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Nomenclature

Cd = drag coefficient
Cl = lift coefficient
Cp = pressure coefficient
c = chord length, m
D = drag, N
F = fluid-mechanic force or aerodynamic force, N
fΩ = boundary enstrophy flux, kg ⋅m−2 ⋅ s−3
L = lift, N
Lpe

= pressure lift, N
Lvor = vortex lift, N
l = Lamb vector; u ×ω, m ⋅ s−2
N = normal force to the flat plate, N
p = pressure, Pa
q∞ = freestream dynamic pressure; ρU2

∞∕2, Pa
Rec = Reynolds number; U∞c∕ν
U�x� = outer flow velocity, m ⋅ s−1
Uref = reference velocity, m ⋅ s−1
U∞ = freestream velocity, m ⋅ s−1
u = fluid velocity, m ⋅ s−1
u�x; y� = velocity in boundary layer, m ⋅ s−1
x, y = coordinates on the flat plate, m
�x = normalized coordinate along the flat plate; x∕c
α = angle of attack, rad
Γg = generalized circulation, m2 ⋅ s−1
ΔCp = pressure coefficient difference across the flat plate
Δp = pressure loading the flat plate, Pa
μ = dynamic viscosity of fluid, kg ⋅m−1 ⋅ s−1
ν = kinematic viscosity of fluid, m2 ⋅ s−1
ρ = fluid density, kg ⋅m−3

τ = skin friction, Pa
Ω = enstrophy; jωj2∕2, s−2
ω = vorticity; ∇ × u, s−1

I. Introduction

T HIS Note tries to elucidate the subtle but critical role of the fluid
viscosity in generating the aerodynamic lift. The viscous origin

of the lift has not been widely understood or sufficiently highlighted
in the literature. In classical aerodynamics textbooks [1–4], the lift
theory of an airfoil is usually developed based on the classical
potential-flow theory, in which the Kutta–Joukowski (K-J) theorem
is used as a key element in calculating the lift. However, the airfoil
circulation in the K-J theorem cannot be automatically determined in
the potential-flow framework alone because the vorticity cannot be
physically generated in an inviscid flow. This fundamental difficulty
is intrinsically related to D’Alembert’s paradox stating that the
integrated pressure force of a body is zero in a steady inviscid
irrotational incompressible flow [5,6]. To circumvent this problem,
theKutta condition is imposed at the airfoil trailing edge to determine
the circulation. To a great extent, the success of the classical
circulation theory in predicting the lift depends on the clever
application of the Kutta condition and its generalized forms as the
phenomenological models of the viscous-flow effect on the lift
generation [7]. The important implication ofD’Alembert’s paradox is
that the generation of the lift and drag of a moving body must be a
result of a viscous flow nomatter how small the fluid viscosity is. The
viscous origin of the lift has been recognized, which has to be
essentially found in theviscous-flow framework [8–10]. However, an
intriguing question is whether there is a direct and explicit connection
between the fluid viscosity and the integrated pressure force
contributing the lift. This problem is the central topic investigated
from a new perspective here.

II. Force Expression

For an incompressible viscous flow over a stationary surface, an
exact relation between the surface pressure gradient ∇p and the
skin-friction vector τ can be derived from the Navier–Stokes (NS)
equations [11], and it is written as

τ ⋅ ∇p � μfΩ (1)

where the scalar quantity is defined as

fΩ � μ∂Ω∕∂n − 2μκωΩ (2)

μ is the dynamic viscosity of the fluid, Ω � jωj2∕2 is the enstrophy,
ω is the vorticity, κω is the curvature of the boundary vorticity line,
and ∂∕∂n is the derivative along the unit normal outward vector n of
the surface. Equation (1) holds instantaneously for a stationary
surface. In Eq. (2), the first term μ∂Ω∕∂n is the boundary enstrophy
flux (BEF), and the second term is the curvature-induced
contribution. In general, fΩ is dominated by the BEF, whereas the
curvature term can be neglected. The BEF is an intriguing quantity
that is particularly related to the topological features such as isolated
critical points and separation attachment lines in a skin-friction
field [11].
Along a skin-friction line (called a τ line), Eq. (1) is rewritten as

dp∕ds � s ⋅ ∇p � μfΩjτj−1, where s � τ∕jτj is the unit vector
along the τ line. Therefore, the surface pressure is given by the path
integral along a τ line, i.e.,

p�x� � μ

Z
P�x�

P0�x0�
fΩjτj−1 ds � μ

Z
P�x�

P0�x0�

∂jωj
∂n

ds (3)

whereP�x� andP0�x0� denote a point and a starting point on a τ line,
respectively. In principle, a set of the starting points P0�x0� from
which the τ lines are originated could be selected such that the points
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P�x� on a set of the τ lines can cover densely the whole surface. The
derivation of the second equality of Eq. (3) uses the skin-friction
relation τ � μω × n, wheren is the unit normal outward vector of the
surface of a body and. According to Eq. (3), the surface pressure is
related to the accumulating effect of the viscous diffusion flux of the
boundary vorticity magnitude (μ∂jωj∕∂n) along a skin-friction line.
Equation (3) symbolically expresses a surface pressure field. Thus,

the fluid-mechanic force is formally expressed as the following
surface integral:

F �
I
S
�−pn� τ� dS

� −μ
I
S
n dS

Z
P�x�

P0�x0�

∂jωj
∂n

ds� μ

I
S
ω × n dS (4)

Equation (4) explicitly describes the critical role of the fluid
viscosity in generating the fluid-mechanic force. For a steady inviscid
incompressible flow with μ � 0, as long as fΩjτj−1 � ∂jωj∕∂n does
not become infinite as μ → 0, we have F � 0 according to Eq. (4),
and thus D’Alembert’s paradox is naturally recovered. The first term
in Eq. (4) is the integrated pressure force that is explicitly related to
the viscosity. Themain consequence of Eq. (4) is that the lift and drag
(including the pressure and skin-friction drags) must coexist as a
result of the viscous flow over an airfoil. Physically, the lift cannot be
generated without the cost of generating the viscous drag at the
same time.

III. Force of Flat Plate

To elucidate the connection between boundary layer and lift
generation through Eq. (4), the steady low-Reynolds-number flow
over a two-dimensional flat plate at a small angle of attack (AOA,
denoted by α) is considered as an example [12–14]. As shown in
Fig. 1, the thick boundary layers with opposite vorticity are
developed on the upper and lower surfaces of the plate, and the thick
wake sheds from the trailing edge. This viscous flow pattern is
considerably different from the potential flow pattern over a flat plate
imposed with the Kutta condition described in aerodynamics
textbooks. It would be interesting to see how the viscous-flow model
based on Eq. (4) differs from the classical aerodynamic models. To
model the boundary layers of the flat plate, the Falkner–Skan flow
with the external velocity U�x� � axm for a viscous wedge flow is
used [15], where x is the coordinate on the surface from the leading
edge. The power-law exponent and the proportional coefficient are

given by the piecewise functions m � mk � �−1�kα∕�π − α� and
a � ak, respectively, where α denotes the AOA, and the
subscripts k � 1 and k � 2 denote the upper and lower surfaces,
respectively. The boundary-layer velocity profile is given by
u�x; y�∕U�x� � f 0�η�, where f�η� is the self-similar stream
function, and the prime denotes the differentiation with respect

to the similarity variable η � y
������������������������������������m� 1�U∕�2νx�p

. For the

Falkner–Skan flow, skin friction is given by

τ �
�������������
m� 1

2

r
ρν1∕2a3∕2f 0 0�0�x�3m−1�∕2 (5)

where ν is the kinematic viscosity. The BEF is given by

fΩ � μ
∂Ω
∂y

� −μβ
�
m� 1

2

a

ν

�
3∕2

a2f 0 0�0�x�7m−3�∕2 (6)

where the value of the second derivative f 0 0�0� at the wall is a
function of m, f 0 0 0�0� � −β from the Falkner–Skan equation is
used, and β � 2m∕�m� 1� is related to the wedge angle of πβ.
When P0�x0� is the stagnation point at the leading edge,

substitution of Eqs. (5) and (6) into Eq. (3) yields the surface
pressure distributions on the upper and lower surface, i.e.,
pk�x� � p0 � ρa2kx

2mk∕2 (k � 1; 2), where p0 is the pressure at
the leading edge (x � 0). In this two-dimensional (2-D) case,
integration along a τ line is simply done along the x coordinate
because the τ line is aligned with the surface coordinate.
Interestingly, in this case, the relevant boundary-layer parameters
are canceled out in Eq. (3). Therefore, the nondimensional form
of the pressure loading Δp � p2 − p1 is

ΔCp � Δp
q∞

� Rq� �x2m1 − �1 − ΔCp;TER
−1
q � �x−2m1 � (7)

where �x � x∕c is the chordwise coordinate normalized by the
chord length c; Rq � qTE∕q∞ � �Uref∕U∞�2Re2m1

c is the ratio
between the trailing-edge and freestream dynamic pressures that
are given by qTE � �ρ∕2��a1cm1�2 and q∞ � �ρ∕2�U2

∞,
respectively; U∞ is the freestream velocity; Uref � a1�ν∕U∞�m1

is a reference velocity; Rec � U∞c∕ν is the Reynolds number;
ΔCp;TE is the value of ΔCp at the trailing edge; and
m1 � −α∕�π − α�. The ΔCp distribution is weakly dependent of
Rec because jm1j ≈ α∕π ≪ 1. At the leading edge, as �x → 0, there
is a singularity of ΔCp → �x2m1 with m1 � −α∕�π − α�, and the
singularity is weakened as α → 0, which seems physically
reasonable in a viscous flow. In contrast, in the classical thin-
airfoil theory, the stronger singularity ΔCp → �x−1∕2 at the leading
edge remains unchanged even as α → 0.
The normal force of the flat plate (N) is calculated by integrating

Δp from x � 0 and x � c. Then, the lift and drag coefficients are
approximately expressed as

Cl �
L

q∞c
≈ 2παF�α� cos�α� (8)

Cd � D

q∞c
≈ 2παF�α� sin�α� � Cd;0 (9)

where the nonlinear factor is defined as

F�α� � Rq

2

�
1 −

α

π

�
4� ΔCp;TER

−1
q �π − 3α�

�π − α�2 − 4α2
(10)

and Cd;0 is the parasite drag (zero-lift drag) coefficient (the value of
Cd at zero AOA in this case). The lift formula Eq. (8) is different from
the linear relation Cl � 2πα given by the classical thin-airfoil theory
due to the nonlinear factor F�α� depending on the parameters Rq and
ΔCp;TE. The parameter Rq is determined by the velocity ratio
Uref∕U∞ and the Reynolds number Rec. In the limiting case, as
α → 0, the asymptotic behavior of F�α� → 2�Uref∕U∞�2∕π2 � 1 is
inferred because Eq. (8) should be consistent with the classical thin-
airfoil theory with ΔCp;TE � 0 in this limiting case. Therefore, the
parameter Uref∕U∞ is determined (i.e., Uref∕U∞ � π∕

���
2

p
≈ 2.22).

To examine Eqs. (8) and (9), we have conducted direct numerical
simulations of the low-Reynolds-number flows over a flat plate at
different AOAs at the Reynolds number Rec � U∞c∕ν � 200. The
flat platewith the straight corners is fixed in a uniform upstream flow,
which has the chord length of c � 1 and the thickness of 0.01c. The
NS equations for an incompressible flow are solved on a Cartesian
mesh with block structured adaptive mesh refinement, where the
nonslip boundary condition on the surface of the flat plate is handled

Fig. 1 Viscous flow over a flat plate, where the color bar indicates the
normalized vorticity.

AIAA JOURNAL, VOL. 55, NO. 11: TECHNICAL NOTES 3991

D
ow

nl
oa

de
d 

by
 I

N
ST

IT
U

T
E

 O
F 

M
E

C
H

A
N

IC
S 

- 
C

H
IN

E
SE

 A
C

A
D

E
M

Y
 O

F 
SC

IE
N

C
E

S 
on

 D
ec

em
be

r 
17

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
59

07
 



by the immersed boundarymethod. The boundaries conditions on the

other boundaries are the same as those described in [13,16]. The

simulations are conducted in a domain of �10c; 20c� × �−10c; 10c� ,
with a minimum grid length of 20∕2048 ∼ 0.01. The numerical

method and its validation are described in detail in [13,16].

Figure 1 shows a typical normalized vorticity field of the viscous

flow over a flat plate at Rec � 200. The ΔCp distributions on the flat

plate at different AOAs are shown in Fig. 2. It is found that the Kutta

condition of zero pressure difference (ΔCp;TE � 0) is not satisfied in

this case. The value ofΔCp;TE depends on the AOA, which is given by

an empirical formula extracted from the computational fluid dynamics

(CFD) data (i.e., ΔCp;TE � a1 � a2α� a3α
2, with α in degrees),

where a1 � −0.002599, a2 � 0.06412, and a3 � −0.000963. When

the parameters in Eq. (7) are Uref∕U∞ � π∕
���
2

p
and Rec � 200, as

shown in Fig. 2, Eq. (7) gives the consistent profiles with the CFD data.

Furthermore, Fig. 3 shows the profiles of ΔCp∕α in comparison with

ΔCp∕α � 4
���������������������1 − �x�∕ �xp

given by the classical thin-airfoil theory,

where the Kutta conditionΔCp;TE � 0 is imposed for the purpose of

comparison. Interestingly, all the profiles of ΔCp∕α are

approximately collapsed, indicating that the effect of α on ΔCp

predicted by the presentmodel is essentially the same as that given by
the thin-airfoil theory.
The lift coefficient in CFD is calculated by using both integration

of the surface pressure and skin-friction fields and the vortex lift
formula Eq. (11). Figure 4 shows the lift and drag coefficients (Cl and
Cd) as a function of AOA. TheCl curve predicted by Eq. (8) exhibits
the nonlinear behavior that is consistent with the CFD results and
measurement data of an aluminum (Al) foil wingwith the aspect ratio
of 6 at the Reynolds number of 7500 [17], whereas the classical
thin-airfoil theory gives the linear Cl curve with the larger lift slope.
This example of the low-Reynolds-number flow indicates that the
nonlinear effect of the viscosity on the lift generation could not be
sufficiently simulated by the Kutta condition imposed in a simple
linear potential-flowmodel. Furthermore, as shown in Fig. 4b, theCd

curve is in reasonable agreement with the data given by CFD and
measurements [17], andCd − Cd;0 increases with αmainly due to the
pressure drag.
It is noted that the viscous diffusion effect could be incorporated

into the kernel of the linear thin-airfoil integral equation, and thus the
vortex-sheet strength distribution could be solved for predicting the
lift coefficient of a thin airfoil at different Reynolds numbers [18].
The viscous diffusion effect mainly weakens the singularity of the
kernel. This viscous thin-airfoil theory gives the normalized lift
slope �2π�−1dCl∕dα that varies from 0.9 to 1.3 depending on the
Reynolds number and the geometric parameters of an airfoil.
Nevertheless, the predicted Cl curve is still a linear function of α

Fig. 2 Chordwise distributions of the surface pressure coefficient
difference across the flat plate at different AOAs.

Fig. 3 Comparison between the presentmodel and thin-airfoil theory in
the normalized chordwise distributions of the surface pressure coefficient
difference across the flat plate.

Fig. 4 Lift and drag coefficients as a function of AOA: a) lift, and
b) drag.
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because the fundamental integral equation has the same form as that
in the classical thin-airfoil theory. Thus, this generalized theory could
not include the nonlinear effect of the viscosity on the lift generation
particularly at low Reynolds numbers.

IV. Vortex Lift

Furthermore, to elucidate the relationship between boundary layer
and vortex lift, the viscous flowover a flat plate can be discussed from
another perspective [14]. As shown in Fig. 1, the Lamb vector
(l � u × ω) that is the sole contributor to the lift in a steady attached
viscous flow is concentrated in the boundary-layer domain Vbl,
which forms a folded band with the width of δ and its outer contour
CAB wrapped around the plate from the point A to the point B in the
wake. The vortex lift of a body in a viscous flow is expressed as a
volume integral of the Lamb vector, i.e.,

Lvor � ρel ⋅
Z
Vbl

l dV (11)

where el is the unit vector normal to the freestream velocity.
Formally, the vortex lift is expressed in the K-J theorem (i.e.,
Lvor � ρU∞Γg), where Γg is the generalized circulation based on
the Lamb vector integral. Because the Lamb vector in a 2-D
boundary layer is u × ω � nuω, the lift calculated based on the
pressure at the boundary-layer edge (on the contour CAB) is related
to the vortex lift by

Lpe
� ρU∞Γg − ρ�χ�AB (12)

where χ � �uω�δ0 is the advective vorticity flux across the boundary
layer, and �χ�AB is the jump of χ across the points A and B in the
wake. Equation (12) indicates that, in the viscous flow, the pressure
lift equals the vortex lift given by the K-J theorem only when the
condition �χ�AB � �uω�AB � 0 is satisfied in the wake. In other words,
the positive and negative advective vorticity fluxes from the
boundary layers on the upper and lower surfaces should be
canceled out in the wake for the K-J theorem to be applicable in a
viscous flow. This condition was first given by Taylor [19] to
examine the applicability of the K-J theorem in viscous flows and
elaborated by Sears for separated boundary layers [9,10]. Thus, it
is referred to as the Taylor–Sears condition for the generation of
the circulation [20].
For a very thin boundary layer, as the wake plane approaches the

trailing edge, the Taylor–Sears condition would be reduced to the

requirement that the pressures at the outer edges of boundary
layers of the upper and lower surfaces must be the same at the
trailing edge, which is the Kutta condition ΔCp � 0 at the trailing
edge [10]. To examine the Taylor–Sears condition in this 2-D flow,
we calculate the sum of the Lamb vector integrals across the
boundary layers on the upper and lower surfaces (i.e.,
Δl � �uω��− ), where “�” and “−” denote the upper and lower
surfaces, respectively. The Lamb vector difference Δl can be
interpreted as the local loading on the flat plate according to
Eq. (11), and at the same time Δl � �uω��− represents the net
advective vorticity flux across the boundary layers on the flat plate.
Figure 5 shows the chordwise distributions of 2Δl�∕α � 2Δl∕U2

∞α
on the flat plate at different AOAs in comparison with ΔCp∕α given
by the classical thin-airfoil theory. It is found that Δl � �uω��− � 0
at the trailing edge, and therefore the Taylor–Sears condition holds
in this viscous flow even though the Kutta condition ΔCp � 0 is not
satisfied at the trailing edge.

V. Conclusions

The formal expression for the fluid-mechanical force (or
aerodynamic force) of a body in an incompressible viscous flow is
given, which explicitly elucidates the critical role of the fluid
viscosity in generating the force (the lift particularly). The integrated
pressure force is related to the accumulating effect of the viscous
diffusion flux of the boundary vorticity magnitude along a skin-
friction line. By using this force expression, the viscous flow over a
flat plate at small angle of attack (AOA) is investigated in comparison
with the numerical simulation and measurement data, and the
nonlinear behavior of the lift coefficient as a function of AOA is
predicted. Furthermore, the vortex lift is evaluated as the
consequence of the viscous boundary layer, and the Taylor–Sears
condition at the trailing edge in this viscous flow is examined.
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