
International Journal of Solids and Structures 129 (2017) 103–118 

Contents lists available at ScienceDirect 

International Journal of Solids and Structures 

journal homepage: www.elsevier.com/locate/ijsolstr 

Elastic-plastic modeling of metallic strands and wire ropes under axial 

tension and torsion loads 

L. Xiang 

a , b , H.Y. Wang 

a , b , Y. Chen 

a , b , Y.J. Guan 

c , L.H. Dai a , b , ∗

a State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China 
b School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, China 
c Materials Genome Center, Beijing Institute of Aeronautical Materials, Beijing, 10 0 095, China 

a r t i c l e i n f o 

Article history: 

Received 16 March 2017 

Revised 22 June 2017 

Available online 8 September 2017 

Keywords: 

Elastic-plastic behavior 

Straight strand 

Multi-strand rope 

Yielding and failure 

Wire contact 

Local strain measurement 

a b s t r a c t 

Elastic-plastic response is greatly involved in the failure of wire ropes. Based on the derivation of the local 

deformation parameters of individual wire, an analytical model characterizing the elastic-plastic behavior 

for both wire strands and multi-strand ropes is developed in this paper. Also, the contact status within 

a multilayered strand is carefully studied to achieve a full understanding of wire stresses. Details of the 

surface strain fields of ropes are captured by 3D digital image correlation (3D-DIC) technique and the 

results agree well with the prediction of the present model. Varying loading conditions are considered 

to analyze the yielding and failure behavior of wire strands. It is found that the rotation of ropes (no 

matter its positive or negative) will increase the overall stress level over the wire cross section, however, 

restraining the rope ends leads to higher contact stress. Increasing the helix angle moderately may be 

an effective method to reduce the contact pressure of strand wires. Our model provides straightforward 

prediction of the elastic-plastic response of wire ropes and proves an effective tool for rope design due 

to a great reduction of time consuming in numerical simulations. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Steel wire ropes, which are constructed from either a single

traight strand or from several strands that are wound around a

ore, have been widely used as structural elements due to their

igh axial strength and bending flexibility. For instance, wire ropes

re widely used in cranes, elevator lifting, suspension bridges, and

erial rope ways. The security service of wire ropes is one of the

ost concerns to engineering. In the past century, a great effort

as been devoted to develop analytical models and experimental

orks for the mechanical response of the wire ropes. Reviews were

iven by Cardou and Jolicoeur (1997), Feyrer (2007) and lately by

pak et al. (2013) . 

The early models assume a fibrous response of each wire

nd ignore its bending and torsion rigidity, which were intro-

uced by Hruska (1952a,b ) and Lanteigne (1985) . Based on the

onlinear equations of equilibrium of curved rods ( Love, 1944 ),

ostello and Phillips (1976) presented a thin rod model consid-

ring the bending and torsion stiffness of the wires. Utting and

ones (1987a,b ) have extended the Costello’s analysis to include
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ire flattening (contact deformation) and friction effects and the

odel presents a good prediction of cable stiffness with their ex-

erimental results. Velinsky et al. (1984) extended the thin rod

odel to complex multi-strand rope configuration by treating a

ound strand as being a wire. Elata et al. (2004) fully con-

idered the double-helix configuration in multi-strand ropes and

ber assumption was taken to simplify the analysis procedure.

horeishi et al. (2007) carried out a comparative study between

iverse analytical models by a full 3D finite element model of

 7-wire strand. They found that there is a negligible difference

etween analytical models for straight strands whose lay angles

re above 70 °. Stanova et al., (2011a,b ) introduced a mathemati-

al model for both the single-helix and the double-helix configura-

ions in the form of parametric equations. Their method presents

igh efficiency in building the finite element model of wire ropes.

sabiaga and Pagalday (2008) and Xiang et al. (2015) developed

wo other models for multi-strand cables, on the basis of the gen-

ral thin rod theory ( Love, 1944 ). They take infinite friction and

rictionless assumption hypothesis respectively and the local defor-

ation along wires of the two kinematics shows great difference.

ecently, Foti and Martinelli (2016c) presented a model for metal-

ic strands subjected to tension, torsion and bending loads, which

ully considered the hysteretic bending behavior and the residual

ontact forces due to the stranding process. 

http://dx.doi.org/10.1016/j.ijsolstr.2017.09.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2017.09.008&domain=pdf
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Fig. 1. Tension, torsion and bending of a 1 × 7 simple strand. 
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In addition, the contact status of straight strands has been stud-

ied by some researchers. Based on the Hertz elastic contact the-

ory, Kumar et al. (1997) and Kumar and Botsis (2001) calculated

the contact stresses of a simple strand with a fibrous core and

multilayered strands subjected to axial tension and torsion re-

spectively. Gnanavel et al. (2010) and Gnanavel and Parthasarathy

(2011, 2012) studied the coupled contact performance (an outer

wire generates full contact with the center wire and the adja-

cent outer wires) of a straight strand and the influence of friction

was taken into consideration. Argatov (2011) developed a math-

ematical model for a wire strand that detailedly considered the

transverse contraction through Poisson’s ratio and also through lo-

cal contact deformations (wire flattening). It is shown that the

effect of elastic local deformations in the frictionless interwire

contact interactions is relatively small for large lay angles (more

than 75 °), while for small lay angles (less than 65 °), the wire

flattening effect dominates the Poisson’s ratio effect. Analogously,

Meng et al. (2016) studied the effect of core-wire contact on me-

chanical performance of wire strands based on a semi-analytical

method and their results agree well with the Hertz contact theory.

The above models mainly lead to an elastic deformation

analysis. However, the elastic-plastic responses of the wires are

important to predict the rope yielding and failure behavior.

Frigerio et al. (2016) found that internal stresses lead to local

plastification even for a nominal stress level far below the yield

strength of the material, because of residual stresses from the

manufacturing process. In order to establish the damage evolution,

such as the wear of the wires, the elastic-plastic contact status of

rope wires also need to be carefully clarified. Nevertheless, the cur-

rent elastic-plastic models of wire ropes are usually based on the

finite element analysis. Not much analytical work has been done

for characterizing the elastic-plastic behavior of wire ropes. 

In the paper of Erdonmez and Imrak (2011) , a finite element

modeling procedure is introduced to get the elastic-plastic re-

sponse of a typical 7 × 7 wire rope. Judge et al. (2012) also de-

veloped a 3D elastic-plastic finite element to illustrate the be-

havior of spiral strands, especially localized yielding and plas-

tic hardening in wires and mechanisms of final cable failure.

Fontanari et al. (2015) studied the elastic-plastic behavior of a

Warrington-Seale rope and the load distribution among the wires

is given by their simulation. In order to save the computation time,

Jiang et al. (1999) took advantage of the helical symmetry features

and created a concise finite element model for wire strands, and

later they used the model to analyze statically indeterminate con-

tacts of strand wires in axially loaded situation ( Jiang et al., 2008 ).

Páczelt and Beleznai (2011) developed the p-version finite element
e  
oftware to improve the calculation efficiency of contacts in a sim-

le straight two-layered strand. 

In general, finite element models have high computation cost so

umerical models always simulate only one-sixth or shorter pitch

ength of the rope (especially for multi-strand cables), which is far

way from the situation that they were used in realistic structures.

his may lead to insufficient contact between wires, and incor-

ect stresses across the rope cross section, which are influenced

y the boundary condition at the rope end. Also contact between

ires is prevalent in ropes and accurate analysis of contact stresses

eeds a rather high density of elements. For saving the computa-

ion time, usually the authors take two contact wires out of the

ope structure to study the wire contact and wear problem di-

ectly. Lévesque et al. (2011) and Wang et al. (2013) adopted the

ub-modeling approach in ABAQUS software to get accurate elastic-

lastic contact stresses between two wires in strands, whose prin-

iple is to use the solution of a global model in order to estab-

ish the boundary conditions of a sub-model in which the area of

nterest is contained and further mesh refinement can be imple-

ented. Meanwhile, Cruzado et al. (2013, 2014 ) directly refined the

esh of contact area to explore the wear damage evolution in the

ire surface. However, one should use the actual contact parame-

ers (for instance, contact force and the radius of curvature of the

ontact surface) derived from the stressed wire ropes to get a real

esponse of the wires, which requires a combination of the theo-

etical contact analysis and the numerical simulation to deal with

he nonlinear elastic-plastic contact problem within a rope. 

The few analytical results for the elastic-plastic response of

etallic strands are obtained by Foti and de Luca di Roseto

2016a) recently. Based on the theoretical description of Foti and

artinelli (2016c) , a simple 1 × 6 strand under axial-torsional loads

as taken into consideration and a 3D finite element model was

lso proposed. The results of the proposed analytical formulation

gree well with experimental and theoretical results from the lit-

rature ( Utting and Jones, 1987b; Costello, 1990 ) and their numer-

cal simulation. The contact results are not directly given by the

uthors and the elastic-plastic behavior of multi-strand wire ropes

eeds to be further studied as well, since most wire ropes in prac-

ical use have a complex multi-strand cross-section ( Argatov, 2011 )

nd the geometrical and mechanical property of the double-helix

ires in multi-strand ropes differs much from the single-helix

ires in straight strands ( Lee, 1991 ). 

In this paper, an analytical method is proposed to obtain the

lastic-plastic deformation of both simple strands and multi-strand

opes. The present model is based on the thin rod theory of

ove (1944) and the frictionless assumption. In order to get the

lastic–plastic stress, the strain through the wire cross is calculated
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Fig. 2. Take an outer strand as an outer wire (the strand is subjected to tension, 

torsion and bending simultaneously). 

Fig. 3. Deformation through a wire cross section. 
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rst via the derivation of the local tension, bending and torsion de-

ormation parameters of wires. Then the elastic–plastic model for

traight strands is built by a typical numerical approach to plastic-

ty and the response of multi-strand ropes is obtained by treating

n outer strand as a single-helix outer wire. 

The paper is organized as follows. Section 2 gives the basic

eometrical description of a strand subjected to tension, torsion

nd bending simultaneously and how to deal with a multi-strand

ire rope. Section 3 describes the analytical model to determine

lastic–plastic response of strands and ropes, including the over-

ll strain and stress prediction and the local contact analysis. Ex-

erimental tests on individual wires and surface strain measure-

ent of ropes through 3D-DIC are presented in Section 4 . Re-

ults from our elastic–plastic model, comparisons with experimen-

al data and analyses of stresses under different conditions are re-

orted in Section 5 . And finally Section 6 summarizes the whole

aper and gives the main conclusions. 

. Geometrical description of strands and ropes 

.1. Tension, torsion and bending of a simple strand 

For a straight strand ( Fig. 1 ), the initial centerline of a wound

ire is given by the following parametric equations: 

 1 = r 2 cos ( θ + θ0 ) (1a) 

 2 = r 2 sin ( θ + θ0 ) (1b) 
 3 = r 2 tan α2 θ (1c) 

here r 2 is the laying radius of the outer wire, α2 is the laying an-

le, θ is a free parameter representing the angle of the centerline

piral around the axis of the rope and θ0 is the wire phase angle

ndicating the wire position relative to e 1 when x 3 = 0. 

Consider now the strand with length h subjected to an axial

longation �u and a rotation angle �φ, the tensile strain εt and

he angle of twist per unit length τ t are respectively defined as 

 t = 

�u 

h 

(2a) 

t = 

�φ

h 

(2b) 

The location along the stressed centerline of a strand wire can

e expressed by equations ( Usabiaga and Pagalday, 2008 ): 

 1 
′ = r 2 cos ( θ + θ0 + τt x 3 ) (3a) 

 2 
′ = r 2 sin ( θ + θ0 + τt x 3 ) (3b) 

 3 
′ = x 3 + ε t x 3 (3c) 

Next, when the same prestresssed strand is subjected to bend-

ng with a radius of curvature ρ , As illustrated in Fig. 1 , the cen-

erline of the strand axis is given by the following equations: 

 1 , c = ρ · ( 1 − cos ϕ ) (4a) 

 2 , c = 0 (4b) 

 3 , c = ρ sin ϕ (4c) 

here ϕ = 

x 3 
′ 

ρ and the subscript ‘c’ represents the center wire. 

The well-known Frenet–Serret local frame { n, b, t } is used to

escribe the deformed configuration. Here t is the tangent unit

ector along the tangential direction of the centerline, n is the

rincipal normal and b is the binormal vector. For the central wire

f the bending strand 

 c = ( cos ϕ, 0 , − sin ϕ ) 
T 

(5a) 

 c = ( 0 , 1 , 0 ) 
T (5b) 

 c = ( sin ϕ, 0 , cosϕ ) 
T 

(5c) 

Then projecting the wire point to the local frame { n c , b c , t c }, we

an get the centerline of the strand outer wire now: 

 1 , b = ρ( 1 − cos ϕ ) + r 2 cos θ cos ϕ (6a) 

 2 , b = r 2 sin θ (6b) 

 3 , b = ρ sin ϕ − r 2 cos θ sin ϕ (6c) 

here θ = θ + θ0 + τt x 3 representing the angle of an outer wire

piral around the axis of the strand after torsion, since τ t is the

ngle of twist in strand per unit length and x 3 is the coordinate

long the lengthwise direction. 
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Fig. 4. Forces and moments acting on a wire (after Costello, 1990 ). 

Fig. 5. The flowchart of the elastic–plastic solution process. 
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2.2. Multi-strand ropes subjected to axial tension and torsion 

Consider a multi-strand wire rope, consisting of several strands

that are wound around a core, and in turn each strand has a heli-

cal structure consisting of several wires. By treating each strand as

a helix wire, the rope’s mechanical behavior is just like a straight

strand. The similar homogenization procedure was also adopted

by ( Costello, 1990 ) to get the mechanical characteristics of multi-

strand wire ropes. 

When a multi-strand rope is subjected to axial tension and tor-

sion, each spiral strand undergoes not only tension and torsion

along its centerline but also bending against the rope core. As the

wires in the strand have been treated as a whole, the external de-

formation of the strand can be described by the kinematics param-

eters of its central wire ( Fig. 2 ). The central wire of an outer strand

is a single-helix wire and the variations of curvatures and twist of
he wire can be derived as: 

κc = 0 (7a)

κ ′ 
c = 

cos 2 αc 
′ 

r c ′ 
− cos 2 αc 

r c 
(7b)

τc = 

sin αc 
′ cos αc 

′ 
r c ′ 

− sin αc cos αc 

r c 
(7c)

here the superscript ‘ ′ ’ represents the deformed state. The he-

ix angle αc 
′ and radius r c 

′ after deformation has been derived by

ostello (1990) , and so does the tensile strain ξ c . Then the tensile

train ξ strand , the twist τ strand and the bending radius ρstrand of the

trand are: ξ strand = ξ c , τ strand = �τ c and ρstrand = 1/| �κ ′ 
c |. 

Then, the interpretation of an outer strand in a multi-strand

ope is analogous the description of a strand subjected to tension,

orsion and bending simultaneously in Section 2.1 . 

. The elastic–plastic mechanical model 

.1. The elastic-plastic analysis of ropes 

The wire deformation can be expressed with four parame-

ers: elongation ( ξ ), twist ( τ ) and bending curvatures ( κ and κ ′ ).
ove (1944) introduced the principal torsion-flexure axes { x, y, z }

o compute curvatures κ and κ ′ and the twist τ , which is an or-

honormal local frame that always stick to the wire cross section

nd varies along with the deformation of the wire. It indicates a

ne-to-one corresponding relationship between the material points

n the undeformed and deformed state. When the axes are fully

etermined, the deformation parameters can be calculated by 

= l 3 
d l 2 
ds 

+ m 3 
d m 2 

ds 
+ n 3 

d n 2 

ds 
(8a)

′ = l 1 
d l 3 
ds 

+ m 1 
d m 3 

ds 
+ n 1 

d n 3 

ds 
(8b)

= l 2 
d l 1 
ds 

+ m 2 
d m 1 

ds 
+ n 2 

d n 1 

ds 
(8c)

here, for example, l 1 , m 1 , n 1 are the direction cosines of the axis

 . 

In the initial configuration, the selection of the principal torsion-

exure axes has some arbitrariness. Usually we make the axes

quivalent to the Frenet-Serret axes to simplify the computation.

hat is 

 

x 0 , y 0 , z 0 } = { n 0 , b 0 , t 0 } (9)

here the subscript ‘0’ represents the undeformed state. 

When the strand is subjected to external load, we suppose that

he wire cross section rotates rigidly with the cross section of the

trand, which is also a basic assumption taken by Usabiaga and

agalday (2008) and Foti and Martinelli (2016c) . As clarified by

iang et al. (2015) , n 0 (i.e. x 0 ) always points to the center of the

nitial strand. So after deformation the unit vector x is still along

he line from the wire centroid to the strand center in a cable cross

ection. Therefore, 

 = { n c , b c , t c } T 
⎧ ⎨ 

⎩ 

− cos θ̄

− sin θ̄
0 

⎫ ⎬ 

⎭ 

(10)

As z is always collinear to the tangent vector of the centreline

f the wire, so 

 = t (11)
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Fig. 6. Point contact description within wires of the 1 × 19 strand. 
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Fig. 7. Contact model of the FEM simulation. 

Fig. 8. Stress strain σ - ε curves of the different wires. 
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a

nd finally 

 = z × x (12) 

Then the principal torsion-flexure axes after deformation is de-

ermined by Eqs. (10) to (12) and the variation of the curvatures

κ and �κ ′ and the twist �τ can be obtained by comparing the

alues before and after deformation via Eq. (7). 

The elongation ξ is derived from the length change of the wire.

sually the wire length varies with the tension, torsion and bend-

ng of the strand. However, due to the frictionless hypothesis we

onsidered in this paper, the bending contribution to the axial

train of the wires is equal to zero as the wire can slide freely to

eep its length unchanged ( Foti and Martinelli, 2016b ). So ξ re-

ults from total tension εt and total torsion τ t of the strand. That
s ( Xiang et al., 2015 ) 

= 

√ 

( 1 + τt r 2 tan α2 ) 
2 + ( tan α2 ) 

2 
( 1 + ε t ) 

2 √ 

1 + ( tan α2 ) 
2 

− 1 (13) 

Consider a point P ( r , φ) in the wire cross-section shown in

ig. 3 , the strain-tensor matrix in the frame { x, y, z } can be written

s 
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Fig. 9. Experimental setup of the 3D-DIC strain measurement of a rope surface. 

Fig. 10. Local deformation parameters of outer wires in the outer strands of 7 × 7 

ropes under εt = 0.01 and τ t = 0. 
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fi  
ε = 

[ 

ε xx 0 ε xz 

0 ε yy ε yz 

ε zx ε zy ε zz 

] 

(14)

and ε xx = ε yy = −νε zz . 
Based on the hypothesis that a section initially normal to the

ire centerline remains plane after deformation, the axial normal

train εs and the circumferential shear strain γ τ can be driven

rom the variation values of four aforementioned deformation pa-

ameters: ξ , �τ , �κ and �κ ′ . That is 

 s = �κ · r sin φ − �κ ′ · rcosφ + ξ (15)

τ = r�τ (16)

Then the component of strain-tensor ε is 

 zz = ε s (17a)

 xz = −1 

2 

γτ sin φ (17b)

 yz = 

1 

2 

γτ cos φ (17c)

As for elastic-plastic behavior of the wire material, strains are

ssumed to be sufficiently small for the cross sections to remain

lane, so that the strain-tensor is still presented as Eqs. (14) to (17)

hen yielding has happened on the wires. Usually the strain ten-

or ε can be decomposed into two parts, that is ε = ε e + ε p , and

he stress tensor σ = C : ( ε −ε p ). The Von Mises yield criterion is:

f ( σ) = 

√ 

3 J 2 ( σ) − σY ( ̄ε p ) ≤ 0 (18)

here ε̄ p represents the equivalent plastic strain and σY ( ̄ε p ) is de-

ermined from a real elastic–plastic constitutive law. If the yield

riterion is not satisfied, the increment of the plastic strain is 

ε p = δλ

√ 

3 

2 

ˆ n (19)

here ˆ n = 

de v (σ) 
‖ de v (σ) ‖ . And λ is an internal variable which satisfies 

˙ ≥ 0 , ˙ λ f = 0 (20)

We use the well-known radial return method for von Mises plas-

icity (the reader is referred to Belytschko et al. (20 0 0) for a de-

ailed presentation) and the Newton-Raphson algorithm to solve

he elastic-plastic increment steps. In order to ensure the compu-

ational accuracy, adequate density of points is considered along

ire cross sections. The grid points are controlled by specifying the

adial and angular discretization intervals �r and �φ in the polar

oordinates of the wire cross section ( r , φ). The exhibition of the

nal results is helped by the visualization procedure of ABAQUS
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Fig. 11. Global tension of 7 × 7 ropes with different geometric structure. 
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Fig. 12. Global tension of the 1 × 7 strand (fixed-end case). 
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oftware, i.e. strain and stress data of every point is converted to

he form of the ‘.odb’ file via the Python programming language. 

After the elastic-plastic stress analysis, the local force F z 
hrough the cross sectional area A is: 

 z = 

∫ 
A 

σzz dA (21) 

nd the local moments are computed by virtue of 

 x = 

∫ 
A 

σzz r sin φdA (22a) 

 y = 

∫ 
A 

σzz r cos φdA (22b) 

 z = 

∫ 
A 

σzy r cos φdA −
∫ 

A 

σzx r sin φdA (22c) 

The general case of loading on a wire is shown in Fig. 4 . F x , F y 
nd F z are the forces along x, y and z directions respectively on a

iven cross section and M x , M y and M z are the moments in x, y

nd z directions respectively. Considering the wire contact, there

re forces, such as contact forces and moments that act on the

uter surface of the wire. These distributed forces and moments

re denoted by X, Y and Z and K, K 

′ and � in x, y and z directions,
espectively. Then we can get the following equilibrium equations:

d F x 

ds 
− F y τ + F z κ

′ + X = 0 (23a)

d F y 

ds 
− F z κ + F x τ + Y = 0 (23b)

d F z 

ds 
− F x κ

′ + F y κ + Z = 0 (23c)

d M x 

ds 
− M y τ + M z κ

′ − F y + K = 0 (23d)

d M y 

ds 
− M z κ + M x τ + F x + K 

′ = 0 (23e)

d M z 

ds 
− M x κ

′ + M y κ − � = 0 (23f) 

So the force and moments in Eqs. (21) and (22) are computed

rom stresses at the grid points of every cross section by means of

 standard numerical integration technique. And the forces F x and

 y are directly calculated from Eqs. (23d) and ( 23e ) as the contact

oments K and K 

′ can be neglected under the frictionless condi-

ion. 
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Fig. 13. Force-displacement curves of two different ropes. 

Fig. 14. Surface strain measurement of the 1 × 19 strand through 3D-DIC. 
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The contribution of a particular wire ‘i’ to the global response

of the rope is made by projecting the local forces and moments of

a wire cross section to the global coordinate system. That is 

F i = ( F x · x + F y · y + F z · z ) · e 3 (24a)

M i = ( η × F x · x + η × F y · y+η × F z · z+ M x · x+ M y · y + M z · z ) · e 3 

(24b)
here η is the vector from the considered wire centroid to its

earest point on the rope central axis. 

Then the total response of the rope can be computed by 

 t = F c + 

n ∑ 

1 

F i (25a)

 t = M t, c + 

n ∑ 

1 

M i (25b)
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Fig. 15. Axial strain ε33 of the 1 × 19 strand under 17 kN predicted by the present 

model. 
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here the subscript ‘c’ represents the core wire, n is total number

f other wires and F t and M t are the total tensile force and torque

f the rope respectively. 

.2. The solution process of the elastic–plastic model 

The flowchart of our elastic–plastic solution process is shown in

ig. 5 , and the detailed numerical procedure is as follows: 

Step 1. Calculate the curvatures and twist, and the elongation of

wires. For a straight strand, the wires (except the core wire)

are configured as single-helix and the local deformation pa-

rameters can be obtained directly. As for a multi-strand rope,

the local curvatures and twist of the outer wires in its outer

strands (double-helix wires) should be derived by treating

an outer strand as a single-helix wire. 

Step 2. Put adequate calculating points on wire cross sections by

specifying the radial and angular discretization intervals �r

and �φ in the polar coordinates of the wire cross section ( r ,

φ). 

Step 3. Compute the strain of one grid point on a wire cross

section via Eqs. (14) to (17). 
Step 4. Get the elastic-plastic stress of the point through the

numerical algorithm for the incremental plasticity based on

the radial return method . 

Step 5. Judge whether the whole points on a wire cross section

are calculated. If the above condition is satisfied, go to Step

6. Otherwise, prepare to deal with the next controlling point

and go to Step 3. 

Step 6. Get the forces and moments on wire cross sections

through Eqs. (21) and (22) by means of a standard numerical

integration technique. 

Step 7. Judge whether all the wires are dealt with. If the above

condition is satisfied, go to Step 8. Otherwise, prepare to

compute the next wire and go to Step 1. 

Step 8. Get the global force and torque of a strand or a rope by

projecting the local forces and moments of every wire to the

global coordinate system. 

A particular example of a multi-strand wire rope under axial

oads will be given later in Section 5.1 to help readers understand

he computation process of the developed elastic-plastic model. 

.3. Contact analysis of metallic strands 

Besides the overall stress prediction introduced above, the lo-

alized stress due to the contact interaction of the wires is crit-

cal to be considered since it may cause an eventual damage in

he form of local yielding or wear, which is closely related to the

atigue and failure behavior of the wire rope. Usually two types

f contact between the wires in two adjoining layers occurs: line

ontact and point contact (trellis contact), depending on the na-

ure of their helix pattern in the same or opposite direction re-

pectively. The lateral (or circumferential) contact between wires in

he same layer is always ignored because of interlayer clearances

 Feyrer, 2007 ) or manufacturing imperfections and strand ageing

 Cardou and Jolicoeur, 1997 ), which has been elaborated in detail

y Foti and Martinelli (2016c) . 

Consider a 1 × 6 simple strand that has been analyzed by many

ther researchers. As the circumferential contact has been ne-

lected, the only contact mode is the line contact between the cen-

ral and outside wires. Costello (1990) gives the contact force X c 1 

y apportion the distributed resultant force X 2 of an outer wire

enterline to the contact helix line. That is 

 c1 = − l 2 
l c1 

X 2 (26) 

here l 2 ( = 2 π r 2 /cos α2 ) and l c 1 ( = 2 πR 1 /cos α2 ) are the length of

he outer wire centerline and the contact line over one pitch re-

pectively. And X 2 can be calculated from Eq. (23a) after the fore-

oing elastic-plastic analysis. 

However, the contact status in multilayered strands is much

ore complex. We take a typical 1 × 19 wire strand including two

ayers with opposite helical direction into consideration. The cross

ection of the 1 × 19 strand with one center wire, m 2 inner layer

ire ( m 2 = 6) and m 3 outer layer wire ( m 3 = 12) is shown in Fig. 6 a.

he core wire and the inner wire generate line contact while the

uter wire and the inner wire generate point contact. Point con-

act does not appear everywhere so we need to know the number

f contact points within every pitch of one specific wire. We focus

ur attention on the outer layer wire. In Fig. 6 (a), a point contact

ust generates where the wires of every layer are located along the

ame radial direction. As wires rotating, the outer layer wire con-

acts with another inner layer wire ( Fig. 6 b) and they sweep the

ame length along the rope axis. We can obtain 

π

3 

= θ2 + θ3 = 

2 π

m 2 

(27) 

 2 tan α2 θ2 = r 3 tan α3 θ3 (28) 
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Fig. 16. Surface strain measurement of the 18 × 7 rope through 3D-DIC. 

Table 1 

Mechanical properties of the tested wire materials. 

1 × 19 strand wire 18 × 7 rope wire 

Young’s modulus (MPa) 178,310 171,179 

Yield stress (MPa) 1305.4 1558.0 

Limit stress (MPa) 1531.6 1781.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Main geometric parameters of the 1 × 7 simple strand 

and the 7 × 7 multi-strand rope. 

Simple strand 

Center wire radius, R 1 1.97mm 

Helix wire radius, R 2 1.865mm 

Helix angle, α2 78.2 °

IWRC 

Core strand center wire radius, R 1 1.97mm 

Core strand outer wire radius, R 2 1.865mm 

Outer strand center wire radius, R 3 1.6mm 

Outer strand outer wire radius, R 4 1.5mm 

Core strand outer wire helix angle, α2 71.01 °
Outer strand center wire helix angle, α3 71.46 °
Outer strand outer wire helix angle, α4 74.45 °
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n  
So within one pitch, 2 π / θ3 contact points form along an outer

layer wire. 

The line load X 3 acting on the outer layer wire centerline results

from the point contact forces between the inner and outer layer

wires. We assume that the resultant line load X 3 distributes equally

on the contact points ( LeClair, 1991; Kumar and Botsis, 2001 ), so

the point contact force F c,po int is 

F c,point = 

X 3 l 3 
2 π/ θ3 

(29)

where l 3 ( = 2 π r 3 /cos α3 ) is the length of the outer layer centerline

over one pitch and X 3 can be computed from Eq. (23a) . 

Similarly, the number of contact points along an inner layer

wire is 2 π/θ ′ 
2 

( Fig. 6 c) and θ ′ 
2 

is determined by the following two

formulae: 

π

6 

= θ ′ 
2 + θ ′ 

3 = 

2 π

m 3 

(32)

r 2 tan α2 θ
′ 
2 = r 3 tan α3 θ

′ 
3 (33)

Consider the force equilibrium on the centerline of an inner

layer wire. Both the line contact force f c,line from the center wire
nd the point contact force F c,po int from the outer layer wire act on

he inner layer wire. So the force balance equation over one pitch

s 

f c,line l c1 = X 2 l 2 + F c,point 

(
2 π/θ ′ 

2 

)
(34)

Then the line contact force f c,line of the 1 × 19 strand can be ob-

ained from Eq. (34) . 

Within the elastic region, the contact stress can be derived via

he Hertz contact theory. However, when considering the elastic-

lastic behavior of the wire material, an analytical solution is dif-

cult to achieve due to its high nonlinearity. We will use the fi-

ite element method to get elastic-plastic contact stresses, which
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Fig. 17. Axial strain ε33 of the 18 × 7 rope under 43 kN predicted by the present 

model. 
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Fig. 18. The Von Mises stress distribution of the 1 × 7 strand under 75 kN. 
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as been adopted by Lévesque et al. (2011), Wang et al. (2013) and

ruzado et al. (2013, 2014 ). 

In this paper, ABAQUS software 6.10 is adopted to model the

ontact between two wires in a strand ( Fig. 7 ). All the models

re meshed with eight-node linear brick elements with reduced

ntegration (C3D8R). Much more refined meshes are used in the

ontact zone to capture accurate values of contact pressures and

tresses ( Fig. 7 a). The contact surface interaction between both

ylinders is defined via the finite sliding contact pair algorithm,

hich uses the master-slave algorithm to enforce the contact con-

traints. The contact load is applied in the upper surface of the up-

er wire through the distributing coupling constraint, which con-

entrates the forces of nodes on the free surface to a reference

ode ( Fig. 7 b). One end of the two wires is fixed along the axial

irection while the other is free. At the same time, a symmetri-

al boundary condition is applied on symmetry lines of every wire

nds to prevent the wire rotation for ensuring the convergence of

olving process. 
. Experimental tests 

To verify our mode’s validity, a 1 × 19 wire strand of 5 mm di-

meter and an 18 × 7 non-rotating rope of 10 mm diameter are

ested. The elastic-plastic constitutive laws of the wires are identi-

ed by experiments and then used as input data for the proposed

odel. Then the results of our computation are compared to the

urface strains of the ropes measured through 3D-DIC method. 
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Fig. 19. The axial and Von Mises stress distribution of the 1 × 7 strand under 120 kN. 
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4.1. Tensile tests of the rope wires 

Five specimens of 1.00 mm diameter (constituting the 1 × 19

strand) and Five specimens of 0.80 mm diameter (constituting the

18 × 7 wire rope) were prepared for experiment. All the wires

have been galvanized with a zinc surface and their lengths were

150 mm. Tensile tests were carried out on an universal servo-

hydraulic machine (Instron 8801) with load capacity of 50 kN, mea-

suring elongation with an extensometer having a gauge length

equal to 25 mm. Special clamping method was adopted to prevent

the wires breaking at the fixed ends. Tests were carried out in dis-

placement control with a crosshead speed of 2 mm/min at room

temperature. The average representative σ - ε curves are shown in

Fig. 8 and principal tensile parameters are reported in Table 1 . 

4.2. Surface strain measurement 

For experimental tests, not much data are reported in the liter-

ature ( Nawrocki and Labrosse, 20 0 0 ). The global response results

can be found for simple straight strands in the paper of Utting

and Jones (1987a,b ) and for multi-strand ropes in the paper of

Elata et al. (2004) and Fontanari et al. (2015) . However, the data

of local strain or stress measurement is still limited. Due to com-

plex structure of wire ropes, strain gauge tests can be only car-

ried out on wires of relatively large diameters, like the work of

Knapp and Shimabukuro (2009) . Different from conventional ex-

tensometry that gives a strain averaged over a single gage length,

DIC is a powerful non-contact measuring technique that gives the
ull-field strain distribution by tracking the specular pattern on the

urface of a specimen. As the rope surface is not a flat plane, 3D-

IC carried out with two cameras is needed to get the spatial de-

ormation of the wires. 

The experimental setup is shown in Fig. 9 . The rope ends were

eld in a tapered socket by means of a cast resin cone and the

ockets were clamped by steel grips, resulting in an axial free

ength of 300 mm. The specimen was loaded uniaxially at a rate

f 20 kN/min by a MTS 810 device with load capacity of 50 kN. A

pecial clamp was designed to keep the rope from rotating, so the

ameras can capture corresponding images from one step to the

ext. 

The ARAMIS 3D deformation measurement supported by GOM

ompany (Germany) is adopted to obtain the surface strain of

opes. Optical imaging for 3D-DIC was performed from the front

f the specimen as shown in Fig. 7 . The two CCD cameras with

448 × 2048 grayscale resolution were controlled remotely by a

omputer to capture images at a rate of 5 frames per sec. The col-

ected images are stored in TIF format for further processing with

he ARAMIS 6.2 photogrammetry software (ARAMIS 6.2). 

The accuracy of the DIC measurements is especially depen-

ent on the quality of the surface pattern. To facilitate measure-

ents with the photogrammetry system, adequate contrast in the

rayscale and surface pattern on the specimen surface is required.

n order to create a high-quality pattern on the specimen surface,

he ropes were sprayed by a white paint to obtain a white back-

round. Next, black speckles were randomly sprayed by an airbrush
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Fig. 20. Contact stress simulation of the 1 × 7 strand under different loading con- 

ditions. 
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hich can change the size of its nozzle and the paint pressure. The

esulting speckle pattern on a 1 × 19 strand is shown in Fig. 9 . 

. Results and discussion 

.1. Model implementation and validation 

A 7 × 7 multi-strand rope (usually named as independent wire

ope core, i.e. IWRC) is first taken into consideration to eluci-

ate the solution process of the present elastic-plastic model.

he geometric properties adopted for the rope are listed in

able 2 and the wire material property obeys the bi-linear con-

titutive law: Young’s modulus E = 1880 0 0 MPa , plastic modu-

us E p = 24600 MPa , yield stress σ p 0.2 = 1540 MPa , ultimate tensile

tress σ m 

= 1800 MPa and the Poisson effect is ignored. When the

ope is tensioned to εt = 0.01 ( τ t = 0), for example, according to the

nalysis in Section 2.2 , its outer strands are subjected to tension

 ξ strand = 0.00899), torsion ( τ strand = −0.000232 mm 

− 1 ) and bend-

ng ( ρstrand = 5740 mm) at the same time. Then the outer strand

an be geometrically treated as the description in Section 2.1 . Af-

er the deformation analysis in Section 3.1 , the local curvatures and

wist of the wires is obtained. Results are shown in Fig. 10 for both

ang lay and regular lay structures. The local curvatures and twist

aries periodically along the rope axis, so within rope cross sec-

ions of each period the strain and stress distribution is different.

he tensile strain ξ of an outer wire in an outer strand is 0.00817

nd 0.00853 for lang lay and regular lay configurations respec-
ively, according to Eq. (13) . The difference of the local deformation

arameters between lang lay and regular lay wires is due to their

pposite helix direction within the outer strands. 

Based on the four local deformation parameters ( �κ , �κ ′ , �τ
nd ξ ), the strain of the grid points on the wire cross section is

alculated via Eqs. (14) to (17) Then after the iteration computa-

ion, elastic-plastic stresses of the points can be obtained and sub-

equently the forces and moments over the cross section are inte-

rated through Eqs. (21) and (22). Finally the force and torque of

he rope can be gotten by projecting the local forces and moments

f wire cross sections to the global coordinate system. Fig. 11 ex-

ibits the axial force of the 7 × 7 rope varying with the axial elon-

ation, when both ends of the rope are restrained. The FEM re-

ults from Erdonmez and Imrak (2011) are also given for compari-

on. Within the elastic region, the forces predicted by the present

odel coincide with results of Costello (1990) . When the rope ax-

al strain εt is up to 0.01, the forces of the lang lay and regular lay

opes have both turned into the plastic range and the results agree

ell with the simulation of Erdonmez and Imrak (2011) . 

Another simpler case is the elastic-plastic response of a 1 × 7

trand, whose geometric character is also given in Table 2 and the

ire material property obeys the same bi-linear constitutive law.

he related experiments were carried out by of Utting and Jones

1987a,b ) and results have been widely used to demonstrate the

ccuracy of other authors’ models, like aforementioned work of

iang et al., (1999), Ghoreishi et al., (2007) and Foti and Martinelli

2016a). Fig. 12 shows the axial force and torsional moment vary-

ng with the axial strain of the 1 × 7 strand. As we can see, the

lobal response of the ropes predicted by the present model coin-

ides with the experimental and finite element results not only in

he elastic region but also up to the plastic extent. The axial force

s a little higher than the data of other authors within the plastic

egion but not much (less than 6%). Therefore, the present model

ives correct elastic-plastic prediction of axial-torsional behavior of

opes. 

.2. Local strain of the ropes 

The force-displacement curves of the 1 × 19 strand and

he 18 × 7 rope are shown in Fig. 13 . The strand is loaded

onotonously until final break happens, while the rope is ten-

ioned to 43 kN, holding for 10 s and then unloaded to zero. The

reaking force of 1 × 19 strand is about 18.3 kN. The elastic modu-

us of the 18 × 7 cable in the early load stage, during subsequent

oading upon 10 kN and over the unloading process differ with

ach other ( Fig. 13 b). That is because the total elongation of the

ire cable under load consists of two parts: the constructional

tretch and the material stretch. In the early load stage, the con-

tructional stretch is prominent to minimize the clearances be-

ween wires through compression of the core and outer strands

nd it will stay even after the removal of the external load, while

aterial stretch will disappear ( Zhu and Meguid, 2007 ). For the

imple 1 × 19 straight strand, the clearance within the rope is

uch less than in the multi-strand 18 × 7 cable, so the force is

irectly applied on the wire material with less constructional ef-

ect. The reader may notice that the force is not zero at the start

f the experiment. This little load (about 0.2 kN) is taken to make

he ropes straight to facilitate the measurement of surface strain

hrough DIC method. 

Fig. 14 gives the axial tension strain ε33 of the 1 × 19 strand

rom 3D-DIC test. As first, the strain increases linearly with the ax-

al force. When the force is beyond about 9 kN, the increase rate of

he strain becomes bigger and bigger, since the strand has turned

nto the plastic state. The distribution of strain on the outer sur-

ace of the strand is uniform due to the helical symmetry of the

ires. Our elastic-plastic estimation of wire deformation and stress
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Table 3 

Comparison of line contact results of the 1 × 7 simple strand. 

Hertz’s theory Present simulation Meng et al., (2016) 

εt = 0.008, τ t = 0 rad/mm 

Maximum contact pressures (MPa) 2428 2492 2550 

Maximum Mises stresses (MPa) —— 1412 1450 

εt = 0, τ t = 0 .008 rad/mm 

Maximum contact pressures (MPa) 2849 2739 2820 

Maximum Mises stresses (MPa) —— 1555 1610 

Fig. 21. Contact force estimation of 1 × 7 strands with different helix angles under 

fix-end tension. 
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is shown in Fig. 15 . As we can see, each sprial wire is not only

subjected to axial tension but also to bending against the rope

center. When the strand is loaded to 17 kN, it has turned into the

plastic deformation stage. The surface strain ε33 of our calculation

is 0.64%, while the measurement through 3D-DIC in Fig. 14 (a) is

0.61% (average value). The discrepancy between the two methods

is less 5%, which proves the accuracy of the present model. 

The 3D-DIC result of ε33 along the 18 × 7 multi-strand rope is

shown in Fig. 16 . The strain always increases linearly with the ax-

ial force as the maximum force loaded on the rope (about 43 kN)

does not exceed its elastic limit. The distribution of surface strain

of the rope is not so uniform as the 1 × 19 strand. This may result

from the lack of helical symmetry along the outer wires of spi-

ral strands. As the analyses to Fig. 10 , the deformation of double-

helix wires varies with their positions within the rope. Our elastic-

plastic estimation of wire deformation and stress of the 18 × 7

rope loaded to 43 kN is shown in Fig. 17 . Also, each helix wire

is subjected to bending against the corresponding strand center

or rope center. The surface strain ε33 of our simulation is 0.51%,

which agrees well with the measurement of 0.47% (average value)

through 3D-DIC in Fig. 16 (a). 

5.3. Stresses under different loading conditions 

Take the elastic-plastic 1 × 6 strand introduced in

Section 5.1 into consideration. Stresses under three different

loading conditions or boundary conditions are analyzed: fix-end

tension ( τ t = 0), free-end tension ( τ t � = 0) and fix-end torsion

( εt = 0). As wire ropes are mainly used to bear the axial force,

the stress distributions at the same axial tension are compared to

estimate the wire yielding and failure behavior. 

Fig. 18 interprets the Von Mises equivalent stress distribution

under different loading conditions with axial force of 75 kN. One

can clearly find that the fix-end torsion case ( Fig. 18 (c)) leads
o much bigger stress and the wire failure has happened on the

uter surface of the strand (where the Mises equivalent stress has

eached ultimate stress σ m 

). In contrast, the two tension cases

enerate their biggest stress on the center wire and the inner side

f the outer wires. The wires subjected to free-end case ( Fig. 18 (b))

ave begun to yield while those under fix-end case ( Fig. 18 (a)) are

till in the elastic region. The deformation of outer wires under

x-end case is a combine of axial tension and bending against the

ope center while outer wires under free-end case is subjected to

dditional axial torsion, which is in accordance with the external

oundary restraint at the rope ends. 

The axial and Von Mises stress distributions obtained through

he proposed analytical model under 120 kN are shown in Fig. 19 .

nly the fix-end tension case and the free-end tension case can

e analyzed since the strand under fix-end torsion load has come

o its full failure before 120 kN (see the aforementioned illustra-

ion). As the strands are subjected to the same axial force, the av-

rage axial stress through the cross section should be the same.

owever, the varying range of the axial stress under free-end ten-

ion ( Fig. 19 (a)) is much bigger than that under fix-end tension

 Fig. 19 (c)). For the Von Mises equivalent stresses, we can see that

 wide extent of yielding even failure has happened on wires un-

er free-end condition due to their torsional shear stresses. As

 comparison, the fix-end tension wires mainly undergo limited

ielding and no failure has appeared. In this sense, the end ro-

ation always goes against the rope service security. Nevertheless,

he wire stress state is also closely related to the localized con-

act status between neighborhood wires, which will be elucidated

n the next section. 

.4. Contact analysis of metallic strands 

Firstly, in order to verify the accuracy of our contact com-

utation, the line contact of the 1 × 7 strand in Table 2 is con-

idered. We ignore the plastic deformation at first for the com-

arison with the results from the prevalent Hertz contact theory

elaborated in detail by Johnson (1985) ) and the elastic model of

eng et al., (2016) . The Young’s modulus is temporarily taken as

97,900 MPa here since this value was adopted by Meng et al.,

2016) . Fig. 20 (a) and (b) show the Von Mises equivalent stress

istribution of the contact wires when the strand is subjected to

xial tension εt = 0.008, τ t = 0 rad/mm and axial torsion εt = 0,

τ t = 0.008 rad/mm respectively. The maximum value appears at

he location a little below the contact plane. As displayed in

able 3 , the results from our simulation show good agreement

ith those from the Hertz theory and the analysis of Meng et al.,

2016) . Therefore, our model is validated for the wire contact prob-

ems. 

Then we reconsider the bi-linear elastic-plastic constitutive law

ntroduced in Section 5.1 for the 1 × 7 strand. Fig. 21 shows line

ontact force of strands with different helix angles when the

trands are subjected to axial tension ( τ t = 0). One can clearly find

hat as the axial load increases, the contact force between the core

ire and the outer wire increases accordantly. The bigger helix an-

le leads to larger contact force when the axial loads are the same,
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Fig. 22. Line contact and point contact simulation results of the 1 × 19 strand under 

different loading conditions. 
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o matter in the elastic region or the plastic region. So one may

hoose a high helix angle strand to avoid the contact failure or re-

uce the wear damage. However, the helix angle can’t be too large

s the strand will become too loose to keep its structural stability.

herefore, a moderate value is more preferable. 

Finally the 1 × 19 multi-layer strand is taken into account to an-

lyze the different wire contact type, i.e. line contact and point

ontact. Also, the results of two different loading conditions (fixed

nd tension and free end tension) are given for comparison.

ig. 22 (a) gives the maximum Mises stress of the contact wires

arying with the axial force. As we can see, for both loading cases

he point contact leads to much larger stress than the line con-

act, due to its smaller contact area. The local material of the wire

tarts to yield even at about 1 kN (for point contact in fix end case),

hich is far less than the rope global yielding force. Usually, con-

training both ends will lead to the constriction of the rope, which

educes the clearance within the wires and generates more con-

act forces. As a consequence the point contact stress under fixed

nd condition is bigger than that under free end condition. How-

ver, this is not the situation for line contact. Both the line contact

tress and line contact pressure (shows in Fig. 22 (b)) are inversely

 little larger in free end case, though much smaller press from

uter layer generates. One should notice that the two layers of the
 × 19 strand are with opposite helical direction ( Fig. 6 ). So when

he whole strand undergoes negative rotation under free end ten-

ion, the inner layer actually suffers positive torsion, which means

he inner layer constricts. As the line contact happens between the

entral wire and the inner layer wire, that is why the line con-

act is more prominent under free end condition. Another inter-

sting finding is under free end loading, the line contact pressure

nd stress exceed the point contact ones when the axial force is

reater than 9 kN. This indicates that under free end tension the

oint contact is more dominant in the elastic region of the rope,

hile the line contact becomes significant when yielding begins to

appen on the strand, at least for the present rope structure and

aterial. 

. Conclusions 

The paper investigates the elastic–plastic behavior of wire ropes

nder axial tension and torsion loads. Based on the frictionless hy-

othesis and treating one individual wire as a curved thin rod, a

ew mechanical formulation to compute the local tension, bending

nd torsion deformation of wires is introduced first, especially for

ouble-helix wires in multi-strand ropes. Then the strain of points

n a wire cross section is derived and a general algorithm for the

ncremental plasticity is adopted to get the elastic-plastic stresses.

esides, a new procedure to estimate the contact forces is put for-

ard for both the line contact and point contact conditions within

he strands. The global forces and torques of the ropes predicted

y the present model coincide with the experimental and finite

lement results of previous authors. Details of the surface strain

elds of the 1 × 19 strand and 18 × 7 non-rotating rope are cap-

ured by 3D-DIC technique and the results agree well with our

lastic-plastic estimation. Our analytical model can give an accept-

ble estimate of the stress distribution over the wire cross sections

nd a good prediction of the global response for wire ropes. 

Different tension and torsion conditions lead to different yield-

ng and failure behavior of wire strands. We found that, on the one

and, the rotation of ropes (no matter its positive or negative) will

ncrease the overall stress level within the wire cross section due

o the additional torsional stresses to the wires. On the other hand,

estraining the rope ends leads to higher contact stress (especially

or the point contact wires) due to the constriction of the rope.

o a full understanding of rope inner state should be a combine

f global stress estimation and the localized stress analysis of the

ontact area. Increasing the helix angle moderately can reduce the

ontact pressure of strand wires to a certain extent. However, the

ontact problem of a multi-strand rope is still difficult to deal with

ince its structure is much more complex than the straight strand,

hich deserves a further study in the later work. 
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