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Abstract We find an asymptotic expression for the char-
acteristic timescales of decorrelation processes in weakly
compressible and isothermal turbulence. This result is used
in the Eddy-Damped Quasi-Normal Markovian equation to
derive the scalings of compressible energy spectra: (1) if
the acoustic waves are dominant, the compressible energy
spectra exhibit −7/3 scaling; (2) if local eddy straining
is dominant, the compressible energy spectra are scaled
as −3. Meanwhile, the energy spectra of incompressible
components display the same scaling of −5/3 as those in
incompressible turbulence. The direct numerical simulations
of weakly compressible turbulence are used to examine the
scaling.

Keywords Compressible turbulence · Energy spectra ·
Two-point closure · Space–time correlation

1 Introduction

The universal scaling of energy spectra of velocity fluctu-
ations is fundamentally important to understand turbulent
flows. For incompressible turbulence, the universal scaling
−5/3 of energy spectra was originally proposed by Kol-
mogorov, based on dimensional analysis [1]. This empirical
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result is further derived from the Navier–Stokes equations by
using the two-point closure approaches [2], which leads to
the substantial understanding of energy cascade in turbulent
flows. However, for compressible turbulence, the dimen-
sional analysis is difficult to be conducted due to nonlinear
coupling of velocity, density, and pressure. It remains a great
challenge to formulate the universal scaling of compressible
energy spectra.

In this paper, we will use a two-point closure approach to
derive the universal scaling of energy spectra for compress-
ible and isothermal turbulence. Investigations of the energy
spectra in compressible turbulence started with the Burgers
equation. An analogy to the Burgers equation [1,3] yields
the scaling exponent −2 for compressible velocity spectra.
The analogy implies that compressible turbulence is mainly
determined by shock waves. Recently, an exact flux relation
for compressible turbulence has been formulated to find the
scaling exponent−5/3 for density-weighted velocity spectra
[4]. This flux relation reveals the invariant energy flux in the
energy cascade of compressible and isothermal turbulence
[4,5]. The direct kinetic energy cascade for compressible tur-
bulence is proposed through an analytic scaling relation [6,7]
and further shown by using the coarse-graining approach [8].
Work by Bertoglio et al. [9–11] uses the direct interaction
approximation (DIA) approach to study compressible and
isotropic turbulence: they derive the governing equations for
energy spectra with undetermined timescales. The character-
istic timescales are further taken as the straining timescales
of local eddies, which leads to the−3 scaling of compressible
energy spectra. This result is crucially dependent on choice
of the characteristic timescales.

Characteristic timescales in turbulent flows are essential to
the two-point closure approaches [12]. In the Eddy-Damped
Quasi-Normal Markovian (EDQNM) approach [13], the
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decorrelation time scales are introduced for eddy damp-
ing rates to account for the history-dependence effects.
For incompressible turbulence, the decorrelation timescales
are taken as the straining time of local eddies [14,15],
which leads to Kolmogorov’s −5/3 scaling. However, if the
decorrelation timescales are taken as the sweeping time of
energy-contained eddies, it yields an incorrect prediction of
scaling −3/2 [16]. For compressible turbulence, dilatational
components display the different decorrelation timescales
from solenoidal ones [2,17]. In this paper, we will find
the decorrelation timescales from the space–time correlation
models and use them to derive the scalings of compressible
energy spectra. The scalings obtained are justified by using
their relation with the dominant decorrelation processes in
weakly compressible turbulence.

This paper is organized as follows: wewill first present the
EDQNM equations for both incompressible and compress-
ible components by using the Helmholtz decomposition.
Secondly, an asymptotic expression for the decorrelation
timescales will be formulated from the swept-wave models.
The timescales obtained will be used in the EDQNM equa-
tions to find the scaling forms of energy spectra afterward.
Finally, we will use the direct numerical simulation (DNS)
to investigate the energy spectra obtained for compressible
turbulence.

2 Possible scaling of compressible energy spectra

We start with the Navier–Stokes equations for weakly com-
pressible and isotropic turbulence. In this case, the density
fluctuations are assumed to be much smaller in comparison
with their means. In order to isolate the effects of compress-
ibility, it is further assumed that the fluids are barotropic
and the speed of sound is constant. These assumptions lead
to relate pressure directly with density and circumvent the
energy equation, which can be also achieved by assuming the
isothermal flows and ideal gas. The Navier–Stokes equations
obtained under those assumptions are often used to investi-
gate the compressibility effects and serve as the first step to
study compressible turbulence [11].

To study the effects of compressibility to energy spec-
tra, the Helmholtz decomposition [2] can be introduced for
velocity fields

u = us + ud, (1)

where us is a solenoidal component and ud are a purely com-
pressible or dilatational component. In Fourier space, us and
ud can be obtained by the projectors Pi j (k) ≡ δi j − ki k j/k2

and Πi j (k) ≡ ki k j/k2: usi ≡ Pi j (k)u j (k, t) and udi ≡
Πi j (k)u j (k, t), i, j = 1, 2, . . .. The governing equations for

the solenoidal and dilatational components in Fourier space
can be derived from the Navier–Stokes equations. They are
given as follows

(
∂

∂t
+ νk2

)
usi (k, t) = −i

∑
p+q=k

Pi j (k)qlul(p, t)u j (q, t),

(2)(
∂

∂t
+ ν′k2

)
udi (k, t) = −i

∑
p+q=k

Πi j (k)qlul(p, t)u j (q, t)

−i
ki
ρ
p(k, t), (3)

∂

∂t
p(k, t) = −iρc2kiu

d
i (k, t). (4)

Here, p is the pressure and ρ the density. c ≡ √
dp/dρ is

the speed of sound. ν is responsible for molecular viscosity
and ν′ is responsible for volume viscosity. For simplicity, we
will omit the prime of volume viscosity ν′ without confusion.
The symbol

∑
p+q=k denotes the integral operator

∫∫
δ(p+

q − k)dpdq. As expected, the nonlinear terms in Eqs. (2)
and (3) are non-local. The new challenges different from
incompressible turbulence lie in the coupling of solenoidal,
dilatational and pressure components.

Nowwe apply the EDQNM formalisms to derive the gov-
erning equation for solenoidal and dilatational energy spec-
tra, Ess(k, t) ≡ 2πk2

〈
usi (k, t)u

s
i (−k, t)

〉
and Edd(k, t) ≡

2πk2
〈
udi (k, t)u

d
i (−k, t)

〉
, respectively. The EDQNM proce-

dure for compressible turbulence is similar to the one for
incompressible turbulence: the fourth-order moments in the
third-order moment equations are approximated by using
quasi-normality and eddy damping rates. The third-order
moments obtained are then used to represent the energy
transfer terms. Finally, a Markovian modification is intro-
duced to simplify the energy transfer terms. A distinct feature
for compressible turbulence is that solenoidal and dilata-
tional components are coupled with each other. Under the
assumption of weak compressibility, we only retain the lin-
ear terms with Edd and discard all terms of high-order
o(〈Edd〉). Another feature is how to handle the pressure
terms. The effects of velocity–velocity–pressure correlations
in the third-order moment equations on energy spectra can
be represented by an eddy damping. The pressure terms only
affect the Green functions and thus change the eddy damp-
ing. Therefore, it is reasonable to temporarily remove the
pressure terms from the third-order moment equations and
recover their effects through the reformulation of eddy damp-
ing.

Those considerations yield the following evolutional
equations for solenoidal and dilatational energy spectra (see-
ing “Appendix” section for the details)
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(
∂

∂t
+ 2νk2

)
Ess(k, t)

=
∫∫

�
θ ss(k, p, q)T (k, p, q, t)dpdq, (5)

(
∂

∂t
+ 2νk2

)
Edd(k, t)

=
∫∫

�

[
θdd(k, p, q)

k3

pq
(x + yz)2

× Ess(p, t)Ess(q, t)

]
dpdq, (6)

where T (k, p, q, t) represents the energy transfer among
solenoidal modes (k, p, q), x , y, and z are the geometrical
coefficients from the triadic interactions of resonant modes
[2,11,13,14]. The parameters θ ss and θdd are the decorre-
lation timescales of solenoidal and dilatational components,
respectively.

It should be pointed out that only the lowest-order terms
for Edd are retained in the present derivations, since Edd

is small in the case of weak compressibility. The resulting
set of EDQNM equations is consistent with the previous one
obtained from DIA [11], where the response functions are
used. The energy spectra Eq. (5) for solenoidal components
is the same as the one for incompressible turbulence, with
the same energy transfer terms T (k, p, q, t). However, the
energy spectra Eq. (6) for dilatational components behaves
like a forced oscillator [11], where the dilatational modes
are driven by the solenoidal modes. This implies that, up to
the first-order approximation, the energy cascade approx-
imately holds for solenoidal components. Therefore, the
parameter θ ss(k, p, q) in Eq. (5) play a role of the decor-
relation timescales of solenoidal components. It can be thus
taken as the straining time of local eddies (or timescales of
Lagrangian time correlations [18–20]) ε1/3k2/3, which leads
to Ess(k) ∝ k−5/3.

The parameter θdd(k, p, q) in Eq. (6) is the characteristic
timescales of dilatational components, which represents the
history dependence of dilatational components on turbulent
flows. According to the DIA and EDQNM theories [14], this
timescale is given by

θdd(k, p, q) =
∫ ∞

−∞
Gdd(k, t)Rdd(p, t)Rdd(q, t)dt, (7)

where Gdd(k, t) is the response function and Rdd(p, t) the
space–time correlation for dilatational components, respec-
tively. The recently developed swept-wave model [17] pro-
poses the space–time correlations for dilatational modes as

Rdd(k, τ ) = cos(kcτ) exp
(
−μ2

dτ
2
)

. (8)

Here, μd ∝ ε1/3k2/3 are the local straining timescales for
Lagrangian time correlations, which replace the sweeping
timescales μd ∝ Vk for Eulerian time correlations. The
response functions can be re-constructed by including the
viscous effect into the space–time correlations. The viscous
effect is negligibly small for space–time correlations. How-
ever, it is necessarily included into linear response equations.
This consideration is consistent with the previous DIA for-
malism [15] and thus results in

Gdd(k, τ ) = cos(kcτ) exp
(
−μ2

dτ
2
)
exp(−νk2τ). (9)

Obviously, the first factor cos(kcτ) represents the acoustic-
wave effect, the second factor exp

(−μ2
dτ

2
)
represents the

straining effect of local eddies and the third one exp(−νk2τ),
as mentioned above, represents the viscous effect.

For small Mach numbers Mt , the asymptotic expression
for the characteristic timescale can be expanded in the power
series of (kc)−1:

θdd = 1

4

∑
k̄

νk2
[

1

(kc)2
+ 2α2

(kc)4
+ o

(
(kc)−4

)]
. (10)

Here, k̄ is taken over all combinations of k ± p ± q and
α2 = μ2

d(k) + μ2
d(p) + μ2

d(q). The first term in the sum is
of order (kc)−2 and the second one in the sum is of order
(kc)−4. There exist two cases which will be discussed below

(1) If the leading term in Eq. (10) is taken as an approxima-
tion to θdd(k, p, q), which leads to

θdd(k, p, q) ∼ νk2

(kc)2
. (11)

Therefore, the submission of the timescale into the
EDQNM Eq. (6) leads the power-law solution

Edd(k) ∝ M2
t Re

0ε4/3k−7/3. (12)

This result suggests that the energy spectrum of dilata-
tional components Edd(k) has a scaling of−7/3. It is also
observed that the energy spectrum Edd(k) is dependent
on the Mach numbers, but independent of the Reynolds
numbers, which are consistent with the properties of
energy spectrum in the inertial ranges.

(2) If the second term inEq. (10) is taken as an approximation
to the timescale, μd = ε1/3k2/3, the energy spectra are
found to be of the power-law form

Edd(k) ∝ M4
t Re

0ε2k−3. (13)

This is exactly same as the one obtained by Bertoglio et
al. [9–11].
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It is noted that the timescale (kc)−1 is associated with
acoustic waves and the timescale ε1/3k2/3 associated with
eddy straining. Hence, the above discussions imply that:
(1) if acoustic waves are dominating, the dilatational energy
spectra exhibit the scaling−7/3; (2) if eddy straining is dom-
inating, the dilatational energy spectra exhibit the scaling−3.
The decorrelation time scales Eq. (10) show that the time
scales associated with acoustic waves are a leading term and
the ones associated with eddy straining are a sub-leading
term. This implies that the dilatational energy spectra should
be scaled as −7/3.

Furthermore, we calculate the dissipation ratios of dilata-
tional components εdd to solenoidal one εss . For the first
case, the dissipation ratio is εdd/εss ∝ M2

t Re
−1/2. This is in

agreementwith the asymptotic analysis and numerical results
by Sarkar et al. [21]. However, for the second case, the dissi-
pation ratio is εdd/εss ∝ M4

t Re
−1 ln Re [11], which remains

controversial in the recent literatures.

3 Numerical results for compressible energy
spectra

In order to evaluate the possible scaling of energy spectra, we
perform DNS [17,22] of compressible and isotropic turbu-
lencewith periodic boundary conditions, where an optimized
sixth-order compact method and a fourth-order two-step low
dissipation and dispersion Runge–Kutta scheme are used to
discretize theNavier-Stokes equations. An external force and
a uniform cooling are imposed to maintain statistically sta-
tionary states. The grid resolution is 256 with the Reynolds
number 78 and the Mach number 0.38.

Figure 1 shows the energy co-spectra for solenoidal and
dilatational components, respectively. The scaling ranges for
co-spectra k5/3E(k) and k7/3E(k) are visually observable
although they are very limited. However, it is also observed
that there is no scaling range for the co-spectrum k3E(k).
We further calculate the scaling exponents of solenoidal and
dilatational energy spectra (not shown here) by using linear
regression. These calculations provide the scaling expo-
nent −2.224 for dilatational components and −1.654 for
solenoidal component. Therefore, it seems that the present
DNS data is in favor of the scaling−7/3 for dilatational com-
ponents, although the results suffer from the limited scaling
ranges due to low Reynolds numbers. It is noted that pre-
vious DNS results present the different scaling exponents
for energy spectra at the Mach numbers larger than unity,
while the present results are devoted to smaller Mach num-
bers for weak compressibility. It should be cautious that the
definitions of compressible energy spectra are different in
the literature. For example, Porter et al. [23] find the scaling
−5/3 for total velocity spectra at unity Mach number; Krit-
suk et al. [24] find the scaling −1.52 ± 0.01 for the energy

k
100 101 102

10-3

10-2

10-1

k5/3Ess(k)
k7/3Edd(k)
k3Edd(k)

Fig. 1 Co-spectra for kinetic energy of solenoidal and dilatational
components from DNS

spectra of density-weighted velocities at high Mach num-
bers. Work by Wang et al. [25] proposes the scaling −2 for
dilatational part and −5/3 for solenoidal one at the Mach
number of one.

4 Conclusions and discussions

Bachelor points out characteristic timescales are critically
important to a closed set of stochastic models for the Navier–
Stokes equations [26]. In incompressible turbulence, the
Lagrangian decorrelation timescales are introduced to the
EDQNM models in agreement with the classic Kolmogorov
theory. However, in compressible turbulence, the distinct
timescales for dilatational components have to be found,
although the Lagrangian decorrelation timescales are still
valid for solenoidal components. The present work develops
a framework to study the possible scaling of compressible
energy spectra and their relevant physical processes in terms
of space–time correlations.

The weakly compressible and isothermal turbulence can
be served as a start point to study compressible turbulence
[27,28]. At one extreme case of high Mach numbers, the
Burgers equation is the analogy of supersonic turbulence,
where shock waves are dominate and yield the scaling
exponent −2. At another extreme case of low Mach num-
bers (the weakly compressible and isothermal turbulence),
compressible components with a small amount of energy
are introduced to interact with incompressible components,
where acoustic waves are dominate and yield to scaling
of −7/3. Work by Bertogolio et al. [11] also proposes the
alternative that the eddy straining is dominate and the corre-
sponding scaling exponent is −2. Therefore, it is reasonable
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to consider further the interaction of acoustic waves, shock
waves, and eddy straining for compressible energy spectra at
moderate Mach numbers.

In summary, we develop an EDQNM model for weakly
compressible turbulence. The new development in the
EDQNM model is that the eddy-damping rate is determined
by the recently developed space–time correlation model,
which suggests possible scaling of compressible energy spec-
tra. The leading term in the eddy-damping rate leads to the
−7/3 scaling for dilatational energy spectra, while the sub-
leading term in the eddy damping leads to the −3 scaling.
The former implies that dilatational components are domi-
nated by acoustic-wave time scales and the latter implies that
dilatational components dominated by straining time scales.
Our DNS results cannot exclude the possibility of the −7/3
scaling. Further work is needed to clarifies the possible scal-
ing of compressible energy spectra in terms of space–time
correlations.
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Appendix: The EDQNM equations for weakly
compressible turbulence

We use Eqs. (2)–(4) to find the governing equations for
energy spectra of solenoidal and dilatational components,
pressure–velocity cross correlations and pressure spectrum

(
∂

∂t
+ 2νk2

) 〈
usi (k, t)u

s
i (−k, t)

〉

= −i
∫
p+q=k

Pi j (k)ql
〈
ul(p, t)u j (q, t)u

s
i (−k, t)

〉
dpdq

− i
∫
p+q=−k

Pi j (−k)ql
〈
ul(p, t)u j (q, t)u

s
i (k, t)

〉
dpdq,

(A1)(
∂

∂t
+ νk2

) 〈
udi (k, t)u

d
i (−k, t)

〉

= −i
∫
p+q=k

Πi j (k)ql
〈
ul(p, t)u j (q, t)u

d
i (−k, t)

〉
dpdq

− i
∫
p+q=−k

Πi j (−k)ql
〈
ul(p, t)u j (q, t)u

d
i (k, t)

〉
dpdq

− i
ki
ρ

〈
p(k, t)udi (−k, t)

〉
+ i

ki
ρ

〈
p(−k, t)udi (k, t)

〉
,

(A2)

(
∂

∂t
+ νk2

) 〈
p(k, t)udi (−k, t)

〉

= −i
∫
p+q=−k

Πi j (−k)ql
〈
p(k, t)ul(p, t)u j (q, t)

〉
dpdq

− iρc2k j
〈
udj (k, t)u

d
i (−k, t)

〉
+ i

ki
ρ

〈p(k, t)p(−k, t)〉 ,

(A3)
∂

∂t
〈p(k, t)p(−k, t)〉

= −iρc2ki
〈
udi (k, t)p(−k, t)

〉
+iρc2ki

〈
udi (−k, t)p(k, t)

〉
.

(A4)

The governing Eq. (A1) for solenoidal components can be
simplified as

(
∂

∂t
+ 2νk2

) 〈
usi (k, t)u

s
i (−k, t)

〉

= −i
∫
p+q=k

Pi j (k)ql

×
⎡
⎣

〈
ul(p, t)u j (q, t)u

s
i (−k, t)

〉
−

〈
ul(−p, t)u j (−q, t)usi (k, t)

〉
⎤
⎦ dpdq

= 2
∫
p+q=k

Pi j (k)ql

× Im
[〈
ul(p, t)u j (q, t)u

s
i (−k, t)

〉]
dpdq. (A5)

Here, Im[·] denotes the imaginary part of a complex func-
tion. The triple correlations in Eq. (A5) satisfy the following
equation

[
∂

∂t
+ ν

(
k2 + p2 + q2

)] 〈
usi (−k, t)ul(p, t)u j (q, t)

〉

= −i
∫
r+s=−k

Pim(−k)sn

×
〈
un(r, t)um(s, t)ul(p, t)u j (q, t)

〉
drds

− i
∫
r+s=p

sn
〈
un(r, t)ul(s, t)u

s
i (k, t)u j (q, t)

〉
drds

− i
pl
ρ

〈
usi (k, t)p(p, t)u j (q, t)

〉

− i
∫
r+s=q

sn
〈
un(r, t)u j (s, t)ul(p, t)u

s
i (k, t)

〉
drds

− i
q j

ρ

〈
usi (k, t)ul(p, t)p(q, t)

〉
. (A6)

Thequasi-normality assumption is introduced intoEq. (A6),
which leads to
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[
∂

∂t
+ ν

(
k2 + p2 + q2

)] 〈
usi (−k, t)ul(p, t)u j (q, t)

〉

= −i
∫
r+s=−k

Pim(−k)

×

⎡
⎢⎢⎢⎣
sn

〈
un(r, t)um(s, t)

〉 〈
ul(p, t)u j (q, t)

〉
+sn

〈
un(r, t)ul(p, t)

〉 〈
um(s, t)u j (q, t)

〉
+sn

〈
un(r, t)u j (q, t)

〉 〈
um(s, t)ul(p, t)

〉

⎤
⎥⎥⎥⎦ drds

− i
∫
r+s=p

⎡
⎢⎢⎢⎣
sn

〈
un(r, t)ul(s, t)

〉 〈
usi (−k, t)u j (q, t)

〉
+sn

〈
un(r, t)u

s
i (−k, t)

〉 〈
ul(s, t)u j (q, t)

〉
+sn

〈
un(r, t)u j (q, t)

〉 〈
ul(s, t)u

s
i (−k, t)

〉

⎤
⎥⎥⎥⎦ drds

−i
∫
r+s=q

⎡
⎢⎢⎢⎣
sn

〈
un(r, t)u j (s, t)

〉 〈
ul(p, t)u

s
i (−k, t)

〉
+sn

〈
un(r, t)ul(p, t)

〉 〈
u j (s, t)u

s
i (−k, t)

〉
+sn

〈
un(r, t)u

s
i (−k, t)

〉 〈
u j (s, t)ul(p, t)

〉

⎤
⎥⎥⎥⎦ drds.

(A7)

For weakly compressible turbulence, where the Mach num-
ber Mt is very small, the identities 〈uiui 〉 ≡ 〈usi usi 〉+ 〈udi udi 〉
and limMt→0〈uiui 〉 = 〈usi usi 〉 imply limMt→0〈udi udi 〉 = 0,
which leads to 〈udi udi 〉 � 〈usi usi 〉. Therefore, Eq. (A7) can be
further simplified as

[
∂

∂t
+ ν

(
k2 + p2 + q2

)] 〈
usi (−k, t)ul (p, t)u j (q, t)

〉

= iPim(k)

⎡
⎣ qn

〈
usn(−p, t)usl (p, t)

〉 〈
usm(−q, t)usj (q, t)

〉
+pn

〈
usn(−q, t)usj (q, t)

〉 〈
usm(−p, t)usl (p, t)

〉
⎤
⎦

+ i

⎡
⎣ qn

〈
usn(k, t)u

s
i (−k, t)

〉 〈
usl (−q, t)usj (q, t)

〉
− kn

〈
usn(−q, t)usj (q, t)

〉 〈
usl (k, t)u

s
i (−k, t)

〉
⎤
⎦

+ i

⎡
⎣− kn

〈
usn(−p, t)usl (p, t)

〉 〈
usj (k, t)u

s
i (−k, t)

〉
+ pn

〈
usn(k, t)u

s
i (−k, t)

〉 〈
usj (−p, t)usl (p, t)

〉
⎤
⎦ .

(A8)

As a result, we could obtain the triple correlations from
Eq. (A8)

〈
ul(p, t)u j (q, t)u

s
i (−k, t)

〉

= i
∫ t

−∞
e−ν(k2+p2+q2)(t−t ′)Til j (k, p, q, t ′)dt ′, (A9)

where

Til j (k, p, q, t)

= Pim(k)

⎡
⎣qn

〈
usn(−p, t)usl (p, t)

〉 〈
usm(−q, t)usj (q, t)

〉
+pn

〈
usn(−q, t)usj (q, t)

〉 〈
usm(−p, t)usl (p, t)

〉
⎤
⎦

+
⎡
⎣qn

〈
usn(k, t)u

s
i (−k, t)

〉 〈
usl (−q, t)usj (q, t)

〉
−kn

〈
usn(−q, t)usj (q, t)

〉 〈
usl (k, t)u

s
i (−k, t)

〉
⎤
⎦

+
⎡
⎣−kn

〈
usn(−p, t)usl (p, t)

〉 〈
usj (k, t)u

s
i (−k, t)

〉
+pn

〈
usn(k, t)u

s
i (−k, t)

〉 〈
usj (−p, t)usl (p, t)

〉
⎤
⎦ .

(A10)

Submission of the triple correlations into Eq. (A5) leads to
the closed equations for solenoidal energy spectrum

(
∂

∂t
+ 2νk2

) 〈
usi (k, t)u

s
i (−k, t)

〉 = 2
∫
p+q=k

Pi j (k)ql

×
[∫ t

−∞
e−ν(k2+p2+q2)(t−t ′)Til j (k, p, q, t ′)dt ′

]
dpdq.

(A11)

We further use the Markovian assumption to Eq. (A11),
which yields

(
∂

∂t
+ 2νk2

) 〈
usi (k, t)u

s
i (−k, t)

〉 = 2
∫
p+q=k

Pi j (k)ql

×
[∫ t

−∞
e−ν(k2+p2+q2)(t−t ′)dt ′

]
Til j (k, p, q, t)dpdq.

(A12)

According to Eq. (A12), we can obtain the govern-
ing equations for solenoidal energy spectrum Ess(k, t) ≡
2πk2

〈
usi (k, t)u

s
i (−k, t)

〉
,

(
∂

∂t
+ νk2

)
Ess(k, t)

=
∫
p+q=k

[∫ t

−∞
e−ν(k2+p2+q2)(t−t ′)dt ′

]

× T (k, p, q, t)dpdq, (A13)

T (k, p, q, t)

= k3

pq
a(k, p, q)Ess(p, t)Ess(q, t)

− k

2pq
Ess(k, t)

[
p2b(k, p, q)Ess(q, t)

+ q2b(k, q, p)Ess(p, t)
]
, (A14)

which are exactly the same as the equations of energy spec-
trum in incompressible turbulence.

The governing Eq. (A2) for compressible components can
be further simplified

(
∂

∂t
+ νk2

) 〈
udi (k, t)u

d
i (−k, t)

〉

= −i
∫
p+q=k

Πi j (k)ql
〈
ul(p, t)u j (q, t)u

d
i (−k, t)

〉
dpdq
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− i
∫
p+q=−k

Πi j (−k)ql
〈
ul(p, t)u j (q, t)u

d
i (k, t)

〉
dpdq

= 2
∫
p+q=k

Πi j (k)ql

× Im
[〈
ul(p, t)u j (q, t)u

d
i (−k, t)

〉]
dpdq. (A15)

Here, the statistical stationarity ∂
∂t 〈p(k, t)p(−k, t)〉 = 0

and the governing Eq. (A4) for pressure spectrum are used.
As a result, we obtain the identity

〈
udi (k, t)p(−k, t)

〉 ≡〈
udi (−k, t)p(k, t)

〉
and that the sum of terms associated with

pressure is zero in Eq. (A2).
Therefore, the triple correlations in Eq. (A15) satisfy the

equation below

[
∂

∂t
+ ν

(
k2 + p2 + q2

)] 〈
udi (−k, t)ul(p, t)u j (q, t)

〉

= −i
∫
r+s=−k

Πim(−k)sn

×
〈
un(r, t)um(s, t)ul(p, t)u j (q, t)

〉
drds

+ i
ki
ρ

〈
p(−k, t)ul(p, t)u j (q, t)

〉

− i
∫
r+s=p

sn
〈
un(r, t)ul(s, t)u

d
i (−k, t)u j (q, t)

〉
drds

− i
pl
ρ

〈
udi (−k, t)p(p, t)u j (q, t)

〉

− i
∫
r+s=q

sn
〈
un(r, t)u j (s, t)ul(p, t)u

d
i (−k, t)

〉
drds

− i
q j

ρ

〈
udi (−k, t)ul(p, t)p(q, t)

〉
. (A16)

In the following, the quasi-normality assumption is intro-
duced to express the quadruple correlations as the products
of double correlations; the effects of the velocity–velocity–
pressure correlations on the energy spectrawill be considered
as the damping factors; the weakly compressibility assump-
tion is also introduced so that 〈usus〉 � 〈udud〉, which
implies that the terms associated with 〈udud〉 are negligibly
small. As a result, we obtain the triple correlations

〈
udi (−k, t)ul(p, t)u j (q, t)

〉
= i

∫ t

−∞
e−ν(k2+p2+q2)(t−t ′)

×
⎡
⎣ Πim(k)qn

〈
usn(−p, t ′)usl (p, t ′)

〉 〈
usm(−q, t ′)usj (q, t ′)

〉
+Πim(k)pn

〈
usn(−q, t ′)usj (q, t ′)

〉 〈
usm(−p, t ′)usl (p, t ′)

〉
⎤
⎦ dt ′.

(A17)

Substituting the triple correlations into Eq. (A15) and not-
ing that the energy spectrum is defined as Edd(k, t) ≡
2πk2

〈
udi (k, t)u

d
i (−k, t)

〉
, we obtain

(
∂

∂t
+ νk2

)
Edd(k, t) =

∫
p+q=k

∫ t

−∞
e−ν(k2+p2+q2)(t−t ′)

× k3

2pq
f (k, p, q)Ess(p, t ′)Ess(q, t ′)dt ′dpdq, (A18)

where

f (k, p, q) = 1

k2

[
Πi j (k)qlΠim(k)qn Pnl(p)Pmj (q)
+Πi j (k)qlΠim(k)pn Pnj (q)Pml(p)

]
.

(A19)

Again, we use the Markovian approximation to obtain

(
∂

∂t
+ νk2

)
Edd(k, t)

=
∫
p+q=k

[∫ t

−∞
e−ν(k2+p2+q2)(t−t ′)dt ′

]

× k3

2pq
f (k, p, q)Ess(p, t)Ess(q, t)dpdq. (A20)

Finally, we introduce the eddy damping ηd(k) and obtain
the EDQNM equations for energy spectrum of compressible
components:

(
∂

∂t
+ νk2

)
Edd(k, t) =

∫
p+q=k

θ(k, p, q)

× k3

2pq
f (k, p, q)Ess(p, t)Ess(q, t)dpdq, (A21)

θ(k, p, q)

=
∫ t

−∞
e−[

ν(k2+p2+q2)+ηd (k)+ηd (p)+ηd (q)
]
(t−t ′)dt ′. (A22)
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