
Neurocomputing 275 (2018) 1973–1980

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Block building programming for symbolic regression

Chen Chen

a , b , Changtong Luo

a , ∗, Zonglin Jiang

a , b

a State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
b School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 10 0 049, China

a r t i c l e i n f o

Article history:

Received 24 May 2017

Revised 3 September 2017

Accepted 17 October 2017

Available online 10 November 2017

Communicated by Prof. H.R. Karimi

Keywords:

Symbolic regression

Separable function

Block building programming

Genetic programming

a b s t r a c t

Symbolic regression that aims to detect underlying data-driven models has become increasingly impor-

tant for industrial data analysis. For most existing algorithms such as genetic programming (GP), the con-

vergence speed might be too slow for large-scale problems with a large number of variables. This situa-

tion may become even worse with increasing problem size. The aforementioned difficulty makes symbolic

regression limited in practical applications. Fortunately, in many engineering problems, the independent

variables in target models are separable or partially separable. This feature inspires us to develop a new

approach, block building programming (BBP). BBP divides the original target function into several blocks,

and further into factors. The factors are then modeled by an optimization engine (e.g. GP). Under such

circumstances, BBP can make large reductions to the search space. The partition of separability is based

on a special method, block and factor detection. Two different optimization engines are applied to test

the performance of BBP on a set of symbolic regression problems. Numerical results show that BBP has a

good capability of structure and coefficient optimization with high computational efficiency.

© 2017 Elsevier B.V. All rights reserved.

1

i

m

h

m

r

g

i

v

o

e

s

÷

b

w

a

o

o

z

H

s

[

b

o

e

t

s

l

i

r

a

h

t

a

g

a

e

c

m

[

h

0

. Introduction

Data-driven modeling of complex systems has become increas-

ngly important for industrial data analysis when the experimental

odel structure is unknown or wrong, or the concerned system

as changed [1,2] . Symbolic regression aims to find a data-driven

odel that can describe a given system based on observed input-

esponse data, and plays an important role in different areas of en-

ineering such as signal processing [3] , system identification [4] ,

ndustrial data analysis [5] , and industrial design [6] . Unlike con-

entional regression methods that require a mathematical model

f a given form, symbolic regression is a data-driven approach to

xtract an appropriate model from a space of all possible expres-

ions S defined by a set of given binary operations (e.g. + , − , × ,

) and mathematical functions (e.g. sin , cos , exp , ln), which can

e described as follows:

f ∗ = arg min

f∈S

∑

i

∥∥ f (x

(i)) − y i
∥∥, (1)

here x (i) ∈ R

d and y i ∈ R are sampling data. f is the target model

nd f ∗ is the data-driven model. Symbolic regression is a kind

f non-deterministic polynomial (NP) problem, which simultane-

usly optimizes the structure and coefficient of a target model.
∗ Corresponding author.

E-mail addresses: chenchen@imech.ac.cn (C. Chen), luo@imech.ac.cn (C. Luo),

ljiang@imech.ac.cn (Z. Jiang).

o

a

h

s

ttps://doi.org/10.1016/j.neucom.2017.10.047

925-2312/© 2017 Elsevier B.V. All rights reserved.
ow to use an appropriate method to solve a symbolic regres-

ion problem is considered as a kaleidoscope in this research field

7–9] .

Genetic programming (GP) [10] is a classical method for sym-

olic regression. The core idea of GP is to apply Darwin’s theory

f natural evolution to the artificial world of computers and mod-

ling. Theoretically, GP can obtain accurate results, provided that

he computation time is long enough. However, describing a large-

cale target model with a large number of variables is still a chal-

enging task. This situation may become even worse with increas-

ng problem size (increasing number of independent variables and

ange of these variables). This is because the target model with

 large number of variables may result in large search depth and

igh computational costs of GP. The convergence speed of GP may

hen be too slow. This makes GP very inconvenient in engineering

pplications.

Apart from basic GP, two groups of methods for symbolic re-

ression have been studied. The first group focused on evolution-

ry strategy, such as grammatical evolution [11] and parse-matrix

volution [12] . These variants of GP can simplify the coding pro-

ess. Gan et al. [13] introduced a clone selection programming

ethod based on an artificial immune system. Karaboga et al.

14] proposed an artificial bee colony programming method based

n the foraging behavior of honeybees. However, these methods

re still based on the idea of biological simulation processes. This

elps little to improve the convergence speed when solving large-

cale problems.

https://doi.org/10.1016/j.neucom.2017.10.047
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2017.10.047&domain=pdf
mailto:chenchen@imech.ac.cn
mailto:luo@imech.ac.cn
mailto:zljiang@imech.ac.cn
https://doi.org/10.1016/j.neucom.2017.10.047

1974 C. Chen et al. / Neurocomputing 275 (2018) 1973–1980

i

v

w

a

E

p

C

w

w

t

a

t

a

a

c

I

f

2

i

D

[

o

a

a

I

t ∑

s

a

2

t

p

l

D

x

a

The second branch exploited strategies to reduce the search

space of the solution. McConaghy [15] presented the first non-

evolutionary algorithm, fast function eXtraction (FFX), based on

pathwise regularized learning, which confined its search space to

generalized linear space. However, the computational efficiency is

gained at the sacrifice of losing the generality of the solution. More

recently, Worm [16] proposed a deterministic machine-learning al-

gorithm, prioritized grammar enumeration (PGE). PGE merges iso-

morphic chromosome presentations (equations) into a canonical

form. The author argues that it could make a large reduction to

the search space. However, debate still remains on how the sim-

plification affects the solving process [17–19] .

In many scientific or engineering problems, the target models

are separable. Luo et al. [20] presented a divide-and-conquer (D&C)

method for GP. The authors indicated that detecting the correla-

tion between each variable and the target function could acceler-

ate the solving process. D&C can decompose a concerned separable

model into a number of sub-models, and then optimize them. The

separability is probed by a special method, the bi-correlation test

(BiCT). However, the D&C method can only be valid for an addi-

tively/multiplicatively separable target model (see Definition 1 in

Section 2). Many practical models are out of the scope of the sep-

arable model (Eqs. (6) and (7)). This limits the D&C method for

further applications.

In this paper, a more general separable model that may involve

mixed binary operators, namely plus (+), minus (−), times (×), and

division (÷), is introduced. In order to get the structure of the gen-

eralized separable model, a new approach, block building program-

ming (BBP), for symbolic regression is also proposed. BBP reveals

the target separable model using a block and factor detection pro-

cess, which divides the original model into a number of blocks, and

further into factors. Meanwhile, binary operators could also be de-

termined. The method can be considered as a bi-level D&C method.

The separability is detected by a generalized BiCT method. Numer-

ical results show that BBP can obtain the target functions more re-

liably, and produce extremely large accelerations of the GP method

for symbolic regression.

The presentation of this paper is organized as follows.

Section 2 is devoted to the more general separable model. The

principle and procedure of the BPP approach are described in

Section 3 . Section 4 presents numerical results, discussions, and ef-

ficiency analysis for the proposed method. In the last section, con-

clusions are drawn with future works.

2. Definition of separability

2.1. Examples

As previously mentioned, in many applications, the target mod-

els are separable. Below, two real-world problems are given to il-

lustrate separability.

Example 1. When developing a rocket engine, it is crucial to

model the internal flow of a high-speed compressible gas through

the nozzle. The closed-form expression for the mass flow through

a choked nozzle [21] is

˙ m =

p 0 A

∗√

T 0

√

γ

R

(
2

γ + 1

)(γ +1) / (γ −1)

, (2)

where p 0 and T 0 represent the total pressure and total tempera-

ture, respectively. A

∗ is the sonic throat area. R is the specific gas

constant, which is a different value for different gases. γ = c p / c v ,

where c v and c p are the specific heat at constant volume and con-

stant pressure. The sub-functions of the five independent variables,

p , T , A

∗, R , and γ are all multiplicatively separable in Eq. (2) . That
0 0
s, the target model can be re-expressed as follows

˙ m = f (p 0 , A

∗, T 0 , R, γ)

= f 1 (p 0) × f 2 (A

∗) × f 3 (T 0) × f 4 (R) × f 5 (γ) .
(3)

The target function with five independent variables can be di-

ided into five sub-functions that are multiplied together, and each

ith only one independent variable. Furthermore, the binary oper-

tor between two sub-functions could be plus (+) or times (×).

xample 2. In aircraft design, the lift coefficient of an entire air-

lane [22] can be expressed as

 L = C Lα(α − α0) + C L δe
δe

S HT

S ref

, (4)

here C L α and C L δe
are the lift slope of the body wings and tail

ings. α, α0 , and δe are the angle of attack, zero-lift angle of at-

ack, and deflection angle of the tail wing, respectively. S HT and S ref

re the tail wing area and reference area, respectively. Note that

he sub-functions of the variable C L α , C L δe
, δe , S HT , and S ref are sep-

rable, but not purely additively/multiplicatively separable. Vari-

bles α and α0 are not separable, but their combination (α, α0)

an be considered separable. Hence, Eq. (4) can be re-expressed as

C L = f
(
C Lα, α, α0 , C L δe

, δe , S HT , S ref

)
= f 1 (C Lα) × f 2 (α, α0) + f 3

(
C L δe

)
× f 4 (δe) × f 5 (S HT) × f 6 (S ref) .

(5)

n this example, the target function is divided into six sub-

unctions.

.2. Additively/multiplicatively separable model

The additively and multiplicatively separable models introduced

n [20] are briefly reviewed below.

efinition 1. A scalar function f (x) with n continuous variables x =

x 1 , x 2 , . . . , x n]
� (f : R

n �→ R , x ∈ R

n) is additively separable if and

nly if it can be rewritten as

f (x) = α0 +

m ∑

i =1

αi f i
(
I (i) x

)
, (6)

nd is multiplicatively separable if and only if it can be rewritten

s

f (x) = α0 ·
m ∏

i =1

f i
(
I (i) x

)
. (7)

n Eqs. (6) and (7) , I (i) ∈ R

n i ×n is the partitioned matrix of

he identity matrix I ∈ R

n ×n , namely I =

[
I (1) I (2) . . . I (m)

]�
,

 m

i =1 n i = n . I (i) x is the variables set with n i elements. n i repre-

ents the number of variables in sub-function f i . Sub-function f i is

 scalar function such that f i : R

n i �→ R . αi is a constant coefficient.

.3. Partially/completely separable model

Based on the definition of additive/multiplicative separability,

he new separable model with mixed binary operators, namely

lus (+), minus (−), times (×), and division (÷) are defined as fol-

ows.

efinition 2. A scalar function f (x) with n continuous variables

 = [x 1 , x 2 , . . . , x n]
� (f : R

n �→ R , x ∈ R

n) is partially separable if

nd only if it can be rewritten as

f (x) = α0 �1 α1 f 1
(
I (1) x

)
�2 α2 f 2

(
I (2) x

)
�3 . . . �m

αm

f m

(
I (m) x

)
, (8)

C. Chen et al. / Neurocomputing 275 (2018) 1973–1980 1975

w

I

t

v

t

(

n

g

a

D

R

r

3

3

t

t

l

3

b

b

r

p

f

T

a

v

x

o

i

d

t

�

g

T

w

p [

t ∑

s

P

D

a

x

f

s

t

a

c

t

v

w

b

ϕ

v

(

r

m

a

e

3

s

i

t

f

t

e

a

a

i

here I (i) ∈ R

n i ×n is the partitioned matrix of the identity matrix

 ∈ R

n ×n , namely I =

[
I (1) I (2) . . . I (m)

]�
,

∑ m

i =1 n i = n . I (i) x is

he variables set with n i elements. n i represents the number of

ariables in sub-function f i . Sub-function f i is a scalar function such

hat f i : R

n i �→ R . The binary operator �i can be plus (+) and times

 ×). αi is a constant coefficient.

Note that the binary operators minus (−) and division (/) are

ot included in � for simplicity. This does not affect much of its

enerality, since minus (−) could be regarded as (−) = (−1) · (+) ,

nd sub-function could be treated as ˜ f i (·) = 1 / f i (·) if only f i (·) � = 0.

efinition 3. A scalar function f (x) with n continuous variables (f :

n �→ R , x ∈ R

n) is completely separable if and only if it can be

ewritten as Eq. (8) and n i = 1 for all i = 1 , 2 , . . . , m .

. Block building programming

.1. Bi-correlation test

The bi-correlation test (BiCT) method proposed in [20] is used

o detect whether a concerned target model is additively or mul-

iplicatively separable. BiCT is based on random sampling and the

inear correlation method.

.2. Block and factor detection

The additively or multiplicatively separable target function can

e easily detected by the BiCT. However, how to determine each

inary operator �i of Eq. (8) is a critical step in BBP. One way is to

ecognize each binary operator �i sequentially with random sam-

ling and linear correlation techniques. For example, a given target

unction of six variables with five sub-functions is given below

f (x 1 , . . . , x 6) = α0 �1 α1 f 1 (x 1) �2 α2 f 2 (x 2 , x 3) �3 α3 f 3 (x 4)

�4 α4 f 4 (x 5) �5 α5 f 5 (x 6)

= α0 + α1 f 1 (x 1) × α2 f 2 (x 2 , x 3) + α3 f 3 (x 4)

+ α4 f 4 (x 5) × α5 f 5 (x 6) . (9)

he first step is to determine the binary operator �1 . The six vari-

bles are sampled with the variable x 1 changed, and the remaining

ariables x 2 , x 3 , . . . , x 6 fixed. However, it is found that the variable

 1 cannot be separable from the variables x 2 , x 3 , . . . , x 6 , since the

peration order of the two binary operators plus (+) and times (×)

s different. This indicates that recognizing each �i sequentially is

ifficult.

To overcome the aforementioned difficulty, block and factor de-

ection is introduced, which helps to recognize the binary operator

i more effectively. Before introducing this method, a theorem is

iven as follows.

heorem 1 Eq. (8) . can be equivalently written as

f (x) = β0 +

p ∑

i =1

βi ϕ i

(
I (i) x

)
= β0 +

p ∑

i =1

βi

q i ∏

j=1

ψ i, j

(
I (

i)
j

x

)
, (10)

here x = [x 1 , x 2 , . . . , x n]
� ∈ R

n and f : R

n �→ R . I (i) ∈ R

s i ×n is the

artitioned matrix of the identity matrix I ∈ R

n ×n , namely I =
I (1) I (2) . . . I (p)

]�
,

∑ p
i =1

s i = n . I (
i)

j
∈ R

s i, j ×n is the parti-

ioned matrix of the I (i) , namely I (i) =

[
I (

i)
1

I (
i)

2
. . . I (

i)
q i

]�
,

 q i
j=1

s i, j = s i . p ≥ 1, q i ≥ 1,
∑ p

i =1
q i = m . Sub-functions ϕi and ψ i, j are

calar functions such that ϕ i : R

s i �→ R and ψ i, j : R

s i, j �→ R .

roof. See Appendix A . �

efinition 4. The sub-function ϕi (I
(i) x) is the i th block of Eq. (10) ,

nd the sub-function ψ i, j

(
I (

i)
j

x

)
is the j th factor of the i th block.
It is observed from Eq. (9) that there are three blocks, ϕ1 (x 1 , x 2 ,

 3), ϕ2 (x 4), and ϕ3 (x 5 , x 6). The structure of Eq. (9) is given as the

ollowing equation, based on the Theorem 1 ,

f (x 1 , . . . , x 6) = α0 + α1 f 1 (x 1) × α2 f 2 (x 2 , x 3) + α3 f 3 (x 4)

+ α4 f 4 (x 5) × α5 f 5 (x 6)

= β0 + β1 ϕ 1 (x 1 , x 2 , x 3) + β2 ϕ 2 (x 4) + β3 ϕ 3 (x 5 , x 6)

= β0 + β1 ψ 1 , 1 (x 1) × ψ 1 , 2 (x 2 , x 3) + β2 ψ 2 , 1 (x 4)

+ β3 ψ 3 , 1 (x 5) × ψ 3 , 2 (x 6) . (11)

The first block has two factors, ψ 1, 1 (x 1) and ψ 1, 2 (x 2 , x 3). The

econd block has only one factor, ψ 2, 1 (x 4). The last block also has

wo factors, ψ 3, 1 (x 5) and ψ 3, 2 (x 6). Note that variables x 2 and x 3
re partially separable, while variables x 1 , x 4 , x 5 , and x 6 are all

ompletely separable.

From the previous discussion, it is straightforward to show

hat in Eq. (10) , the original target function f (x) is first di-

ided into several blocks ϕi (·) with global constants c i . Mean-

hile, all binary plus (+) operators are determined, which is

ased on the separability detection of the additively separable

i (·) by BiCT, where i = 1 , 2 , . . . , p. Next, each block ϕi (·) is di-

ided into several factors ψ i, j (·). Meanwhile, all binary times

 ×) operators are determined, which is based on the sepa-

ability detection of multiplicatively separable ψ i, j (·) by BiCT

ethod, where j = 1 , 2 , . . . , q i . It is clear that the process of block

nd factor detection does not require any special optimization

ngine.

.3. Factor modeling

The mission of symbolic regression is to optimize both the

tructure and coefficient of a target function that describes an

nput-response system. In block building programming (BBP), after

he binary operators are determined, the original target function

 (x) is divided into several factors ψ i, j (·). In this section, we aim

o find a proper way to model these factors. This problem is quite

asy to be solved by an optimization algorithm, since the structure

nd coefficient of a factor ψ i, j (·) can be optimized while the rest

re kept fixed and unchanged.

Without the loss of generality, the factor ψ 1 , 1

(
x 1 , x 2 , . . . , x s 1 , 1

)
n Eq. (10) illustrates the implementation of the modeling process.

1. Let the matrix X be a set of N sampling points for all n inde-

pendent variables,

X =

⎡

⎢ ⎢ ⎣

x 11 x 12 · · · x 1 ,n
x 21 x 22 · · · x 2 ,n

. . .
. . .

. . .
x N, 1 x N, 2 · · · x N,n

⎤

⎥ ⎥ ⎦

, (12)

where x i, j represents the i th sampling point of the j th indepen-

dent variable, i = 1 , 2 , . . . , n ; j = 1 , 2 , . . . , N.
2. Keep variables x 1 , x 2 , . . . , x s 1 , 1 being randomly sampled. Let

the sampling points of the variables in local block (block 1),
x s 1 , 1 +1 , x s 1 , 1 +2 , . . . , x s 1 , be fixed to any two given points x A and

x B (∀ x A , x B ∈ [a, b]), respectively. In addition, let the sampling
points of variables in other blocks (blocks 2 to p), namely
x s 1 +1 , x s 1 +2 , . . . , x n , be fixed to a given point x G (∀ x G ∈ [a, b]).

We obtain

X 1 =

⎡

⎢ ⎢ ⎢ ⎢ ⎣

x 1 , 1 · · · x 1 , s 1 , 1 x (
A)

1 , s 1 , 1 +1
· · · x (

A)
1 , s 1

x (
G)

1 , s 1 +1
· · · x (

G)
1 ,n

x 2 , 2 · · · x 2 , s 1 , 1 x (
A)

2 , s 1 , 1 +1
· · · x (

A)
2 , s 1

x (
G)

2 , s 1 +1
· · · x (

G)
2 ,n

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

x N, 1 · · · x N, s 1 , 1 x (
A)

N, s 1 , 1 +1
· · · x (

A)
N, s 1

x (
G)

N, s 1 +1
· · · x (

G)
2 ,n

⎤

⎥ ⎥ ⎥ ⎥ ⎦

,

(13)

1976 C. Chen et al. / Neurocomputing 275 (2018) 1973–1980

Original target model

Block detection

Factor detection

Factor modeling (Inner optimization)

Global assembling (Outer optimization)

Fig. 1. An example procedure of BBP: the modeling of the Eq. (4) .

c

m

t

v

t

e

3

a

t

t

F

s

t

m

t

×

b

o

g

p

b

t

L

a

t

p

p

m

3

e

l

m

c

u
and

X 2 =

⎡

⎢ ⎢ ⎢ ⎢ ⎣

x 1 , 1 · · · x 1 , s 1 , 1 x (
B)

1 , s 1 , 1 +1
· · · x (

B)
1 , s 1

x (
G)

1 , s 1 +1
· · · x (

G)
1 ,n

x 2 , 2 · · · x 2 , s 1 , 1 x (
B)

2 , s 1 , 1 +1
· · · x (

B)
2 , s 1

x (
G)

2 , s 1 +1
· · · x (

G)
2 ,n

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

x N, 1 · · · x N, s 1 , 1 x (
B)

N, s 1 , 1 +1
· · · x (

B)
N, s 1

x (
G)

N, s 1 +1
· · · x (

G)
2 ,n

⎤

⎥ ⎥ ⎥ ⎥ ⎦

.

(14)

3. Let ˜ X = X 1 − X 2 =

[
X train 0

]
. Matrix X train is a partition of

matrix ˜ X . Next, let f train be the vector of which the i th ele-

ment is the function value of the i th row of matrix ˜ X , namely

f train = f
(

˜ X

)
.

4. Substitute f train and X train into the fit models y train = β ·
f ∗(x train) . This step could be realized by an existing opti-

mization engine (e.g. GP). Note that, the constant β rep-

resent the fitting parameter of the function of variables

x s 1 , 1 +1 , x s 1 , 1 +2 , . . . , x s 1 , since these variables are unchanged dur-

ing this process. We aim to obtain the optimization model f ∗,

and constant β will be discarded.

Other factors ψ i, j could be obtained in the same way. In fact,

many state-of-the-art optimization engines are valid for BBP. Ge-

netic programming methods (e.g. parse-matrix evolution (PME)

[12] and GPTIPS [23]), swarm intelligence methods (e.g. artificial

bee colony programming (ABCP) [14]), and global optimization

methods (e.g. low-dimensional simplex evolution (LDSE) [24]) are

all easy to power BBP.

3.4. Block building programming

Block-building programming (BBP) can be considered as a bi-

level D&C method, that is, the separability detection involves two

processes (block and factor detection). In fact, BBP provides a

framework of genetic programming methods or global optimiza-

tion algorithms for symbolic regression. The main process of BBP is

decomposed and presented in previous sections (Sections 3.1 –3.3).

Despite different optimization engines for factors modeling being

used, the general procedure of BBP could be described as follows.

Procedure of BBP:

Step 1. (Initialization) Input the dimension of the target func-

tion D , the set S = { i : i = 1 , 2 , . . . , D } for initial variables sub-

script number, sampling interval [a, b], and the number

of sampling points N . Generate a sampling set X ∈ [a, b] ⊂
R

N×D .

Step 2. (Block detection) The information (the subscript num-

ber of the local block and variables) of each block ϕi (·),

i = 1 , 2 , . . . , p, is detected and preserved iteratively by BiCT

(that is, the additively separable block).

Step 3. (Factor detection) For each block ϕi (·), the information

(the subscript number of the local block, factor, and vari-

ables) of each factor ψ i, j (·), j = 1 , 2 , . . . , q i , is detected and

preserved iteratively by BiCT (that is, the multiplicatively

separable factor in local block).

Step 4. (Factor modeling) For the j th factor ψ i, j (·) in the

i th block, set the variables in sampling set X in blocks

{ 1 , 2 , . . . , i − 1 , i + 1 , . . . , p } to be fixed to x G , and the vari-

ables in factors
{

1 , 2 , . . . , j − 1 , j + 1 , . . . , q j
}

of the i th block

to be fixed to x A and x B . Let ˜ X

i, j = X

i, j
1

− X

i, j
2

=

[
X

i, j
train

0
]

and f
i, j
train

= f
(

˜ X

i, j
)
. The optimization engine is then used.

Step 5. (Global assembling) Global parameter βk ,

k = 0 , 1 , . . . , p, can be linearly fitted by the equation

f train = β0 +

p ∑

i =1

βi ϕ i (·) = β0 +

p ∑

i =1

βi

q i ∏

j=1

ψ i, j (X train) .
It is clear from the above procedure that the optimization pro-

ess of BBP could be divided into two parts, inner and outer opti-

ization. The inner optimization (e.g. LDSE and GPTIPS) is invoked

o optimize the structure and coefficients of each factor, with the

ariables of other factors being fixed. The outer optimization aims

o optimize the global parameters of the target model structure. An

xample procedure of BBP is provided in Fig. 1 .

.5. Optimization engine

Factor modeling could be easily realized by global optimization

lgorithms or genetic programming. However, a few differences be-

ween these two methods should be considered.

In BBP, when using a global optimization method, the struc-

ure of the factors (function models) should be pre-established.

or instance, functions that involve uni-variable and bi-variables

hould be set for function models. Sequence search and optimiza-

ion methods is suitable for global optimization strategies. This

eans a certain function model will be determined, provided that

he fitting error is small enough (e.g. mean square error � 10 −8).

In genetic programming, arithmetic operations (e.g. + , − ,

, ÷) and mathematical functions (e.g. sin , cos , exp , ln) should

e pre-established instead of function models. The search process

f GP is stochastic. This makes it easily reach premature conver-

ence. In Section 5 , LDSE and GPTIPS, are both chosen to test the

erformance of BBP.

The choice of LDSE and GPTIPS as the optimization engine is

ased on the obvious fact that the factor modeling might contain

he non-convex optimization process (e.g. ψ = m 1 sin (m 2 x + m 3)).

DSE and GPTIPS can make our program easy to use, but may have

n additional calculation cost. To further speed up the optimiza-

ion process, the convex optimization algorithm [25–27] is valid

rovided that the factor modeling could be reduced to a linear

rogramming, quadratic programming, and semi-definite program-

ing problem (e.g. ψ = m 1 x
m 2 + m 3).

.6. Remarks for engineering applications

The proposed method is described with functions of explicit

xpressions. For practical applications, data-driven modeling prob-

ems are more common, which means the explicit expression

ight be unavailable. To use the proposed BBP method, one can

onstruct a surrogate model of the black-box type to represent the

nderlying target function [28] , and the surrogate model could be

C. Chen et al. / Neurocomputing 275 (2018) 1973–1980 1977

Table 1

Uni-variable and bi-variables preseted models.

No. Uni-variable model Bi-variables model

1 k (x m 1 + m 2) k (m 1 x 1 + m 2 x 2 + m 3)

2 k (e m 1 x + m 2) k [(m 1 x 1 + m 2) / (m 3 x 2 + m 4)]

3 k sin (m 1 x
m 2 + m 3) k (e m 1 x 1 x 2 + m 2)

4 k log (m 1 x + m 2) k sin (m 1 x 1 + m 2 x 2 + m 3 x 1 x 2 + m 4)

Table 2

Performance of LDSE-powered BBP.

Case No. Dim Domain No. samples T d / T BBP (%)

1 3 [−3 , 3]
3 300 4.35

2 3 [−3 , 3]
3 300 2.38

3 4 [−3 , 3]
4 400 4.7

4 4 [−3 , 3]
4 400 2.51

5 4 [−3 , 3]
4 400 3.32

6 5 [1, 4] 5 300 1.98

7 5 [−3 , 3]
5 500 4.42

8 5 [−3 , 3]
5 500 1.68

9 6 [−3 , 3]
6 600 2.86

10 6 [−3 , 3]
6 600 3.38

u

s

p

n

i

c

i

t

w

s

t

(

s

4

t

g

B

c

s

T

c

S

4

o

c

s

N

r

e

f

4

s

f

a

l

i

p

N

i

o

t

B

s

d

a

t

4

c

O

s

I

t

o

a

t

m

4

[

o

m

t

d

η

w

c

n

m

a

4

t

t

l

f

d

c

t

s

a

T

4

r

t

g

r

b

t

T

m

m

e
sed as the target model in the BBP method. The other modeling

teps are the same as described above.

Data noise is another issue to consider for applying BBP. In

ractical applications, the input-response data usually involves

oises such as measure errors and/or system noises. Note that dur-

ng the above surrogate modeling (e.g. Kriging regression [29]) pro-

ess, some noises could be suppressed. Meanwhile, the exact BiCT

s now unnecessary, since the surrogate model is also not the true

arget function. We can use a special technique called Soft BiCT,

here | ρ| is set to | ρ| = 1 − ε (ε is a small positive number) in-

tead of | ρ| = 1 in BiCT. Multiple BiCT could also further suppress

he noises, where each variable is fixed to more pairs of vectors

one pair in BiCT). Detailed discussions will be provided in future

tudies.

. Numerical results and discussion

The proposed BBP is implemented in Matlab/Octave. In order

o test the performance of BBP, two different optimization en-

ines, LDSE [24] and GPTIPS [23] , are used. For ease of use, a

oolean variable is used on the two selected methods. Numeri-

al experiments on 10 cases of completely separable or partially

eparable target functions, as given in Appendix B , are conducted.

hese cases help evaluate BBP’s overall capability of structure and

oefficient optimization. Computational efficiency is analyzed in

ection 4.3 .

.1. LDSE-powered BBP

We choose a global optimization algorithm, LDSE [24] , as our

ptimization engine. LDSE is a hybrid evolutionary algorithm for

ontinuous global optimization. In Table 2 , case number, dimen-

ion, domain, and number of sampling points are denoted as

o, Dim, Domain, and No. samples, respectively. Additionally, we

ecord the time T d (the block and factor detection), and T BBP (the

ntire computation time of BBP), to test the efficiency of block and

actor detection.

.1.1. Control parameter setting

The calculation conditions are shown in Table 2 . The number of

ampling points for each independent variable is 100. The regions

or cases 1–5 and 7–10 are chosen as [−3 , 3] 3 , [−3 , 3] 4 , [−3 , 3] 5 ,

nd [−3 , 3] 6 for three-dimensional (3D), 4D, 5D, and 6D prob-

ems, respectively, while case 7 is [1, 3] 5 . The control parameters
n LDSE are set as follows. The upper and lower bounds of fitting

arameters are set as −50 and 50. The population size N p is set to

 p = 10 + 10 d, where d is the dimension of the problem. The max-

mum generations is set to 3 N p . Note that the maximum number

f partially separable variables in all target models is two in our

ests. Hence, our uni-variable and bi-variables function library of

BP could be set as in Table 1 . Recalling from Section 3.3 , sequence

earch and optimization is used in BBP. The search will exit imme-

iately if the mean square error is small enough (MSE ≤ εtarget),

nd the tolerance (fitting error) is ε target = 10 −6 . In order to reduce

he effect of randomness, each test case is executed 10 times.

.1.2. Numerical results and discussion

Numerical results show that LDSE-powered BBP successfully re-

overed all target functions exactly in sense of double precision.

nce the uni- and bi-variables models are pre-set, the sequence

earch method makes BBP easy to find the best regression model.

n practical applications, more function models could be added to

he function library of BBP, provided that they are needed. On the

ther hand, as sketched in Table 2 , the calculation time of the sep-

rability detection T d is almost negligible. This test group shows

hat BBP has a good capability of structure and coefficient opti-

ization for highly nonlinear system.

.2. GPTIPS-powered BBP

We choose a kind of genetic programming technique, GPTIPS

23] , as the optimization engine. GPTIPS is a Matlab toolbox based

n multi-gene genetic programming. It has been widely used in

any research studies [30–32] . To provide BBP an overall evalua-

ion of its performance for acceleration, the acceleration rate η is

efined as

=

T GPTIPS

T BBP

, (15)

here T GPTIPS is the computation time of GPTIPS, and T BBP is the

omputation time of BBP driven by GPTIPS. The full names of the

otations in Table 2 are the case number (Case No.), the range of

ean square error of the regression model for all runs (MSE), the

verage computation time for all runs (T), and remarks of BBP test.

.2.1. Control parameter setting

Similar to Section 4.1.1 , the target models, search regions, and

he number of sampling points are the same as the aforemen-

ioned test group. The control parameters of GPTIPS are set as fol-

ows. The population size N p = 100 and the maximum generations

or re-initialization T are 10 0,0 0 0. To reduce the influence of ran-

omness, 20 runs are completed for each case. The termination

ondition is MSE ≤ εtarget , ε target = 10 −8 . In other words, the op-

imization of each factor will terminate immediately if the regres-

ion model (or its equivalent alternative) is detected, and restart

utomatically if it fails until generation T . The multi-gene of GP-

IPS is switched off.

.2.2. Numerical results and discussion

Table 3 shows the average performance of the 20 independent

uns with different initial populations. In this test group, using

he given control parameters, GPTIPS failed to obtain the exact re-

ression model or the approximate model with the default accu-

acy (MSE � 10 −8) in almost 20 runs except case 2. This situation

ecomes even worse with increasing problem size (dimension of

he problem). Additionally, as the result of T GPTIPS / T BBP shown in

able 3 , the computational efficiency increases several orders of

agnitude. This is because the computation time of BBP is deter-

ined by the dimension and complexity of each factor, not by the

ntire target model. This explains why BBP converges much faster

1978 C. Chen et al. / Neurocomputing 275 (2018) 1973–1980

Table 3

Performance of GPTIPS and GPTIPS-powered BBP.

Case Results of GPTIPS Results of GPTIPS-powered BBP

No. MSE GPTIPS T GPTIPS (s) MSE BBP T BBP (s) η = T GPTIPS /T BBP Remarks of BBP

1 [5 . 1 , 9 . 2] × 10 −1 � 6.23 × 10 3 ≤ εtarget 1512.6 > 4.12 5 runs failed

2 ≤ εtarget 323.86 ≤ εtarget 3.94 82.2 Solutions are all exact

3 [1 . 5 , 23 . 6] × 10 −2 � 7.41 × 10 3 ≤ εtarget 3643.3 > 2.03 11 runs failed

4 [8 . 1 , 16 . 2] × 10 −2 � 6.16 × 10 3 ≤ εtarget 903.87 > 6.8 4 runs failed

5 [4 . 5 , 7 . 3] × 10 −1 � 6.68 × 10 3 ≤ εtarget 26.65 > 250.65 Solutions are all exact

6 [2 . 31 , 9 . 6] × 10 −2 � 6.31 × 10 3 ≤ εtarget 4416.07 > 1.67 7 runs failed

7 [1 . 22 , 3 . 96] × 10 −1 � 8.52 × 10 3 ≤ εtarget 11.57 > 736.39 Solutions are all exact

8 [2 . 1 , 37 . 2] × 10 −1 � 7.13 × 10 3 [9 . 16 , 32 . 3] × 10 −2 � 1.3721 × 10 4 None All runs failed

9 [5 . 4 , 56 . 3] × 10 −2 � 6.24 × 10 3 [1 . 68 , 12 . 9] × 10 −2 � 6.63 × 10 3 None All runs failed

10 [5 . 86 , 99 . 16] × 10 −1 � 7.36 × 10 3 ≤ εtarget 11.62 > 708.26 Solutions are all exact

t

t

m

p

[

p

ψ

E

r

s

b

V

m

p

d

t

A

d

A

P

a

o

t

I

E

x

x

o

m
than the original GPTIPS. Good performance for acceleration, struc-

ture optimization, and coefficient optimization show the potential

of BBP to be applied in practical applications.

4.3. Computational efficiency analysis

We compare the target functional spaces of conventional GP

method (e.g. GPTIPS) and GPTIPS-powered BBP. The search space of

BBP is each factor of the target model, not the entire target model.

It is obvious that GPTIPS has a larger target function space, and

GPTIPS-powered BBP might be considered a special case of GPTIPS.

This is the reason why GPTIPS-powered BBP is more effective and

efficient than conventional GPTIPS.

The computing time (t) of BBP consists of three parts:

 = t 1 + t 2 + t 3 (16)

where t 1 is for the separability detection, t 2 for factors modeling,

and t 3 for global assembling. In [20] , authors have demonstrated

that both the separability detection and function recover processes

are double-precision operations and thus cost much less time than

the factor determination process. t 2 is the most expensive part

used to construct a data-driven model. That is, t ≈ t 2 .

As shown in Table 3 , the CPU time for determining all fac-

tors (t 2) is much less than that of the target function directly (t d).

Therefore, in practical applications, we do not consider the com-

putation complexity of a separable target model, but each factor of

it.

5. Conclusion

We established a more general separable model with mixed bi-

nary operators. In order to obtain the structure of the generalized

model, a block building programming (BBP) method is proposed

for symbolic regression. BBP reveals the target separable model

by a block and factor detection process, which divides the origi-

nal model into a number of blocks, and further into factors. The

method can be considered as a bi-level divide-and-conquer (D&C)

method. The separability is detected by a generalized BiCT. The fac-

tors could be easily determined by an existing optimization en-

gine (e.g. genetic programming). Thus BBP can reduce the com-

plexity of the optimization model, and make large reductions to

the original search space. Two different optimization engines, LDSE

and GPTIPS, have been applied to test the performance of BBP on

10 symbolic regression problems. Numerical results show that BBP

has a good capability of structure and coefficient optimization with

high computational efficiency. These advantages make BBP a po-

tential method for modeling complex nonlinear systems in various

research fields.

For future work, we plan to generalize the mathematical form

of the separable function. In Definition 2 , all variables appear only

once in the separable function. However, in practical applications,
his condition is still too strong and is not easy to satisfy. In fact,

any models have quasi-separable features. For example, the flow

ass of a circular cylinder is a classical problem in fluid dynamics

33] . A valid stream function for the inviscid, incompressible flow

ass of a circular cylinder of radius R is

 = (V ∞

r sin θ)

(
1 − R

2

r 2

)
+

�

2 π
ln

r

R

, (17)

q. (17) is expressed in terms of polar coordinates, where x =
 cos θ and y = r sin θ . V ∞

is the freestream velocity. � is the

trength of vortex flow. R is the radius of the cylinder. Eq. (17) can

e considered quasi-separable. That is, some variables (e.g. variable

 ∞

, θ , and � of Eq. (17)) appear only once in a concerned target

odel, while other variables (e.g. variable r and R of Eq. (17)) ap-

ear more than once. This makes Eq. (17) inconsistent with the

efinition of the separable function. Such complicated model struc-

ures would be analyzed in further studies.

cknowledgments

This work was supported by the National Natural Science Foun-

ation of China (Grant No. 11532014).

ppendix A. Proof of Theorem 1

roof. To prove the sufficient condition, consider the binary oper-

tor �1 . Eq. (8) could be written as

f (x) = α0 + α1 f 1
(
I (1) x

)
�2 α2 f 2

(
I (2) x

)
�3 . . . �m

αm

f m

(
I (m) x

)
,

(A.1)

r

f (x) = α0 × α1 f 1
(
I (1) x

)
�2 α2 f 2

(
I (2) x

)
�3 . . . �m

αm

f m

(
I (m) x

)
.

(A.2)

Consider the position of each binary plus operator (+). Assume

hat there are p − 1 (p ≥ 1) binary plus operators (+) in Eq. (8) .

f p > 1, assume the first binary operator plus (+) (except �1) of

q. (8) appears in the middle of the sub-functions of variables

 1 , x 2 , . . . , x s 1 (including a number of q 1 + q 2 sub-functions) and

 s 1 +1 , x s 1 +2 , . . . , x n , that is

f (x) = α0 +

˜ β1 ϕ 1 (x 1 , x 2 , . . . x s 1) +

˜ β2 ̃ ϕ 2 (x s 1 +1 , x s 1 +2 , . . . x n) , (A.3)

r

f (x) = α0 × ˜ β1 ϕ 1 (x 1 , x 2 , . . . x s 1) +

˜ β2 ̃ ϕ 2 (x s 1 +1 , x s 1 +2 , . . . x n) . (A.4)

Assume that the second binary plus operator (+) appears in the

iddle of the sub-functions of variables x 1 , x 2 , . . . , x s + s (included

1 2

https://doi.org/10.13039/501100001809

C. Chen et al. / Neurocomputing 275 (2018) 1973–1980 1979

a

t

o

b

o

I ∑

β

i

(

C

s

ϕ

x

ϕ

T

ϕ

x

ϕ

f

ϕ

ϕ

w [

f

ϕ

w [

(

b

 ∑

b

e

A

b

R

 number of q 1 + q 2 sub-functions) and x s 1 + s 2 +1 , x s 1 + s 2 +2 , . . . , x n ,

hat is

f (x) = α0 +

˜ β1 ϕ 1 (x 1 , . . . , x s 1) +

˜ β2 ϕ 2 (x s 1 +1 , . . . , x s 1 + s 2)

+

˜ β3 ̃ ϕ 3 (x s 1 + s 2 +1 , . . . , x n) , (A.5)

r

f (x) = α0 × ˜ β1 ϕ 1 (x 1 , . . . , x s 1) +

˜ β2 ϕ 2 (x s 1 +1 , . . . , x s 1 + s 2)

+

˜ β3 ̃ ϕ 3 (x s 1 + s 2 +1 , . . . , x n) . (A.6)

The position of the rest p − 4 binary plus operators (+) could

e determined in the same way. We obtain

f (x) = α0 +

p ∑

i =1

˜ βi ϕ i

(
I (i) x

)
, (A.7)

r

f (x) = α0 ×
p ∑

i =1

˜ βi ϕ i

(
I (i) x

)
. (A.8)

(i) ∈ R

s i ×n is the partitioned matrix of the identity matrix I ∈ R

n ×n ,
 p
i =1

s i = n . For Eq. (A.7) , β0 = α0 , βi =

˜ βi . For Eq. (A.8) , β0 = 0 ,

i = α0 ̃
 βi . Hence, the left-hand side of Eq. (10) can be obtained.

If p = 1 , then there is no binary plus operator (+) (except �1)

n Eq. (8) . Under this condition, it is obvious that Eqs. (A.7) and

A.8) are still satisfied.

Now decide the position of each binary times operator (×).

onsider the first sub-function ϕ1 (I
(1) x) in Eqs. (A.7) and (A.8) . As-

ume that the first binary times operator (×) of the sub-function

1 (I
(1) x) appears in the middle of the sub-functions of variables

 1 , x 2 , . . . , x s 1 , 1 and x s 1 , 1 +1 , x s 1 , 1 +2 , . . . , x s 1 , that is

 1

(
I (1) x

)
= ψ 1 , 1

(
x 1 , x 2 , . . . , x s 1 , 1

)
. . . ˜ ψ 1

(
x s 1 , 1 +1 , x s 1 , 1 +2 , . . . , x s 1

)
.

(A.9)

he second binary times operator (×) of the sub-function

1 (I
(1) x) appears in the middle of the sub-functions of variables

 1 , x 2 , . . . , x s 1 , 1 + s 1 , 2 and x s 1 , 1 + s 1 , 2 +1 , x s 1 , 1 + s 1 , 2 +2 , . . . , x s 1 , that is

 1

(
I (1) x

)
= ψ 1 , 1

(
x 1 , . . . , x s 1 , 1

)
· ψ 1 , 2

(
x s 1 , 1 +1 , . . . , x s 1 , 1 + s 1 , 2

)
· ˜ ψ 2

(
x s 1 , 1 + s 1 , 2 +1 , . . . , x s 1

)
. (A.10)

The position of the rest binary times operators (×) of the sub-

unction ϕ1 (I
(1) x) could be determined in the same way. Then,

1 (I
(1) x) could be rewritten as

 1

(
I (1) x

)
=

q 1 ∏

j=1

ψ 1 , j

(
I (

1)
j

x

)
, (A.11)

here I (
1)

j
∈ R

s 1 , j ×n is the partitioned matrix of I (1) , namely I (1) =
I (

1)
1

I (
1)

2
. . . I (

1)
q 1

]
,

∑ q 1
j=1

s 1 , j = s 1 . Hence, for arbitrary sub-

unction ϕi (I
(i) x), we have

 i

(
I (i) x

)
=

q i ∏

j=1

ψ i, j

(
I (

i)
j

x

)
, (A.12)

here I (
i)

j
∈ R

s i, j ×n is the partitioned matrix of I (i) , namely I (i) =
I (

i)
1

I (
i)

2
. . . I (

i)
q i

]
,

∑ q i
j=1

s i, j = s i ,
∑ p

i =1
q i = m . Substituting Eq.

A.12) into Eqs. (A.7) and (A.8) , the right-hand side of Eq. (10) can

e obtained.

To prove the necessary condition, expand Eq. (10) . Since
 p
i =1

q i = m, there are m sub-functions f i and each function can

e connected with a binary operator �i . Then, the Eq. (8) can be
asily obtained. �
ppendix B. 10 target models of numerical experiments

The target models which are tested in Section 4 with all the

locks boxed are given as follows:

Case 1. f (x) = 1 . 2 + 10 ∗ sin (2 x 1 − x 3) − 3 ∗ x 2 2 , where x i ∈
[−3 , 3] , i = 1 , 2 , 3 .

Case 2. f (x) = 0 . 5 ∗ e x 3 ∗ sin x 1 ∗ cos x 2 , where x i ∈ [−3 , 3] , i =
1 , 2 , 3 .

Case 3. f (x) = cos (x 1 + x 2) + sin (3 x 3 − x 4) , where x i ∈
[−3 , 3] , i = 1 , 2 , 3 , 4 .

Case 4. f (x) = 5 ∗ sin (3 x 1 x 2)

x 3 + x 4
, where x i ∈ [−3 , 3] , i = 1 , 2 , 3 , 4 .

Case 5. f (x) = 2 ∗ x 1 ∗ sin (x 2 + x 3) − cos x 4 , where x i ∈
[−3 , 3] , i = 1 , 2 , 3 , 4 .

Case 6. f (x) = 10 + 0 . 2 ∗ x 1 − 5 ∗ sin (5 x 2 + x 3) +

ln (3 x 4 + 1 . 2) − 1 . 2 ∗ e 0 . 5 x 5 , where x i ∈ [1 , 4] , i =
1 , 2 , . . . , 5 .

Case 7. f (x) = 10 ∗ sin (x 1 x 2) ∗ x 3
x 4 + x 5

, where x i ∈ [−3 , 3] , i =

1 , 2 , . . . , 5 .

Case 8. f (x) = 1 . 2 + 2 ∗ x 4 ∗ cos x 2 + 0 . 5 ∗ e 1 . 2 x 3 ∗ sin 3 x 1 −
2 ∗ cos (1 . 5 x 5 + 5) , where x i ∈ [−3 , 3] , i = 1 , 2 , . . . , 5 .

Case 9. f (x) = 100 ∗ cos (x 3 x 4)

e x 1 ∗ x 2 1 . 2
∗ sin (1 . 5 x 5 − 2 x 6) , where x i ∈

[−3 , 3] , i = 1 , 2 , . . . , 6 .

Case 10. f (x) =

x 1 + x 2
x 3

+ x 4 ∗ sin (x 5 x 6) , where x i ∈ [−3 , 3] ,

i = 1 , 2 , . . . , 6 .

eferences

[1] J.L. Salmeron, S.A. Rahimi, A.M. Navali, A. Sadeghpour, Medical diagnosis of
rheumatoid arthritis using data driven PSO-FCM with scarce datasets, Neuro-

computing 232 (2017) 104–112, doi: 10.1016/j.neucom.2016.09.113 .

[2] P. Yan, D. Liu, D. Wang, H. Ma, Data-driven controller design for general MIMO
nonlinear systems via virtual reference feedback tuning and neural networks,

Neurocomputing 171 (2016) 815–825, doi: 10.1016/j.neucom.2015.07.017 .
[3] M. Seera, C.P. Lim, K.S. Tan, W.S. Liew, Classification of transcranial doppler

signals using individual and ensemble recurrent neural networks, Neurocom-
puting 249 (2017) 337–344, doi: 10.1016/j.neucom.2016.05.117 .

[4] H.M.R. Ugalde, J.-C. Carmona, J. Reyes-Reyes, V.M. Alvarado, J. Mantilla, Com-

putational cost improvement of neural network models in black box nonlin-
ear system identification, Neurocomputing 166 (2015) 96–108, doi: 10.1016/j.

neucom.2015.04.022 .
[5] C. Luo, Z. Hu, S.-L. Zhang, Z. Jiang, Adaptive space transformation: an invariant

based method for predicting aerodynamic coefficients of hypersonic vehicles,
Eng. Appl. Artif. Intell. 46 (2015) 93–103, doi: 10.1016/j.engappai.2015.09.001 .

[6] V. Parque, T. Miyashita, A method to learn high-performing and novel product

layouts and its application to vehicle design, Neurocomputing 248 (2017) 41–
56, doi: 10.1016/j.neucom.2016.12.082 .

[7] C. Chen, C. Luo, Z. Jiang, Elite bases regression: a real-time algorithm for sym-
bolic regression, in: Proceedings of the 13th International Conference on Nat-

ural Computation, Fuzzy Systems and Knowledge Discovery, Guilin, Guangxi,
China, 2017, pp. 500–506.

[8] Y. Peng, C. Yuan, X. Qin, J. Huang, Y. Shi, An improved gene expression pro-

gramming approach for symbolic regression problems, Neurocomputing 137
(2014) 293–301, doi: 10.1016/j.neucom.2013.05.062 .

[9] L.F. dal Piccol Sotto, V.V. de Melo, Studying bloat control and maintenance of
effective code in linear genetic programming for symbolic regression, Neuro-

computing 180 (2016) 79–93, doi: 10.1016/j.neucom.2015.10.109 .
[10] J.R. Koza , Genetic Programming: On the Programming of Computers by Means

of Natural Selection, fifth ed., MIT Press, Cambridge, MA, 1992 .
[11] M. O’Neill, C. Ryan, Grammatical evolution, IEEE Trans. Evolut. Comput. 5 (4)

(2001) 349–358, doi: 10.1109/4235.942529 .

[12] C. Luo, S.-L. Zhang, Parse-matrix evolution for symbolic regression, Eng. Appl.
Artif. Intell. 25 (6) (2012) 1182–1193, doi: 10.1016/j.engappai.2012.05.015 .

[13] Z. Gan, T.W. Chow, W. Chau, Clone selection programming and its application
to symbolic regression, Expert Syst. Appl. 36 (2) (20 09) 3996–40 05, doi: 10.

1016/j.eswa.2008.02.030 .

https://doi.org/10.1016/j.neucom.2016.09.113
https://doi.org/10.1016/j.neucom.2015.07.017
https://doi.org/10.1016/j.neucom.2016.05.117
https://doi.org/10.1016/j.neucom.2015.04.022
https://doi.org/10.1016/j.engappai.2015.09.001
https://doi.org/10.1016/j.neucom.2016.12.082
https://doi.org/10.1016/j.neucom.2013.05.062
https://doi.org/10.1016/j.neucom.2015.10.109
http://refhub.elsevier.com/S0925-2312(17)31698-3/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31698-3/sbref0009
https://doi.org/10.1109/4235.942529
https://doi.org/10.1016/j.engappai.2012.05.015
https://doi.org/10.1016/j.eswa.2008.02.030

1980 C. Chen et al. / Neurocomputing 275 (2018) 1973–1980

[14] D. Karaboga, C. Ozturk, N. Karaboga, B. Gorkemli, Artificial bee colony pro-
gramming for symbolic regression, Inf. Sci. 209 (2012) 1–15, doi: 10.1016/j.ins.

2012.05.002 .
[15] T. McConaghy, FFX: Fast, Scalable, Deterministic Symbolic Regression Technol-

ogy, Springer, New York, pp. 235–260.
[16] A. Worm , Prioritized grammar enumeration: a novel method for symbolic re-

gression, Binghamton University - State University of New York, 2016 (Ph.D.
thesis) .

[17] D. Kinzett, M. Zhang, M. Johnston, Using Numerical Simplification to Con-

trol Bloat in Genetic Programming, Springer, Berlin, Heidelberg, pp. 493–502.
doi: 10.1007/978- 3- 540- 89694- 4 _ 50 .

[18] D. Kinzett, M. Johnston, M. Zhang, How online simplification affects building
blocks in genetic programming, in: Proceedings of the 11th Annual Conference

on Genetic and Evolutionary Computation, Montreal, Canada, 2009, pp. 979–
986. doi: 10.1145/1569901.1570035 .

[19] R.K. McRee, K. Software, M. Park, Symbolic regression using nearest neighbor

indexing, in: Proceedings of the 12th Annual Conference Companion on Ge-
netic and Evolutionary Computation, Portland, Oregon, USA, 2010, pp. 1983–

1990. doi: 10.1145/1830761.1830841 .
[20] C. Luo, C. Chen, Z. Jiang, A divide and conquer method for symbolic regression,

2017. Preprinted on ArXiv at https://arxiv.org/abs/1705.08061 .
[21] J.D. Anderson , Hypersonic and High-Temperature Gas Dynamics, second ed.,

American Institute of Aeronautics and Astronautics, Inc., Virginia, 2006 .

[22] D.P. Raymer , Aircraft Design: A Conceptual Approach, fifth ed., American Insti-
tute of Aeronautics and Astronautics, Inc., 2012 .

[23] D.P. Searson, D.E. Leahy, M.J. Willis, GPTIPS: an open source genetic program-
ming toolbox for multigene symbolic regression, in: Proceedings of the Inter-

national Multi Conference of Engineers and Computer Scientists, Hong Kong,
China, 2010.

[24] C. Luo, B. Yu, Low dimensional simplex evolution a new heuristic for

global optimization, J. Glob. Optim. 52 (1) (2012) 45–55, doi: 10.1007/
s10898- 011- 9678- 1 .

[25] Y. Wei, J. Qiu, H.R. Karimi, Quantized H ∞ filtering for continuoustime marko-
vian jump systems with deficient mode information, Asian J. Control 171 (5)

(2015) 1914–1923, doi: 10.1002/asjc.1052 .
[26] Y. Wei, X. Peng, J. Qiu, S. Jia, H ∞ filtering for two-dimensional continuous-time

markovian jump systems with deficient transition descriptions, Neurocomput-

ing 167 (2015) 406–417, doi: 10.1016/j.neucom.2015.04.054 .
[27] Y. Wei, J. Qiu, H.R. Karimi, Reliable output feedback control of discrete-time

fuzzy affine systems with actuator faults, IEEE Trans. Circuits Syst. I Regul. Pap.
64 (1) (2017) 170–181, doi: 10.1109/TCSI.2016.2605685 .

[28] A. Forrester , A. Sobester , A. Keane , Engineering Design via Surrogate Mod-
elling: A Practical Guide, John Wiley & Sons, 2008 .

[29] S.N. Lophaven , H.B. Nielsen , J. Søndergaard , DACE–A Matlab Kriging Toolbox.,

Technical Report IMM-REP-2002-12, Technical University of Denmark, 2002 .
[30] A . Garg, A . Garg, K. Tai, S. Sreedeep, An integrated SRM-multi-gene genetic

programming approach for prediction of factor of safety of 3-D soil nailed
slopes, Eng. Appl. Artif. Intel. 30 (2014) 30–40, doi: 10.1016/j.engappai.2013.12.

011 .
[31] A.H. Alavi, H. Hasni, I. Zaabar, N. Lajnef, A new approach for modeling of flow
number of asphalt mixtures, Arch. Civil Mech. Eng. 17 (2) (2017) 326–335,

doi: 10.1016/j.acme.2016.06.004 .
[32] H. Kaydani, A. Mohebbi, M. Eftekhari, Permeability estimation in heteroge-

neous oil reservoirs by multi-gene genetic programming algorithm, J. Pet. Sci.
Eng. 123 (2014) 201–206, doi: 10.1016/j.petrol.2014.07.035 .

[33] J.D. Anderson , Fundamentals of Aerodynamics, MacGraw-Hill, New York, fifth
ed, 2011 .

Chen Chen is currently a master candidate in the Insti-

tute of Mechanics, Chinese Academy of Sciences, Beijing,
China. He received his bachelor’s degree in Aircraft Design

Engineering from Northwestern Polytechnical University,
Xi’an, China in 2015. His research interests include fast

mathematical modelling methods and their applications
in aerodynamic forces and heating prediction.

Changtong Luo is an associate professor in the Insti-
tute of Mechanics, Chinese Academy of Sciences, Beijing,

China. He received his Ph.D. degree from Jilin University
in 2007. He has been working on Nagoya University, Japan

from 2007 to 2009 as a COE researcher. His research in-
terests include computational fluid dynamics, evolution-

ary computation, global optimization, and numerical al-
gebra, and their applications in aerodynamics.

Zonglin Jiang is a professor in the Institute of Mechan-

ics, Chinese Academy of Sciences, Beijing, China. He re-
ceived his Ph.D. degree from Peking University in 1993.

He received "One Hundred Person Project" of the Chi-

nese Academy of Sciences in 1999. He had been the direc-
tor of State Key Laboratory of High Temperature Gas Dy-

namics, Institute of Mechanics since 2001 until 2015. He
was granted the Ground Testing Award 2016 by Ameri-

can Institute of Aeronautics and Astronautics, for his skill-
ful leadership in developing and successful commission-

ing of the world’s largest shock tunnel JF12. His research

interests include shockwave and detonation physics, su-
personic and hypersonic experiments, etc.

https://doi.org/10.1016/j.ins.2012.05.002
http://refhub.elsevier.com/S0925-2312(17)31698-3/sbref0014
http://refhub.elsevier.com/S0925-2312(17)31698-3/sbref0014
http://dx.doi.org/10.1007/978-3-540-89694-4_50
http://dx.doi.org/10.1145/1569901.1570035
http://dx.doi.org/10.1145/1830761.1830841
https://arxiv.org/abs/1705.08061
http://refhub.elsevier.com/S0925-2312(17)31698-3/sbref0015
http://refhub.elsevier.com/S0925-2312(17)31698-3/sbref0015
http://refhub.elsevier.com/S0925-2312(17)31698-3/sbref0016
http://refhub.elsevier.com/S0925-2312(17)31698-3/sbref0016
https://doi.org/10.1007/s10898-011-9678-1
https://doi.org/10.1002/asjc.1052
https://doi.org/10.1016/j.neucom.2015.04.054
https://doi.org/10.1109/TCSI.2016.2605685
http://refhub.elsevier.com/S0925-2312(17)31698-3/sbref0021
http://refhub.elsevier.com/S0925-2312(17)31698-3/sbref0021
http://refhub.elsevier.com/S0925-2312(17)31698-3/sbref0021
http://refhub.elsevier.com/S0925-2312(17)31698-3/sbref0021
http://refhub.elsevier.com/S0925-2312(17)31698-3/sbref0022
http://refhub.elsevier.com/S0925-2312(17)31698-3/sbref0022
http://refhub.elsevier.com/S0925-2312(17)31698-3/sbref0022
http://refhub.elsevier.com/S0925-2312(17)31698-3/sbref0022
https://doi.org/10.1016/j.engappai.2013.12.011
https://doi.org/10.1016/j.acme.2016.06.004
https://doi.org/10.1016/j.petrol.2014.07.035
http://refhub.elsevier.com/S0925-2312(17)31698-3/sbref0026
http://refhub.elsevier.com/S0925-2312(17)31698-3/sbref0026

	Block building programming for symbolic regression
	1 Introduction
	2 Definition of separability
	2.1 Examples
	2.2 Additively/multiplicatively separable model
	2.3 Partially/completely separable model

	3 Block building programming
	3.1 Bi-correlation test
	3.2 Block and factor detection
	3.3 Factor modeling
	3.4 Block building programming
	3.5 Optimization engine
	3.6 Remarks for engineering applications

	4 Numerical results and discussion
	4.1 LDSE-powered BBP
	4.1.1 Control parameter setting
	4.1.2 Numerical results and discussion

	4.2 GPTIPS-powered BBP
	4.2.1 Control parameter setting
	4.2.2 Numerical results and discussion

	4.3 Computational efficiency analysis

	5 Conclusion
	 Acknowledgments
	Appendix A Proof of Theorem 1
	Appendix B 10 target models of numerical experiments
	 References

