can be seen as follows. For large Pr, the temper-
ature distribution mainly depends on the heat convection. In the
region where there is no velocity perturbation, the temperature
perturbation is also negligible (see Figs. 9 and 12). However, for
small Pr, the heat conduction is more important, so the tempera-
ture below the upper surface of plug region is affected by the
temperature perturbation in the yielded region I significantly
(see Figs. 11 and 13).

The perturbation amplitude of the upper surface of plug region
decreases with Pr (see Figs. 9–13). This can be seen from (2.14) that
hþ is linear with Du. For large Pr, most of the perturbation energy
comes from the Marangoni forces. The velocity perturbations are
concentrated near the surface. So the velocity gradient across the
upper surface of plug region is very small. However, for small Pr,
the perturbation also absorbs energy from the basic flow, the
perturbation velocity in the interior is not negligible. The velocity
gradient on the upper surface of plug region is far larger than that
at large Pr.

Both the thermocapillary liquid layer and the plane Poiseuille
flow are parallel shear flows. For a Bingham fluid, there is a plug



Fig. 11. The perturbation flow field of the neutral mode at Pr ¼ 0:03; B ¼ 0:4;
Bo ¼ 1, Bi ¼ 0: (I) the perturbation of the upper surface of plug region; (II) the
streamlines and isothermals.

Fig. 12. The perturbation flow field of the neutral mode at Pr ¼ 30; B ¼ 0:4; Bo ¼ 3,
Bi ¼ 0:(I) the perturbation of the upper surface of plug region; (II) the streamlines
and isothermals.

Fig. 13. The perturbation flow field of the neutral mode at Pr ¼ 0:03; B ¼ 0:4;
Bo ¼ 1, Bi ¼ 3: (I) the perturbation of the upper surface of plug region; (II) the
streamlines and isothermals.
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region in the flow for both of them. However, a big difference is
that the plane Poiseuille flow is symmetric with respective to its
center line [16], while the thermocapillary liquid layer is not sym-
metric (see Fig. 1). Meanwhile, the temperature field is important
for the latter (see Figs. 1 and 3), and there can be temperature per-
turbations in all three regions (see the isothermals in Figs. 9–13),
which are not considered in the former. Furthermore, the energy
mechanisms of these two flows are entirely different. In plane
Poiseuille flow, the perturbation energy comes from the basic flow,
and the velocity perturbation appears in two yielded regions. How-
ever, in the thermocapillary liquid layer, the work done by Maran-
goni forces on the surface is the main energy source for the
instability. Therefore, the kinetic energy of the perturbation is con-
centrated near the surface, and there is little velocity perturbation
below the upper surface of plug region (see the streamlines in
Figs. 9–13).

The Bingham fluid is similar to the Carreau fluid to some extent.
The viscosity depends on the shear rate and decreases significantly
when the shear rate is large enough for both of them. Therefore, we
can make a comparison between the thermocapillary liquid layer
of a Bingham fluid and that of a Carreau fluid. In the return flow,
the variation of Mac with B and Pr in a Bingham fluid (see Fig. 4)
is similar to that in a Carreau fluid [15], and the streamwise wave
is excited at large Pr for both fluids. However, the instability of a
Carreau fluid has hot spots at the bottom of the layer at moderate
Pr [15]. In contrast, the hot spots are above the upper surface of
plug region in a Bingham fluid (see Figs. 9–13), and the tempera-
ture perturbation below the upper surface of plug region is only
caused by heat conduction. Additionally, in the case without grav-
ity, the streamwise wave in a Bingham fluid is downstream (see
(b), (d), (f) in Fig. 5) while that in a Carreau fluid is upstream [15].
4. Conclusion

In this work, the instability for a Bingham-fluid thermocapillary
convection in an infinite liquid layer has been studied. The solution
of the basic flow has been derived numerically. The effects of the
yield stress (B), gravity (Bo) and the interfacial heat transfer (Bi)
on the flow stability have been analysed comprehensively.

The return flow of a Bingham fluid consists of three regions,
where the plug region is in the middle and others are yielded
regions. When the Bingham number increases, the length of the
plug region increases, but the vertical temperature gradient
decreases. The velocity perturbation below the upper surface of
plug region is negligible. However, the temperature perturbation
appears in the whole flow region when the Prandtl number is
not large. Meanwhile, the perturbation amplitude of the upper sur-
face of plug region decreases rapidly with the increase of Pr.

Both the critical Marangoni number and wave number increase
with B. The preferred mode becomes the downstream wave when
the Prandtl number is large enough. The gravity can reduce the
length of the plug region and increase the vertical velocity gradi-
ent. For large Pr, both the perturbation of the upper surface of plug
region and the critical Marangoni number increase significantly
with the gravity, whereas the work done by gravity for the pertur-
bation is nearly zero. When the Biot number increases, the flow is
stabilized and the basic flow becomes the largest energy source for
the perturbation at small Pr.
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For Bingham fluid flows, there is a plug region in both the ther-
mocapillary liquid layer and the plane Poiseuille flow. However,
the former has little velocity perturbation below the upper surface
of plug region, while the velocity perturbation appears in two
yielded regions for the latter. There is a big difference between
the thermocapillary liquid layer of a Carreau fluid and that of a
Bingham fluid. The instability for the former has hot spots at the
bottom of the layer at moderate Pr, while the hot spots are above
the plug region for the latter.
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Appendix A. The derivation of the basic flow

We can substitute the form of basic flow (2.10) into the
momentum Eq. (2.6). For the yielded regions (I and II), the momen-
tum equation in x and z directions are derived as follows.

� @p
@x

þ @s13
@z

¼ 0; ðA:1Þ

� @p
@z

þ @s13
@x

þ Bo
R

� T ¼ 0: ðA:2Þ

As the velocity only depends on z: U0 ¼ U0ðzÞ, then

s ¼ sðzÞ; @s13
@x

¼ 0;
@2p
@x@z

¼ �Bo
R

¼ @2s13
@z2

: ðA:3Þ

Therefore,

Rs13 ¼ �Bo
2

z2 þ C1zþ C2: ðA:4Þ

DenotingD ¼ d=dz, the relationbetweenof shear stress andvelocity is

Rs13 ¼ �Bþ DU0ðzÞ; z 2 ½0; z0�
DU0ðzÞ ¼ 0; ðz0; z0 þ h0Þ
Rs13 ¼ Bþ DU0ðzÞ; z 2 ½z0 þ h0;1�

ðA:5Þ

where the constants C1;C2; z0;h0 and the velocity of basic flow can
be obtained numerically with the following conditions: (A.6), (A.7).

The shear stress has

Rs13 ¼
1; z ¼ 1
B; z ¼ z0
�B; z ¼ z0

8><>: þ h0 ðA:6Þ

and the velocity hasZ 1

0
U0ðzÞdz ¼ 0;U0ðzÞjz¼0 ¼ 0: ðA:7Þ

Substituting (2.9) into (2.6), the temperature of basic flow must
satisfy

�U0ðzÞ ¼ 1
Ma

D2TbðzÞ: ðA:8Þ
This equation can be solved with the boundary conditions of the
temperature.

Appendix B. The governing equations of perturbations

Substituting (2.15) into governing Eqs. (2.5-2.7), the linearized
perturbation equations can be derived as follows. The equations
for the perturbation velocity in the yielded regions are [15]

ia u
_þibv

_þDw
_ ¼ 0; ðB:1Þ

bðw_DU0þU0iau
_Þ�aðU0iav

_Þ
�bðias_11þ ibs

_

12þDs
_

13Þþaðias_12þ ibs
_

22þDs
_

23Þ¼�rðbu_�av_Þ;
ðB:2Þ

aðDw
_ �DU0þw

_
D2U0þDU0 � i au

_þU0i aDu
_Þ

þbðDU0 � i av
_þU0i aDv

_Þ� ik2ðU0iaw
_Þ

�ðia2Ds
_

11þ2iabDs
_

12þaD2s
_

13þ ib2Ds
_

22þbD2s
_

23Þ
þ ik2ði as_13þ ibs

_

23þDs
_

33þBo � T
_

=RÞ¼�rðaDu
_þbDv

_�ik2w
_Þ;
ðB:3Þ

while in the plug region, the perturbation velocity is zero,

u
_ ¼ v

_ ¼ w
_ ¼ 0; z 2 ðz0; z0 þ h0Þ: ðB:4Þ

The equations for the perturbation temperature and stress are

Ma u
_ @T0

@x
þw

_ @T0

@z
þ U0ia T

_
� �

þ ða2 þ b2Þ T
_

�D2 T
_

¼ �rMa T
_

; ðB:5Þ

s
_

11 � l12ia u
_ ¼ 0; s

_

12 � l1ðiav
_þib u

_Þ ¼ 0;

s
_

13 � l2ðD u
_þiaw

_Þ ¼ 0; ðB:6Þ

s
_

22 � l1ð2ibv
_Þ ¼ 0; s

_

23 � l1ðibw
_ þDv

_Þ ¼ 0; s
_

33 � l1ð2Dw
_Þ ¼ 0:

ðB:7Þ
Here,

l1 ¼ 1
R

1þ B
jDU0j

� �
;l2 ¼ 1

R
: ðB:8Þ

The linearized boundary conditions are

u
_ ¼ v

_ ¼ w
_ ¼ @ T

_

@z
¼ 0; z ¼ 0; ðB:9Þ

s
_

13 þ 1
R
ia T

_

¼ 0; s
_

23 þ 1
R
ib T

_

¼ 0;w
_ ¼ 0;

@ T
_

@z
þ Bi � T

_

¼ 0; z ¼ 1:

ðB:10Þ
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